The Occurrence of a Novel NADH Dehydrogenase, Distinct from the Old Yellow Enzyme, in Gluconobacter Strains

Total Page:16

File Type:pdf, Size:1020Kb

The Occurrence of a Novel NADH Dehydrogenase, Distinct from the Old Yellow Enzyme, in Gluconobacter Strains Biosci. Biotechnol. Biochem., 72 (1), 260–264, 2008 Communication The Occurrence of a Novel NADH Dehydrogenase, Distinct from the Old Yellow Enzyme, in Gluconobacter Strains y Emiko SHINAGAWA,1; Yoshitaka ANO,2 Osao ADACHI,2 and Kazunobu MATSUSHITA2 1Department of Chemical and Biological Engineering, Ube National College of Technology, Tokiwadai, Ube 755-8555, Japan 2Department of Biological Chemistry, Yamaguchi University, Yamaguchi 753-8515, Japan Received October 12, 2007; Accepted November 27, 2007; Online Publication, January 7, 2008 [doi:10.1271/bbb.70657] A novel NADH dehydrogenase (NADH-dh) involving 3244 grown on a culture medium consisting of 20 g of FAD as coenzyme, distinct from NADPH dehydrogenase sodium D-gluconate, 5 g of D-glucose, 3 g of glycerol, (NADPH-dh, old yellow enzyme, EC 1.6.99.1), was 3 g of yeast extract, 2 g of polypeptone, and 200 ml of found in the same cytoplasmic fraction of Gluconobacter potato extract in 1 liter of tap water. NADH-dh and strains. Conventional artificial electron acceptors were NADPH-dh were assayed by reading the decreasing more effective than molecular oxygen in the NADH-dh absorbance of NADH and NADPH at 340 nm, by reaction. NADH-dh did not appear to be identical with essentially the same method as reported previously.2) any previously described flavoproteins, although the N- After the cell-free extract was applied to chromatog- terminal amino acid sequence showed 100% similarity raphy on a DEAE-Sephadex A-50 column, the two with a non-heme chloroperoxidase. The N-terminal enzymes came out at different positions. NADH-dh was amino acid sequence of NADPH-dh matched 100% a eluted from the column with 10 mM potassium phos- putative oxidoreductase containing the old yellow en- phate buffer involving 5 mM -mercaptoethanol (KPB), zyme-like FMN-binding domain. NADH-dh might func- pH 7.2, containing 100 mM KCl. On the other hand, tion to regenerate NAD coupling with NAD-dependent NADPH-dh came out with 10 mM KPB, pH 7.2, con- dehydrogenases in the cytoplasm of Gluconobacter taining 250 mM KCl, under similar conditions, as strains. reported previously.2) Thus the two enzymes were separated from each other by simple column chroma- Key words: acetic acid bacteria; Gluconobacter strains; tography. NADH dehydrogenase; NADPH dehydro- NADH-dh was precipitated with ammonium sulfate at genase 65% saturation (43 g/100 ml), the pH was adjusted to 7.2 with ammonia, and the precipitate was dissolved in a NADPH dehydrogenase (NADPH-dh, old yellow en- minimum volume of KPB. NADH-dh was crystallized, zyme, EC 1.6.99.1) from yeast1) and Gluconobacter giving beautiful prisms, as shown in Fig. 1. High suboxydans2) catalyze NADPH oxidation to regenerate homogeneity was confirmed with crystalline NADH-dh NADP coupling with NADP-dependent dehydrogenases. as judged by analytical ultracentrifugation (Fig. 2) and Microbial NADPH-dh is a typical flavoprotein contain- native polyacrylamide gel electrophoresis (native- ing FMN as the coenzyme, while plant NADPH di- PAGE) (Fig. 2). The apparent sedimentation coefficient aphorase contains FAD and the plant enzyme does not was determined to be 4.1s. Molecular weight measure- link to oxygen as the electron acceptor.3) Most of these ment of NADH-dh by gel filtration gave 120,000. When are specific to NADPH in vivo, although NADH is developed in SDS-PAGE, NADH-dh gave only one oxidized in vitro to some degree of NADPH oxidation. band, corresponding to 30 kDa, implying that it was Although the physiological roles of NADPH-dh remain composed of four identical subunits (Fig. 2). The to be elucidated, cyclic regeneration