THE MORPHOLOGY, TERMINOLOGX, and PATHOGENESIS of ARTERIAL PLAQUES C.Uj

Total Page:16

File Type:pdf, Size:1020Kb

THE MORPHOLOGY, TERMINOLOGX, and PATHOGENESIS of ARTERIAL PLAQUES C.Uj Postgrad Med J: first published as 10.1136/pgmj.38.435.25 on 1 January 1962. Downloaded from POSTGRAD MED. J. (I962), 38, 25 THE MORPHOLOGY, TERMINOLOGX, AND PATHOGENESIS OF ARTERIAL PLAQUES C.uJ. SCHWARTZ,'M.D. AND J. R. A. MITCHELL, M.B., B.Sc., MJ.C.P. Department of the Regius Professor of Medicine, Radcliffe Infirmary, Oxford ... a scientific survey which is to throw light on yellow pultaceous material. It is in this sense that theproblem ofarteriosclerosis in all its various aspects atheroma has been recently defined by WHO must be based upon a clear delimitation of that term'. (I958) as a' . plaque in which fatty softening is -Aschoff (1933). predominant'. All w9uld be well if workers were THE lack of precision of terms such as arterio- to limit its use to a particular type of plaque, but sclerosis, atheroma and atherosclerosis was em- atheroma, atherosclerosis and arteriosclerosis are phasized by Rabson (I954), who showed that they currently used as synonyms for a wide variety of have different meanings for different pathologists, arterial lesions. These terms, therefore, lack a and they are used to describe widely different types clear and reproducible meaning. of lesions, including many bizarre varieties of We considered, therefore, that an attempt experimentally induced arterial disease. should be made to describe the range of macro- Lobstein (I833) first coined the word arterio- scopic plaques which can be recognized on the sclerosis, which he applied as a generic term to all intimal surface of the major arteries (aorta, forms of arterial hardening. From its inception, carotid, iliac) and define the histological characteristics of by copyright. therefore, the term arteriosclerosis lacked pre- these plaques. Some observations resulting from cision and this difficulty was recognized by Klotz such a study are presented. (I906), who, in suggesting that it be retained in a generic sense, emphasized the need for recognition Macroscopic ofthe different varieties of disease which were to be Types of Arterial Plaque included under this general heading. M6nckeberg Four types of lesion are recognizable on the (1903) described one form of arterial hardening, luminal surface of the major arteries: namely, medial calcification, and stressed that this (i) Flat Sudanophilic Plaques (Fatty Streaks). change was a pathological entity unrelated to the In the unstained vessel these are seen as white or other types of arteriosclerosis. If the term yellow areas. They show considerable variation http://pmj.bmj.com/ arteriosclerosis is used in the sense in which it in size and shape, from small spots no larger than a was introduced, to cover all types of arterial har- pin head to larger areas covering many square dening, it serves no useful purpose; if used in any centimetres (Fig. i). These flat lesions stain other context it serves only to confuse an already intensely with the fat-stain Sudan-IV and are complex problem. sharply demarcated from the surrounding intima. Of all the terms used to describe the various When an artery is sectioned transversely through plaques occurring in the large arteries of man, such a plaque no other macroscopic feature is to atherosclerosis and atheroma are the least well- be found, and in particular no areas of pultaceous on September 25, 2021 by guest. Protected defined and most frequently misused. The word material are seen in the depths. atherosclerosis was introduced by Felix Marchand (ii) Raised Sudanophilic Plaques are white or (I904) to include the various arterial lesions con- yellow in the unstained artery and with Sudan-IV sidered as 'arteriosclerosis' and to emphasize the staining they show a considerable variability in presence of lipid material in certain of the lesions. staining intensity. There is a wide variation in Atherosclerosis is therefore nothing more than a size and shape, but in general the smallest complex alternative for arteriosclerosis and suffers raised lesions are larger than the smallest flat in consequence from the same lack of specificity. plaques. In transverse section the deeper parts of According to Pare (I575), the term atheroma such plaques commonly contain a white or yellow was used in the ancient Greek literature to describe pultaceous material. any cystic space or sac containing a gruel-like (iii) Raised White Plaques (Fibrous Plaques) material. It was first applied to