of NADP is a prob- absorption spectra of NADH-dh showed two absorption able physiological role of NADPH-dh, as was explained maxima in the visible region, at 445 and 340 nm, with previously.1,2) clear shoulders at 468 and 420 nm (Fig. 3). NADH-dh In a series of studies on oxidative fermentation by appeared to be different from those flavoproteins acetic acid bacteria, NADH-dh was found in the same classified in EC 1.1.99.24–6) and EC 1.6.99.3,7,8) most cytoplasmic fraction of Gluconobacter oxydans IFO of which are unable to use oxygen as the electron y To whom correspondence should be addressed. Tel: +81-836-35-6839; Fax: +81-836-21-7117; E-mail: [email protected] Abbreviations: NADH-dh, novel NADH dehydrogenase; PAGE, native polyacrylamide gel electrophoresis; NADPH-dh, NADPH dehydrogenase; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis A Novel NADH Dehydrogenase in Gluconobacter Strains 261 using oxygen as electron acceptor, as similarly found in the case of NADPH-dh.1,2) FAD was identified as the coenzyme by treating NADH-dh with acidic ammonium sulfate, partially converting NADH-dh to apo-enzyme, according to the method reported previously.9) The resulting partially resolved enzyme accompanied de- creased absorbance in the absorption spectrum in the visible region and decreased enzyme activity. The enzyme activity and also absorption spectrum were restored to the original level with the external addition of FAD, but not with FMN. Quantitative measurement of FAD in NADH-dh remains to be examined. As discussed previously,2) if NADPH-dh has a function regenerating NADP coupling with cytoplasmic NADP- dependent dehydrogenases, NADH-dh might function to regenerate NAD by coupling with NAD-dependent dehydrogenases in the cytoplasm of Gluconobacter Fig. 1. Photopicture of Crystalline NADH-dh from G. oxydans IFO strains, like ribitol dehydrogenase, D-sorbitol dehydro- 3244. genase, meso-erythritol dehydrogenase, cyclic alcohol dehydrogenase, and D-arabitol dehydrogenase.10) Isolation, purification, and crystallization of NADPH- acceptor. Molecular oxygen was available as an electron dh were conducted according to methods similar to acceptor in the NADH-dh reaction (giving 0.066 units/ those reported for the enzyme from G. suboxydans IFO mg), although p-benzoquinone (1.7 units/mg) and 2,6- 12528.2) Yellow-colored fractions eluted with a buffer dichlorophenolindophenol (9.3 units/mg) were more containing 250 mM KCl from DEAE-Sephadex A-50 effective than molecular oxygen. The characteristic was precipitated with ammonium sulfate at 65% absorption spectrum was reduced by the addition of saturation (43 g/100 ml), the pH was adjusted to 7.2 NADH, and the spectrum of NADH-reduced NADH-dh with ammonia, and the precipitate was dissolved in a was restored to the original level after the enzyme minimum volume of KPB. NADPH-dh was crystallized solution was bubbled with oxygen. Thus NADH as thin needles, as shown in Fig. 4. High homogeneity oxidation proceeded by NADH-dh in a cyclic manner was confirmed, as judged by analytical ultracentrifuga- A B kDa 20 min 107 94 35 min 52 37 50 min 28 65 min 19 Fig. 2. Sedimentation Patterns, Native-PAGE, and SDS-PAGE of NADH-dh. Sedimentation patterns were taken at 10 mg/ml in KPB at 20 C. Pictures were taken at 15-min intervals as indicated after reaching 60,000 rpm. A, Native-PAGE, 50 mg of NADH-dh was loaded to a disc gel. B, SDS-PAGE, 5 mg of the NADH-dh was loaded. The pre-stained standard marker proteins (Bio-Rad, Hercules, CA) were used with the following molecular sizes: 107 kDa, phosphorylase B; 94 kDa, bovine serum albumin; 52 kDa, ovalbumin; 37 kDa, carbonic anhydrase; 28 kDa, soybean trypsin inhibitor; 19 kDa, lysozyme. 262 E. SHINAGAWA et al. 2 1 Fig. 4. Photopicture of Crystalline NADPH-dh from G. oxydans IFO 3244. 0.1 3 ously,1,2) The NADPH-dh reaction proceeded in a cyclic manner using molecular oxygen as the electron acceptor, also similarly to the case of NADH-dh, as mentioned above. NADH-dh and NADPH-dh showed pH optima at 7-8 200 300 400 500 600 and 5.0 for NADH oxidation and NADPH oxidation, respectively. Different species of coenzyme, FAD and Wavelength (nm) FMN, were involved in NADH-dh and NADPH-dh, respectively, although the reactions catalyzed were Fig. 3. Absorption Spectra of NADH-dh. Line 1, NADH-dh (6.9 mg/ml) was taken in the visible region. similar to each other. The reaction mixtures (1 ml) Line 2, the absorption spectrum was taken after NADH-dh (line 1) contained 0.125 mmol of NADH and NADPH in McIl- was diluted to 1 mg/ml. Line 3, 2.5 mlof50mM NADH (0.125 mmol) vaine buffer, pH 8 and pH 5, in the NADH-dh reaction was added to the solution of line 2. and the NADPH-dh reaction respectively. One enzyme unit was defined as the amount of 1 mmol of NADH or NADPH oxidized per min using molecular oxygen as tion (Fig. 5), although the sedimentation pattern did not the electron acceptor. The oxidation rate of NADH to show a symmetric peak, suggesting that some smaller NADPH with NADH-dh gave 3.0, and that of NADPH components existed. Native-PAGE gave a single protein to NADH with NADPH-dh gave 2.0. Since the absolute band (Fig. 5). The apparent sedimentation coefficient measurements of their intrinsic the protein concentration 1% was determined to be 2.5s, corresponding roughly to a to the absorbance at 280 nm, Ecm. 280 nm, were not molecular weight comparable to 50,000–60,000. When determined, protein concentration was measured tenta- developed in SDS-PAGE, NADPH-dh gave two protein tively by a modified method of Lowry.11) The reaction bands, corresponding to 50 kDa and 15 kDa (Fig. 5). The rate by NADH-dh and also NADPH-dh was relatively 15-kDa band suggests that the slower sedimenting low when molecular oxygen was used as the electron components indicate impurities and distinctness from acceptor, as described above.
Recommended publications
  • Characterization of Electron Transport in Turnip Microsomes
    CHARACTERIZATION OF ELECTRON TRANSPORT IN TURNIP MICROSOMES By J. M. RUNGIE* and J.T. WISKICH* [Manuscript received 2 July 1971] Ab8tract Electron transport activities in the turnip microsome fraction were char­ acterized. Cytochrome c, 2,6-dichlorophenolindophenol (DCPIP), ferricyanide (FeCN), and neotetrazolium were reduced in the presence of NADH and NADPH, NADPH supporting a rate usually less than 10% that with NADH. Cytochrome ba was present and implicated in cytochrome c reduction. However, cytochrome P-450 was not detected. The effects of treatment of the microsomes with Triton X-I00, trypsin, and Naja naja venom on the reductase activities were studied. The treatments resulted in loss of NADH-cytochrome c reductase activity but had variable effects on the NADH-DCPIP and -FeCN reductase activities. The effects on the NADPH dehydro­ genase activities were also variable, but usually NADPH-cytochrome c reductase was inhibited while NADPH-DCPIP and -FeCN reductases were stimulated. Fractionation of the microsomes by differential centrifuging and centrifuging through sucrose gradients in the presence of ions yielded a fraction rich in NADH dehydrogenases, NADPH-cytochrome c reductase, and cytochrome b3 • There was a broader distribution of the other NADPH dehydrogenase activities. The results indicated the presence of two distinct electron transport chains on the turnip microsomal membranes, one specific for NADH and the other for NADPH. However, the activity of the latter may be partially due to soluble fraction contamination. I. INTRODUCTION Characterization of microsomal electron transport systems has concentrated on fractions isolated from animal tissue (Dallner 1963; Siekevitz 1963). It is now well established that there are two distinct electron transport schemes on the microsomal membranes.