arterial pathology have a firm non-sudanophilic surface. Transverse by von Haller (I755) to describe a particular type sections show that beneath the white surface layer of arterial plaque which on sectioning exuded a there is almost invariably a mass of yellow pul- Postgrad Med J: first published as 10.1136/pgmj.38.435.25 on 1 January 1962. Downloaded from 26 POSTGRADUATE MEDICAL JOURNAL January I962 ulceration, it has never been seen on the surface of a flat lesion. When ulceration is present on a raised plaque it is commonly accompanied by calcification. Microscopic Appearances of the Flat Sudanophilic Plaque These lesions affect the intima and there are no characteristic changes in the other arterial coats. The intima shows a variable but slight thickening consisting of fat-laden macrophages in a fine mesh- work of fibrous and elastic tissue (Fig. 2). Sudan-stained frozen sections show that these plaques contain many fat globules both in macro- phages and extracellularly. There is usually a marked difference in the amount of lipid in the intimal and medial coats, the dividing line being the internal elastic lamina along which considerable fatty deposits may be found, even when the intima shows relatively little fat elsewhere, and this striking concentration of fat along the intimal side of the internal elastic lamina is a feature of this type of lesion. The media may or may not show fatty changes, and when medial fat is present it occurs as fine globules, generally smaller than those found in the intima and showing a tendencyby copyright. to iS. http://pmj.bmj.com/ :e on September 25, 2021 by guest. Protected FIG. i.-Aorta from a male aged 30, stained with Sudan- IV, showing fatty streaking. Note the fan-shaped distribution of sudanophilia in the thoracic segment, the sparing around the mouths of the intercostal arteries, and the localization of the fatty streaking along the midline posteriorly down to the level of the coeliac axis. taceous material similar to that observed in the raised sudanophilic plaques. (iv) Complicated Plaques are those showing cal- cification, surface ulceration, thrombosis or hzemor- FIG. 2.-Frozen section through an aortic fatty streak of rhage. 66-year-old male. The lipid appears as black Calcification can be recognized as grey or globules in a fibro-elastic stroma. Note the normal white areas which are often umbilicated and, like media. Sudan-IV x IOO. Postgrad Med J: first published as 10.1136/pgmj.38.435.25 on 1 January 1962. Downloaded from ffanuarv I962 SCHWARTZ and MITCHELL: Arterial Plaques 27 align along the medial elastic fibres. The medial fat appears to be largely extracellular. It should be emphasized that medial fat need not be associ- ated with the presence of flat sudanophilic plaques in the intima, but can occur in otherwise normal arteries. Within the intimal fatty streaks scattered small round cells morphologically similar to small lymphocytes, together with an occasional plasma cell and fibroblast, are sometimes seen. Other types of cells have not, been encountered, while cellular infiltration of the media and adventitia does not occur. Occasionally the internal elastic lamina shows a hyaline thickening and fragmenta- tion, but even in such instances the media is well preserved. Calcification of the media and internal elastic lamina has been seen in association with the FIG. 3.-Human coronary artery, showing complete flat sudanophilic plaque, particularly in the internal occlusion with thrombus, areas of revascularization, a large intramural hxmorrhage, cholesterol-clefted and common iliac arteries, but it has also been lipid deposits, extensive fibrosis and medial thin- observed in these sites in the absence of intimal ning. Scattered foci of adventitial lymphocytes are lesions, suggesting that it is not an integral com- also present. Masson's trichrome x IO. ponent of this type of lesion. On staining with azure-A and periodic acid- Schiff (PAS) there is no constant tinctorial pattern, lations of fat, although there may be intra- and while material staining with phosphotungstic-acid- extracellular surface deposits, and it is these sur- haematoxylin (PTAH)-' fibrin '-has never been face accumulations only which distinguish raised found on the surface, within or beneath these sudanophilic from raised white plaques. by copyright. plaques. These flat fatty plaques are devoid of Prominent metachromatic staining is very fre- histologically demonstrable vessels, while the vas- quently found in the fibrous tissue of the raised cularity of the medial and adventitial coats