    [Show full text]
  • Discovery of Industrially Relevant Oxidoreductases
    DISCOVERY OF INDUSTRIALLY RELEVANT OXIDOREDUCTASES Thesis Submitted for the Degree of Master of Science by Kezia Rajan, B.Sc. Supervised by Dr. Ciaran Fagan School of Biotechnology Dublin City University Ireland Dr. Andrew Dowd MBio Monaghan Ireland January 2020 Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Master of Science, is entirely my own work, and that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: ID No.: 17212904 Kezia Rajan Date: 03rd January 2020 Acknowledgements I would like to thank the following: God, for sending me angels in the form of wonderful human beings over the last two years to help me with any- and everything related to my project. Dr. Ciaran Fagan and Dr. Andrew Dowd, for guiding me and always going out of their way to help me. Thank you for your patience, your advice, and thank you for constantly believing in me. I feel extremely privileged to have gotten an opportunity to work alongside both of you. Everything I’ve learnt and the passion for research that this project has sparked in me, I owe it all to you both. Although I know that words will never be enough to express my gratitude, I still want to say a huge thank you from the bottom of my heart.
    [Show full text]
  • Electron Transport and Adenosine Triphosphatase Activities in Turnip
    rfr/rr TRANSPORT AÀID ÂDENOS,I.NE* TRIPHOSPHATASE ACTIVITIES IN TURNIP AND FRACTIONS A thesís submitted to the univetsitg of Adelaide as a teqtJitement for the degtee of DOCTOR OF PHILOSOPHY by ,toHN MTCHAEL RUNcrE, B.sc" (Hons) Botang Depattment universitg of Adelaìde November 7971 CONTENTS Page SUMMARY DECLARATION ACKNOVüLEDGEMENTS ABBREVTATIONS CHAPTER I . GENERALINTRODUCTION I-38 A" TNTRODUCTTON I B. DEFTNTTTON OF POST-MTTOCHONDRTAL FRACTTONS 2 C " ANTMAL MTCROSOT'IAT.' ANÐ SOLUBLE ACTTVÏTTES 4 7. AnimaT microsomal electlon transpott 4 (a) NADE-specific eJ-ectton transport 5 (b) NADPH-specific eJectron transport 8 (c) rnteraction between the t¡o chains 11 2" Animal soluble eJectron transport, L2 3" AnimaL micrgsomal and soTuble phosphatases L4 (a) Acid and aJ-kaline phosphatases L4 (b ) G Tucose-6- phosphatase I5 (c) Nucleoside phosphatases L6 4" Induced and deveTopmentaJ- ehanges ín ëhe anímaL L7 microsomâ.I and solubTe sgstems D" PLANT MTCROSOMAL AND SOLUBLE ACTTVTTTES 18 7" PLant mictosomaL electton ttans¡ott 18 (a) NADV-specific eTectron transport I9 (b) NADPV-specific eJ-ectron transport 20 2" Plant mictosomaT'and soLuble peroxidases 22 3. PJ-ant sofuble eþctton trans¡nrt 24 4" Plant microsomaL and soluble phosphatases 25 (a) ecid and aL:,kaline phosphatases 25 (b) Glucose-6- phosphatase 26 (c) Nucleoside phosphatases 26 5" Induced and deveTopmentaT changes in the plant 2A mictosomal and solubTe sgstems (a) lnduced phgsioTogical changes 29 (b) Induced RIVÀ and protein sgnthesis changes 32 (c) Induced changes in enzgme activities 34 (d) Induaed uLtrasttuctutal changes 36 EO THE PRESENT STUDY 37 7" General charactetization 37 2. Compatison with cawesponding animal f ractìons 38 3.
    [Show full text]
  • The Enzyme Kinetics of NADH Dehydrogenase After the Addition
    Journal of Experimental Microbiology and Immunology (JEMI) Vol. 7:7-13 Copyright © April 2005, M&I UBC The Enzyme Kinetics of NADH Dehydrogenase After the Addition of the Inhibitory Molecules, EDTA and Mg2+ JI HAE CHUNG, PANAGIOTIS KARAGEORGIOU, PATRICK YANG, NELSON YANG, AND FRANCES LEVITT Department of Microbiology and Immunology, UBC The oxidation of NADH to NAD+ is done by NADH dehydrogenase, a component of the electron transport chain in Escherichia coli. It has been demonstrated that when E. coli K12 cells were lysed by the lysozyme lysis method, NADH dehydrogenase activity was inhibited. On the contrary, when cells were lysed by French press, NADH dehydrogenase activity was not inhibited. In our investigation, some common components used in cell lysis were examined for their effect on purified NADH dehydrogenase activity. Attempts to partially purify the enzyme to eliminate contaminating factors were unsuccessful and potential causes were examined. It was found that individually, EDTA and MgCl2 both inhibited the activity of NADH dehydrogenase. However, the pattern in the kinetics of inhibition of EDTA and MgCl2 were different and MgCl2 appeared to be a stronger inhibitor of the enzyme at lower concentrations and limiting substrate levels. _______________________________________________________________ Previous studies used crude extracts of clarified environment. However, in addition to the stresses supernatants. These extracts were potentially a problem induced on the cells in the French press protocol, high because interference
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Electron Transfer Ability from NADH to Menaquinone and from NADPH to Oxygen of Type II NADH Dehydrogenase of Corynebacterium Glutamicum
    Biosci. Biotechnol. Biochem., 69 (1), 149–159, 2005 Electron Transfer Ability from NADH to Menaquinone and from NADPH to Oxygen of Type II NADH Dehydrogenase of Corynebacterium glutamicum Nawarat NANTAPONG, Asuka OTOFUJI, Catharina T. MIGITA, Osao ADACHI, y Hirohide TOYAMA, and Kazunobu MATSUSHITA Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan Received August 30, 2004; Accepted November 4, 2004 Type II NADH dehydrogenase of Corynebacterium 13–14 different subunits and has FMN and several iron– glutamicum (NDH-2) was purified from an ndh over- sulfur clusters as the prosthetic groups. This enzyme is expressing strain. Purification conferred 6-fold higher able to pump protons from the cytosolic side to the specific activity of NADH:ubiquinone-1 oxidoreductase periplasmic side. NDH-2 is a single subunit enzyme and with a 3.5-fold higher recovery than that previously bears flavin but no iron–sulfur clusters.1) Although the reported (K. Matsushita et al., 2000). UV–visible and oxidation of NADH is extensively carried out by fluorescence analyses of the purified enzyme showed complex I in mammals, mitochondria from fungi con- that NDH-2 of C. glutamicum contained non-covalently tain an alternative NADH dehydrogenase, NDH-2, bound FAD but not covalently bound FMN. This together with complex I in Neurospora crassa2) or enzyme had an ability to catalyze electron transfer without complex I in Saccharomyces cerevisiae.3) Sim- from NADH and NADPH to oxygen as well as various ilarly to fungi, the bacterial respiratory chain has NDH-1 artificial quinone analogs at neutral and acidic pHs and NDH-2, or either one of these.