does plaques. The staining density is greatest in the not differ from that found in normal arteries. depths of the plaque and around the lacunar spaces, while in general there is little surface meta- Microscopic Appearances of Raised Arterial chromasia, except when organizing thrombus is Plaques present. The fibrous tissue is PTAH and generally Although three types of raised arterial plaque PAS negative. can be distinguished on the basis of their macro- (ii) Elastosis. The laminated elastic tissue which http://pmj.bmj.com/ scopic appearance, no clear distinction can be made occurs in areas of fibrosis has already been men- between them histologically, the three types having tioned. In some sections the spacing and align- essentially similar characteristics. ment ofthe lamina! suggests formation in successive (i) Fibrosis. Dense bundles of collagen are layers in an episodic fashion, and in many instances found in every elevated plaque, often forming such areas of elastosis closely resemble the changes thick layers on the luminal surface, and in the which occur in organizing arterial thrombus.
Recommended publications
  • Documentationand Coding Tips: Peripheral Vascular Disease
    Documentation and Coding: Peripheral Vascular Disease (PVD)/ Peripheral Arterial Disease (PAD) Created May 2020 At Healthfirst, we are committed to helping providers accurately document and code their patients’ health records. Proper ICD-10 coding can provide a comprehensive view of a patient’s overall health. This tip sheet offers guidance on how to submit a diagnosis code with greater specificity for Peripheral Vascular Disease (PVD)/Peripheral Arterial Disease (PAD). The risk factors for peripheral vascular disease are similar to those for coronary artery disease. The terms arteriosclerosis and atherosclerosis may be used interchangeably for coding and documentation purposes. When completing documentation and coding, you should keep in mind the following: Type of graft Laterality (left, right, or bilateral) and side(s) affected by the complicating condition Type of bypass Any educational information provided to the patient Location of vein or artery graft affected Treatment plan, orders, testing, prescriptions, and referrals Complications like claudication, ulceration, or chest pain Updated status of condition (stable, improved, and/or worsening) Graft, Bypass, Location, Complications, and Laterality Use the chart below to ensure that you are coding properly. Note that this is not an inclusive list of codes and that you are required to have six digits for your diagnosis code. The location and laterality will help determine the fifth and sixth digits for the codes. Type of Graft Location/Laterality Description of Graft ICD-10-CM Without
    [Show full text]
  • Association Between Multi-Site Atherosclerotic Plaques and Systemic Arteriosclerosis
    Association between multi-site atherosclerotic plaques and systemic arteriosclerosis: results from the BEST study (Beijing Vascular Disease Patients Evaluation Study) huan liu Peking University Shougang Hospital https://orcid.org/0000-0001-6223-7677 Jinbo Liu Peking University Shougang Hospital Wei Huang Peking University Shougang Hospital Hongwei Zhao Peking University Shougang Hospital Na zhao Peking University Shougang Hospital Hongyu wang ( [email protected] ) Research Keywords: arteriosclerosis, atherosclerosis, atherosclerotic plaque, carotid femoral artery pulse wave velocity CF-PWV Posted Date: June 8th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-31641/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on August 1st, 2020. See the published version at https://doi.org/10.1186/s12947-020-00212-3. Page 1/18 Abstract Background Arteriosclerosis can be reected in various aspect of the artery, including atherosclerotic plaque formation or stiffening on the arterial wall. Both arteriosclerosis and atherosclerosis are important and closely associated with cardiovascular disease (CVD). The aim of the study was to evaluate the association between systemic arteriosclerosis and multi-site atherosclerotic plaques. Methods The study was designed as an observational cross-sectional study. A total of 1178 participants (mean age 67.4 years; 52.2% male) enrolled into the observational study from 2010 to 2017. Systemic arteriosclerosis was assessed by carotid femoral artery pulse wave velocity (CF-PWV) and multi-site atherosclerotic plaques (MAP, >=2 of the below sites) were reected in the carotid or subclavian artery, abdominal aorta and lower extremities arteries using ultrasound equipment.
    [Show full text]
  • The Level of C.Pneumoniae, Cytomegalovirus, and H.Pylori Antibody in a Patient with Coronary Heart Disease
    Vol 11, No 4, October – December 2002 Microorganism antibodies in CHD patient 211 The level of C.pneumoniae, Cytomegalovirus, and H.pylori antibody in a patient with coronary heart disease Dasnan Ismail Abstrak Aterosklerosis sampai saat ini merupakan penyebab utama morbiditas dan mortalitas di negara maju. Meskipun modifikasi faktor risiko di negara maju telah dapat menurunkan kekerapan aterosklerosis namun penurunan ini mulai menunjukkan grafik yang mendatar. Keadaan ini merangsang para peneliti untuk mencari faktor pajanan lingkungan termasuk faktor infeksi yang dapat mempengaruhi proses aterosklerosis. Telah dilakukan penelitian potong lintang dari bulan Maret 1998 sampai Agustus 1998 terhadap 122 orang pasien yang secara klinis menunjukkan penyakit jantung koroner yang menjalani kateterisasi jantung, terdiri dari 92 orang laki-laki dan 30 orang perempuan dengan rerata umur 55 tahun. Pasien diperiksa secara klinis dan laboratorium (gula darah, kolesterol, trigliserida dan antibodi terhadap C.pneumoniae, Cytomegalovirus dan H.pylori). Pada penelitian ini didapatkan perbedaan kadar kolesterol, trigliserida dan HDL antara kelompok stenosis koroner dan non stenosis. Sedangkan kadar antibodi C.pneumoniae, Cytomegalovirus, H.pylori tidak berbeda bermakna. Penelitian ini belum dapat menyimpulkan pengaruh antibodi terhadap aterosklerosis karena pada kelompok non stenosis tidak dapat disingkirkan kemungkinan terjadinya aterosklerosis mengingat rerata umur subyek penelitian 55 tahun. Penelitian mengenai interaksi infeksi dengan risiko tradisional serta gender dan nutrisi diperlukan untuk mendapat jawaban yang lebih jelas tentang pengaruh infeksi terhadap aterosklerosis. (Med J Indones 2002; 11: 211-4) Abstract Atherosclerosis is still the chief cause of morbidity and mortality in developed nations. Even though in developed nations the modification of risk factors is able to reduce the prevalence rate of atherosclerosis, such reduction is starting to slow down.
    [Show full text]
  • Prehypertension Increases the Risk for Renal Arteriosclerosis in Autopsies: the Hisayama Study
    JASN Express. Published on June 20, 2007 as doi: 10.1681/ASN.2007010067 CLINICAL EPIDEMIOLOGY www.jasn.org Prehypertension Increases the Risk for Renal Arteriosclerosis in Autopsies: The Hisayama Study Toshiharu Ninomiya,* Michiaki Kubo,* Yasufumi Doi,† Koji Yonemoto,* Yumihiro Tanizaki,* Kazuhiko Tsuruya,† Katsuo Sueishi,‡ Masazumi Tsuneyoshi,§ Mitsuo Iida,† and Yutaka Kiyohara* Departments of *Environmental Medicine, †Medicine and Clinical Science, ‡Pathophysiological and Experimental Pathology, and §Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan ABSTRACT Information regarding the association between prehypertension BP level and renal arteriosclerosis is limited. In 652 consecutive population-based autopsy samples without hypertension treatment before death, the relationship between the severity of renal arteriosclerosis and BP levels classified according to the criteria of the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure was examined. The age- and gender-adjusted frequencies of renal arteriosclerosis linearly increased with elevating BP levels; both hypertensive and prehypertensive subjects had significantly higher frequencies of renal arteriosclerosis than subjects with normal BP (normal 11.9%; prehypertension 28.5%; stage 1 hypertension 32.9%; stage 2 hypertension 58.2%; all P Ͻ 0.01 versus normal). In a logistic regression model, prehypertension was significantly associated with renal arteriosclerosis after adjustment for other cardiovascular risk factors (prehyper- tension multivariate-adjusted odds ratio [mOR] 5.99 [95% confidence interval (CI) 2.20 to 15.97]; stage 1 hypertension mOR 6.99 [95% CI 2.61 to 18.72]; stage 2 hypertension mOR 22.21 [95% CI 8.35 to 59.08]). This significant association was observed for all renal arterial sizes.