    [Show full text]
  • Phospholipid Dependency of Membrane-Associated
    PHOSPHOLIPID DEPENDENCY OF MEMBRANE-ASSOCIATED PYRIDINE NUCLEOTIDE-UTILIZING AND SUCCINATE DEHYDROGENASE ACTIVITIES OF ADULT HYMENOLEPIS DIMINUTA (CESTODA) AND ASCARIS SUUM (NEMATODA) Carl Breidenbach A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2012 Committee Carmen Fioravanti, Advisor Jill Zeilstra-Ryalls Raymond Larsen © 2012 Carl Breidenbach All Rights Reserved iii ABSTRACT Carmen Fioravanti, Advisor The adult intestinal cestode, Hymenolepis diminuta, is essentially anaerobic in its metabolism and generates ATP without the need for oxygen. H. diminuta relies upon a mitochondrial NADPH→NAD transhydrogenase to link the NADPH produced by the pyruvate- forming arm of the malate dismutation reaction, catalyzed by the mitochondrial “malic enzyme”, with the NADH-requiring, anaerobic electron transport system. The electron transport-coupled fumarate reductase serves to reduce fumarate, the terminal electron acceptor, to succinate. A phospholipid dependency was established previously with respect to the transhydrogenase, fumarate reductase, and the lesser NADH oxidase. Of the phospholipids assessed, the transhydrogenase exhibited a phosphatidylcholine preference. The present study expands on prior findings by using phospholipase A1, A2, C and D, organic solvent, and ammonium sulfate treatments of H. diminuta mitochondrial membranes. Other reduced pyridine nucleotide-utilizing systems viz., NAD(P)H cytochrome c reductase, NADH→NAD transhydrogenation, NAD(P)H-, and lipoamide dehydrogenase activities as well as succinate dehydrogenase were evaluated. A comparative study also was undertaken by treatment with the phospholipases of isolated mitochondrial membranes from the anaerobic intestinal nematode, Ascaris suum. The data presented indicate a phospholipid dependence not only of the previously reported systems, but of membrane-associated mitochondrial systems in H.
    [Show full text]
  • Aerobic Nitrogen Fixation in Azotobacter Vinelandii
    AEROBIC NITROGEN FIXATION IN AZOTOBACTER VINELANDII CENTRALE LANOBOUWCATALOGUS 0000 0086 9491 Ditproefschrif tme tstellinge nva n HUBERTUSBONIFACIU SCHRISTOPHORU SMARI AHAAKE R doctorandus ind eChemie ,gebore no p2 4jul i 1946,t eBadhoevedorp ,i sgoedge - keurddoo rd epromoto rDr .C .Veeger ,hoogleraa r ind eBiochemie . De Rector Magnifieus nan de Landbovwhogesahool, J.P.H.va nde rWan t Wageningen, 17 deaembev 1976. : YVT) XO\ &7 H.B.C.M. Haaker Aerobic nitrogen fixation in Azotobacter vinelandii (with a summary in Dutch) Proefschrift terverkrijgin gva nd egraa d vandocto r ind eLandbouwwetenschappen , op gezagva nd eRecto rMagnificus , Dr. Ir.J.P.H .va nde rWant , hoogleraar ind eVirologie , inhe topenbaa r teverdedige n opwoensda g 16februar i197 7 desnamiddag st evie ruu ri nd eAul a vand eLandbouwhogeschoo l teWageninge n l$n —/09///-& i These investigations were carried outunde r theauspice s of the Netherlands Foundation for Chemical Research (S.O.N.)wit h financial aid from the Netherlands Organization for theAdvancemen t ofPur eResearc h (Z.W.O.). /£////&>/ fa STELLINGEN i Zonderhe t tebeseffe n latenAppleb y et at. zien dat in Rhizobium bacteroiden het electronen transport naar denitrogenas e geremd wordt door eenontkoppelaar . Appleby,C.A. , Turner,G.L . and Macnicol,P.K . (1975) Biochim. Biophys.Acta ,387 ,461-474 . 2 Deuitspraa k dat denitrogenas e activiteit aanwezig ind ewortelknolletje sva n sojabonen gereguleerd wordt doorAT P alsmeded e energielading kan niet gedaan worden aan dehan d vand e gepresenteerde experimenten. Ching,T.M . (1976)Lif e Sciences 18,1071-1076 . Deredoxpotentiaa l van Azotobaater vinelandii (4Fe-4S)„ ferredoxine Ii sori - danks de redoxpotentiaal metingen van Yoch enArno n en Sweeny et al.- nog steeds niet bepaald.