    [Show full text]
  • Pathophysiology of Peripheral Arterial Disease and Risk Factors for Its Development
    JOHN R. BARTHOLOMEW, MD* JEFFREY W. OLIN, DO* Section Head, Vascular Medicine Professor of Medicine and Director of Vascular Medicine Department of Cardiovascular Medicine Zena and Michael A. Wiener Cardiovascular Institute Cleveland Clinic Mt. Sinai School of Medicine Cleveland, OH New York, NY Pathophysiology of peripheral arterial disease and risk factors for its development ■ ABSTRACT ■ PATHOPHYSIOLOGY OF PAD Peripheral arterial disease (PAD) is a systemic Atherosclerosis is a complex process that involves atherosclerotic process for which the major risk endothelial dysfunction, lipid disturbances, platelet factors are similar to those for atherosclerosis in activation, thrombosis, oxidative stress, vascular the carotid, coronary, and other vascular beds. smooth muscle activation, altered matrix metabolism, Among the traditional risk factors for PAD, those remodeling, and genetic factors.2 More recently, the with the strongest associations are advanced age, role of inflammation in all stages of atherosclerosis 3 smoking, and diabetes mellitus. More recently, a development has been widely recognized. number of nontraditional risk factors for PAD have Atherosclerosis frequently develops at arterial bifur- cations and branches where endogenous atheroprotec- also been recognized. This article briefly reviews tive mechanisms are impaired as a result of the effects the pathophysiology of PAD and the evidence sup- of disturbed flow on endothelial cells.2 Risk factors such porting established and emerging risk factors for as increased age, diabetes mellitus, smoking, eleva- its development. tions in total and low-density lipoprotein (LDL) cho- lesterol, and hypertension play important roles in both eripheral arterial disease (PAD) refers to the initiation and the acceleration of this process.2 atherosclerotic and thromboembolic process- es that affect the aorta, its visceral arterial The stages of atherosclerosis branches, and arteries of the lower extremi- Pathologically, the stages of atherosclerosis are divided P1 ties.
    [Show full text]
  • The Pathobiology of the Saccular Cerebral Artery Aneurysm Rupture
    To those of us carrying saccular cerebral artery aneurysms, - and to my family Th e Neurosurgery Research Group, Biomedicum Helsinki Department of Neurosurgery, University of Helsinki Department of Neurosurgery, University of Kuopio Transplantation Laboratory, University of Helsinki The Pathobiology of Saccular Cerebral Artery Aneurysm Rupture and Repair -a Clinicopathological and Experimental Approach Juhana Frösen ACADEMIC DISSERTATION To be publicly discussed by the permission of the Medical Faculty of the University of Helsinki in the lecture hall of Töölö Hospital on the 15th of September 2006 at 12 o’clock noon. Helsinki 2006 Supervised by Professor Juha Jääskeläinen Department of Neurosurgery Kuopio University Hospital and Marjukka Myllärniemi, MD PhD University of Helsinki Reviewed by Docent Timo Kumpulainen Department of Neurosurgery Oulu University Central Hospital and Docent Anne Räisänen-Sokolowski Department of Pathology University of Helsinki Discussed with Associate Professor Robert M Friedlander Department of Neurosurgery Harvard Medical School ISBN 952-92-0787-5 (paperback) ISBN 952-10-3330-4 (PDF) Abbreviations 15-LOX 15-lipoxygenase enzyme AAA Abdominal aortic aneurysm ACA Anterior cerebral artery AcomA Anterior communicating artery AICA Anterior inferior cerebellar artery APKD Autosomal polycystic kidney disease ApoB Apolipoprotein B ApoE Apolipoprotein E BA Basilar artery bFGF-R Receptor for basic fi broblast growth factor EEL External elastic lamina ELISA Enzyme immunoabsorbent assay eNOS Endothelial nitric oxide
    [Show full text]
  • Foam Cells”, a Hallmark of Atheromas
    The Biology of Atherosclerotic Cardiovascular Disease FYI Venous & Arterial Systems Hey, how you doin’? Venous blood The 4 Chamber Heart from upper body Lung Mitral valve Rt. Lt. atrium atrium Pulm. Aorta Artery Tricuspid valve Right Left Aortic valve ventricle ventricle Venous blood Pulmonic from lower valve body Small Veins & Capillaries To heart, neck, arms Superior Vena Cava Pulm. v. Pulm. a. Rt. Atrium Aorta Lungs Rt. ventricle Lt. ventricle To abd., kidneys, Inferior pelvis, legs Vena Cava Small Veins & Capillaries FYI Anatomy of the Heart Blood Vessels Adventitia Media Intima Veins & Arteries have 3 layers. Intima: endothelial cells in contact with the blood. The internal elastic lamina forms the barrier between the intima and the underlying “tunica media.” The media has multiple layers of smooth muscle cells. The outer layer of connective tissue is the adventitia. Veins • Have thinner walls; less media. • Have a lower lumen pressure. • Have valves that direct blood back toward the heart Artery Vein Magnitude of the Problem • Despite changes in lifestyle and “statins” to lower cholesterol, & angioplasty, cardiovascular disease is FYI the #1 cause of death in the world. • Atherosclerosis kills 800,000/year in US. • Worldwide mortality is 12 million/year. Atherosclerosis Atherosclerosis is a disease process that produces blockages in arteries, mainly large and medium-sized arteries and can lead to ischemia (inadequate blood flow) of the heart, brain, or extremities. When severe, it can produce “infarction,” death of the tissue being supplied by the blocked artery. Adventitia Media Intima Lipoproteins Transport Fatty Substances Since high blood concentrations of cholesterol (especially in LDL), are a strong risk factor for atherosclerosis, many have believed that atherosclerosis is simply due to accumulation of lipids in the arterial wall.