    [Show full text]
  • BBA - Bioenergetics 1860 (2019) 233–258
    BBA - Bioenergetics 1860 (2019) 233–258 Contents lists available at ScienceDirect BBA - Bioenergetics journal homepage: www.elsevier.com/locate/bbabio Molecular mechanism of metabolic NAD(P)H-dependent electron-transfer T systems: The role of redox cofactors Takashi Iyanagi Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamighori, Ako, Hyogo 678-1297, Japan ARTICLE INFO ABSTRACT Keywords: NAD(P)H-dependent electron-transfer (ET) systems require three functional components: a flavin-containing NAD(P)H-dependent electron-transfer systems NAD(P)H-dehydrogenase, one-electron carrier and metal-containing redox center. In principle, these ET systems Flavoenzymes consist of one-, two- and three-components, and the electron flux from pyridine nucleotide cofactors, NADPH or Redox potentials NADH to final electron acceptor follows a linear pathway: NAD(P)H → flavin → one-electron carrier →metal Catalytic cycle containing redox center. In each step ET is primarily controlled by one- and two-electron midpoint reduction Cytochrome P450 reductase potentials of protein-bound redox cofactors in which the redox-linked conformational changes during the cat- Nitric oxide synthase alytic cycle are required for the domain-domain interactions. These interactions play an effective ET reactions in the multi-component ET systems. The microsomal and mitochondrial cytochrome P450 (cyt P450) ET systems, nitric oxide synthase (NOS) isozymes, cytochrome b5 (cyt b5) ET systems and methionine synthase (MS) ET system include a combination of multi-domain, and their organizations display similarities as well as differences in their components. However, these ET systems are sharing of a similar mechanism. More recent structural information obtained by X-ray and cryo-electron microscopy (cryo-EM) analysis provides more detail for the mechanisms associated with multi-domain ET systems.
    [Show full text]
  • References for Products 15259 and 15260
    References for Products 15259 and 15260 1. Marino D, Gonzalez EM, Frendo P, Puppo A, Arrese-Igor C. (2006) NADPH recycling systems in oxidative stressed pea nodules: a key role for the NADP(+)-dependent isocitrate dehydrogenase. Planta. 2. Diaz-Flores M, Ibanez-Hernandez MA, Galvan RE, Gutierrez M, Duran-Reyes G, Medina-Navarro R, Pascoe-Lira D, Ortega-Camarillo C, Vilar-Rojas C, Cruz M, Baiza- Gutman LA. (2006) Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat. Life Sci, 78, 2601. 3. Pedersen A, Johansson T, Rydstrom J, Goran Karlsson B. (2005) Titration of E. coli transhydrogenase domain III with bound NADP+ or NADPH studied by NMR reveals no pH-dependent conformational change in the physiological pH range. Biochim Biophys Acta, 1707, 254. 4. Bhatt AN, Shukla N, Aliverti A, Zanetti G, Bhakuni V. (2005) Modulation of cooperativity in Mycobacterium tuberculosis NADPH-ferredoxin reductase: cation-and pH-induced alterations in native conformation and destabilization of the NADP+-binding domain. Protein Sci, 14, 980. 5. Barron JT, Sasse MF, Nair A. (2004) Effect of angiotensin II on energetics, glucose metabolism and cytosolic NADH/NAD and NADPH/NADP redox in vascular smooth muscle. Mol Cell Biochem, 262, 91. 6. Gaetani GF, Ferraris AM, Sanna P, Kirkman HN. (2005) A novel NADPH:(bound) NADP+ reductase and NADH:(bound) NADP+ transhydrogenase function in bovine liver catalase. Biochem J, 385, 763. 7. Ziegler GA, Schulz GE. (2000) Crystal structures of adrenodoxin reductase in complex with NADP+ and NADPH suggesting a mechanism for the electron transfer of an enzyme family.