    [Show full text]
  • Atherosclerosisatherosclerosis
    AtherosclerosisAtherosclerosis Atherosclerotic Cardiovascular Disease (ASCVD) Smooth m. proliferation Endothelial injury Lipids (cholesterol) Pathogenesis of atherosclerosis 1 Normal Artery Structure Lipoprotein particle 2 XX 60,00060,000 xx 180,000180,000 Robert Hamilton, Ph.D. EM: Negative staining Cardiovascular Research Inst., UCSF 3 The cholesterol in LDL accounts for ©Medscape approx. 70% of the plasma cholesterol Arteriosclerosis (Hardening of the arteries) Arterial wall thickening + loss of elasticity Monckeberg medial Arteriolosclerosis Atherosclerosis calcific sclerosis hyaline hyper- plastic ¾Age 50 -small arteries/arterioles -aorta & branches + ¾Radiologic calcif. -hyaline type / hyperplastic coronary arteries ¾Lumen intact -hypertension / diabetes -ASCVD causes 38% of ¾Clinically insignif. all deaths in N. America 4 ATHEROSCLEROSIS: response-to-injury model Atherosclerosis is a chronic inflammatory response of the arterial wall to endothelial injury. 1. Chronic endothelial injury 2. Accumulation of lipoproteins (LDL mainly) basic tenets 3. Monocyte adhesion to endothelium 4. Platelet adhesion 5. Factors releasedÆSMC recruitment 6. SMC proliferation and ECM production 7. Lipid accumulation: extracellular/mac-SMC Risk Factors for Atherosclerosis •Hyperlipidemia •Smoking •Hypertension •Turbulence •Genetics 5 Endothelial injury Early Chronic—repetitive injury non- denuding endothelial dysfunction -cig. smoke toxins -homocysteine -?? Infectious agents -cytokinesÆgenes for Endothelial injury Early Chronic—repetitive injury non-
    [Show full text]
  • The Impact of Estrogen Receptor in Arterial and Lymphatic Vascular Diseases
    International Journal of Molecular Sciences Review The Impact of Estrogen Receptor in Arterial and Lymphatic Vascular Diseases Coralie Fontaine 1, Florent Morfoisse 1, Florence Tatin 1, Audrey Zamora 1, Rana Zahreddine 1 , 2 1 1, 1, , Daniel Henrion , Jean-François Arnal , Françoise Lenfant y and Barbara Garmy-Susini * y 1 INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432 Toulouse cedex 04, France; [email protected] (C.F.); fl[email protected] (F.M.); fl[email protected] (F.T.); [email protected] (A.Z.); [email protected] (R.Z.); [email protected] (J.-F.A.); [email protected] (F.L.) 2 INSERM U1083 CNRS UMR 6015, CHU, MITOVASC Institute and CARFI Facility, Université d’Angers, 49933 ANGERS Cedex 09, France; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 1 April 2020; Accepted: 29 April 2020; Published: 4 May 2020 Abstract: The lower incidence of cardiovascular diseases in pre-menopausal women compared to men is well-known documented. This protection has been largely attributed to the protective effect of estrogens, which exert many beneficial effects against arterial diseases, including vasodilatation, acceleration of healing in response to arterial injury, arterial collateral growth and atheroprotection. More recently, with the visualization of the lymphatic vessels, the impact of estrogens on lymphedema and lymphatic diseases started to be elucidated. These estrogenic effects are mediated not only by the classic nuclear/genomic actions via the specific estrogen receptor (ER) α and β, but also by rapid extra-nuclear membrane-initiated steroid signaling (MISS).
    [Show full text]
  • Erlanger Southeast Regional Stroke Center Ischemic & Hemorrhagic Stroke Education Booklet
    Erlanger Southeast Regional Stroke Center Ischemic & Hemorrhagic Stroke Education Booklet Stroke_Booklet_AB179_2-20.indd 1 2/6/20 2:11 PM B.E. F.A.S.T. for Stroke Stroke is a sudden disorder of the blood supply to the brain, which can cause irreversible damage and disability. Time is critical when treating strokes. It is always important to identify when the symptoms started. Sometimes treatment may cause harm if given too late. Because treatment is time sensitive and there are many causes of stroke, always ask to be treated at a certified stroke treatment center. Sudden loss BALANCE of balance? Loss of vision in EYES one or both eyes? FACE Face look uneven? Arm or leg weak or ARM hanging down? Speech slurred? PEECH Trouble speaking S or seem confused? Time to IME T call 911. Stroke_Booklet_AB179_2-20.indd 2 2/6/20 2:11 PM B.E. F.A.S.T. for Stroke Table of Contents Introduction ...................................................................................................... 1 What is Stroke? ............................................................................................2-5 Stroke is a sudden disorder of the blood supply to the brain, which can cause irreversible Blood Supply to the Brain ..................................................................................2 damage and disability. Motor and Sensory Function.............................................................................3 Time is critical when treating strokes. It is always important to identify when the symptoms Left and Right Sides of the Brain
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0253327 A1 Niazi Et Al
    US 2004O253327A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0253327 A1 Niazi et al. (43) Pub. Date: Dec. 16, 2004 (54) COMPOSITIONS AND METHODS FOR Publication Classification REDUCING OR CONTROLLING BLOOD CHOLESTEROL, LIPOPROTEINS, (51) Int. Cl." ....................... A61K 35/78; A61K 31/695; TRIGLYCERIDES, AND SUGAR AND A61K 31/555 PREVENTING OR TREATING (52) U.S. Cl. ......................... 424/738; 424/757; 424/748; CARDOWASCULAR DISEASES 514/54; 514/63; 514/184 (76) Inventors: Sarfaraz K. Niazi, Deerfield, IL (US); (57) ABSTRACT Anjum Niazi, Deerfield, IL (US) This invention provides compositions and methods related Correspondence Address: to the administration of psyllium husk, f-sitosterol, guggul SARFARAZ, K. NAZI tree extract, guar gum and chromium as a combination to 20 RIVERSIDE DRIVE reduce or control blood cholesterol, triglycerides, low den DEERFIELD, IL 60015 (US) sity lipoproteins, blood Sugar or increasing or controlling high density lipoproteins in a mammal, to reduce arterial (21) Appl. No.: 10/250, 197 plaque build-up, atherosclerosis, in a mammal which may be asSociated with cardiovascular, cerebrovascular, peripheral (22) Filed: Jun. 12, 2003 vascular, or intestinal vascular disorders. US 2004/0253327 A1 Dec. 16, 2004 COMPOSITIONS AND METHODS FOR REDUCING emergency medical and/or Surgical procedures, and Signifi OR CONTROLLING BLOOD CHOLESTEROL, cant disability or death. Alternatively, the arterial wall can be LIPOPROTEINS, TRIGLYCERIDES, AND SUGAR severely weakened by the infiltration of the muscular layer AND PREVENTING OR TREATING with the lipid (cholesterol), inflammatory white blood cells, CARDIOVASCULAR DISEASES connective tissue and calcium, resulting in Soft and/or brittle areas which can become Segmentally dilated (aneurysmal) BACKGROUND OF INVENTION and rupture or crack leading to organ, limb or even life threatening hemorrhage.
    [Show full text]
  • Peripheral Vascular Disease Becomes Increasingly Prevalent with by the Symptom Or Complication (E.G
    SePTeMBer 2010 Informative and educational updates for providers FOCUS ON: PerIPherAl Always… • Document the cause of the peripheral arterial disease, VASCUlAr DISeASe if known, as well as the complication (e.g. PAD due to diabetes with ulcer lower leg). • Document arteriosclerosis as “arteriosclerosis of” and the site, “arteriosclerotic” or “arteriosclerosis with,” followed Peripheral vascular disease becomes increasingly prevalent with by the symptom or complication (e.g. arteriosclerosis of age. As such this is a growing concern in the United States given the the lower extremities with rest pain, arteriosclerosis of growing proportion of older adults. Based on a NhANeS report the the lower extremities with ulceration), not the symptom incidence can be as high as 15 to 17% in the population aged 70 and or complication alone. over. Documentation and Coding Tips4 The concern around peripheral vascular disease is several fold: Only a minority of patients may present with the classic symptoms of • “Peripheral arterial disease,” “peripheral vascular disease” limb claudication or ischemia. In one study only about 11 percent of and “intermittent claudication” are coded to 443.9 – the patients with PVD presented with classic symptoms.1 In another Peripheral vascular disease, unspecified. study as many as 28 percent of patients with peripheral vascular • Atherosclerosis of the native arteries of the extremities is disease were found to be physically inactive sometimes due to other coded based on documentation of the condition with the illness thereby precluding the development of symptoms.2 There is a symptom or complication: significant overlap of peripheral vascular disease with coronary artery 440.20 – Atherosclerosis of the extremities, unspecified disease, cerebrovascular disease and abdominal aortic aneurysms.
    [Show full text]