    [Show full text]
  • Age Related Changes in the Induction of Hepatic Mixed-Function
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 1982 Age Related Changes in the Induction of Hepatic Mixed-Function Monooxygenase System in Miniature Pigs: Effects of Pentachloroanisole, Pentachlorophenol and Phenobarbital Alan Paul Agins University of Rhode Island Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Agins, Alan Paul, "Age Related Changes in the Induction of Hepatic Mixed-Function Monooxygenase System in Miniature Pigs: Effects of Pentachloroanisole, Pentachlorophenol and Phenobarbital" (1982). Open Access Dissertations. Paper 505. https://digitalcommons.uri.edu/oa_diss/505 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. AGE RELATED CHANGES IN THE INDUCTION OF HEPATIC MIXED-FUNCTION MONOOXYGENASE SYSTEM IN MINIATURE PIGS: EFFECTS OF PENTACHLOROANISOLE, PENTACHLOROPHENOL AND PHENOBARBITAL BY ALAN PAUL AGINS A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHARMACEUTICAL SCIENCES UNIVERSITY OF RHODE ISLAND 1982 DOCTOR OF PHILOSOPHY DISSERTATION OF ALAN PAUL AGINS Approved: Dissertation Committee Major Professor Dean of the Graduate School UNIVERSITY OF RHODE ISLAND 1982 ABSTRACT Agins, Alan P., Ph.D., University of Rhode Island, 1982. Age Related Changes in the Induction of the Hepatic Mixed-Function Monooxygenase Sys tern in Miniature Pigs: Effects of Pentachloroanisole, Pentachloro­ phenol and Phenobarbital. Major Professor: Dr. George C. Fuller. Pentachloroanisole (PCA), an environment a 1 degradation product of the biocide pentachlorophenol (PCP), has been detected in the food chain.
    [Show full text]
  • Nadph-Cytochrome P-450 Reductase
    STUDIES ON NATIVE AND RECONSTITUTED FMN-DEPLETED NADPH-CYTOCHROME P-450 REDUCTASE CENTRALE LANDBOUWCATALOGUS Y>T'?T y^ "f ^^^ tAND30J"LlS:V :' >ITEIT 0000 0248 7870 WAr;f-NIXOKV Promotor : dr. F. Miiller hoogleraar in de Biochemie fJNO^ljD^ llV°l STELLINGEN 1. Het voorkomen van veel verschillende wijzen van nomenclatuur bij reeds lang bekende iso-enzymen is niet alleen verwarrend voor de betrokken onderzoekers, maar doet ook vermoeden dat andere dan zuiver wetenschappelijke belangen een rol spelen. - W.B. Jacoby, B. Ketterer & B. Mannervik, Bioch.Pharm. 33, (1984), 2539-2540. - T.J. Mantle in Glutathione S-Transferases and Carcinogenesis (1987), ed. T.J. Mantle, C.B. Pickett &J.D . Hayes,Taylo r & Francis London, New York and Philadelphia. 2. De door Wolfes en Pingoud verkregen resultaten met betrekking tot site directed mutagenesis aan Eco Rl zijn niet volledig in overeenstemming met de X-ray resultaten van dit restrictie-enzym van McClarin en Frederick enkunne n scherper geformuleerd worden. - H. Wolfes,A . Pingoud et al., Nucl.Acid.Res. 14,2 2 (1986), 9063. - J. McClarin, C. Frederick, J.M; Rozenberg et al., Science 234 (1986), 1526. 3. De activiteitsbepalingen m.b.v. het gebruik van artificiele i.p.v. natieve electronen acceptoren verdient zeker in het geval van NADPH-cytochroom P-450 reductase meer aandacht. - dit proefschrift. 4. Het feit dat alcohol een bepaalde vorm van cyt P-450 induceert (cyt P-450-alc) en dat deze vorm ook procarcinogenen kan omzetten wijst op toenemendekan s opkanke r bij alcoholgebruik. - J.M. Lasker, J. Rancy, S. Kubota, B.P. Bloswick, M.
    [Show full text]