Dr. Jie-Bang Stephen Yan Co-PI Two Papers

Total Page:16

File Type:pdf, Size:1020Kb

Dr. Jie-Bang Stephen Yan Co-PI Two Papers Dr. Jie-Bang Stephen Yan Co-PI Two Papers: Direction-of-Arrival Analysis of Airborne Ice Depth Sounder Data UAS-Based Radar Sounding of the Polar Ice Sheets IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 55, NO. 4, APRIL 2017 2239 Direction-of-Arrival Analysis of Airborne Ice Depth Sounder Data Ulrik Nielsen, Jie-Bang Yan, Member, IEEE, Sivaprasad Gogineni, Fellow, IEEE, and Jørgen Dall, Member, IEEE Abstract— In this paper, we analyze the direction-of- determine the boundary conditions of the ice-sheet models. arrival (DOA) of the ice-sheet data collected over Jakobshavn Basal conditions largely impact on the ice flow velocity, and Glacier with the airborne Multichannel Radar Depth Sounder therefore, precise knowledge of them is especially important (MCRDS) during the 2006 field season. We extracted weak ice– bed echoes buried in signals scattered by the rough surface of the for the estimation of the mass balance [6]. fast-flowing Jakobshavn Glacier by analyzing the DOA of signals received with a five-element receive-antenna array. This allowed A. Multiphase-Center-Based Radar Ice Sounding us to obtain ice thickness information, which is a key parameter when generating bed topography of glaciers. We also estimated The weak nadir radar signals from the ice–bed interface ice–bed roughness and bed slope from the combined analysis of are often masked by off-nadir surface clutter, signals scattered the DOA and radar waveforms. The bed slope is about 8° and from extremely rough crevassed surfaces in ice-sheet margins. the roughness in terms of rms slope is about 16°. Synthetic aperture radar (SAR) processing can be used to Index Terms— Airborne radar, direction-of-arrival (DOA) suppress surface clutter in the along-track direction, but it is estimation, glacier, ice sounding, radar remote sensing, surface ineffective in reducing the across-track clutter. Large across- scattering. track antenna arrays can be used to obtain a narrow across- track antenna beam to suppress surface clutter in this direction. I. INTRODUCTION At the same time, to avoid excessive attenuation of the ATELLITE observations show that both the Greenland and signals reflected within the ice, radars are normally operated SAntarctic ice sheets are losing mass [1], [2]. Most of the in the very high frequency (VHF) part of the electromag- ice loss is occurring around ice-sheet margins and through fast- netic spectrum. The long wavelengths in this band require flowing glaciers [3]. Although satellites provide much-needed large antenna dimensions to obtain an antenna beam that information on ice-surface elevation, surface velocity, and total is sufficiently narrow to reduce across-track surface clutter. mass, there is currently no satellite-based sensor that is able to Such large antenna dimensions cannot be accommodated on measure ice thickness. Bed topography and basal conditions airborne platforms, and additional clutter suppression is, there- for areas losing ice are needed to improve ice-sheet models. fore, needed to compensate for these limitations. The current These models are essential to predicting the response of the research in this field is based on multichannel systems com- ice sheets to a warming climate. One of the key parameters bined with advanced coherent postprocessing of data. By using needed is ice sheet thickness, which can be extracted using multichannel-receivers to sample array elements individually, radar depth-sounding techniques [4], [5]. In addition, we are beamforming techniques can be utilized to synthesize adaptive interested in the basal conditions of the ice sheets as they antenna patterns that suppress the surface clutter from specific off-nadir angles, while a high gain is maintained in the nadir Manuscript received January 14, 2015; revised July 29, 2015, direction [7]. February 28, 2016 and September 10, 2016; accepted October 9, 2016. Date of publication January 16, 2017; date of current version February 24, B. DOA Estimation in Radar Ice Sounding 2017. This work was supported by the National Science Foundation under Grant ANT0424589. In addition to beamforming, the multiphase-center sys- U. Nielsen was with the Department of Microwaves and Remote Sensing, tems also provide the opportunity to perform direction-of- National Space Institute, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark. He is now with IHFood A/S, DK-1577 Copenhagen, arrival (DOA) estimation of the different signal components Denmark (e-mail: [email protected]). within the received returns. In relation to ice sounding, early J.-B. Yan was with the Center for Remote Sensing of Ice Sheets, The Univer- studies on airborne InSAR in [8] can be seen as a precursor sity of Kansas, Lawrence, KS 66045 USA. He is now with the Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, to DOA estimation. A ground-based radar configuration was AL 35487 USA (e-mail: [email protected]). used in [9] to perform actual DOA estimates of the bed return. S. Gogineni is with the Center for Remote Sensing of Ice Sheets, The In [10], DOA data are used as the primary data product to University of Kansas, Lawrence, KS 66045 USA (e-mail: [email protected]). J. Dall is with the Department of Microwaves and Remote Sensing, National produce swath measurements of both the ice surface and the Space Institute, Technical University of Denmark, DK-2800 Kongens Lyngby, bedrock topography. This paper is the first published work on Denmark (e-mail: [email protected]). DOA estimation applied to airborne ice sounding data. The Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org. results reported in [10] are based on the data acquired by Digital Object Identifier 10.1109/TGRS.2016.2639510 the Multichannel Radar Depth Sounder (MCRDS) developed 0196-2892 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 2240 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 55, NO. 4, APRIL 2017 by the Center for Remote Sensing of Ice Sheets at the University of Kansas. The radar system is, in this experiment, operated in ping-pong mode to provide 12 effective receive phase centers. Estimation of the DOA angles of the surface clutter and bed return is used to compute relative elevations in slant-range geometry, followed by a mapping to ground range to obtain the topographic map in Cartesian coordinates. DOA estimation based on the data acquired with an upgraded version of the system, Multichannel Coherent Radar Depth Sounder/Imager (MCoRDS/I) [11], has been used to support the investigation of the bed topography of more glaciers, including Jakobshavn [12]. In [13], DOA estimation has been applied to data acquired with the four-channel POLarimetric Airborne Radar Ice Fig. 1. Photograph showing the five-element subarray of folded dipole Sounder (POLARIS) [14] developed by the Technical Univer- elements mounted under the right wing of the Twin-Otter aircraft. sity of Denmark, to improve the performance of surface clutter suppression techniques. The DOA angles of the surface clutter are estimated and used to optimize the synthesis of the antenna patterns for improving clutter suppression. Recently, DOA estimation based on POLARIS data is used to show an along-track variation of the effective scattering center of the surface return caused by a varying penetration depth [15], which directly provides glaciological information. In this paper, we present further applications of the DOA estimation technique for radar ice sounding. We used MCRDS multiphase-center data collected over Jakobshavn Glacier during the 2006 Greenland field season to convert radar echograms into a DOA representation. With this representation of the radar data, we were able to detect some of the most challenging parts of the bed along the channel of the fastest Fig. 2. Flight track (red) over the Jakobshavn Glacier at the west coast of flowing glacier on the earth. A model-based approach was then Greenland in the 2006 field season. The blue line corresponds to the location of the glacier channel. The flight track corresponds to frame 5, segment 4 in used to interpret the DOA estimation of the bed return. Further the data set acquired May 30, 2006. analysis showed that the backscattering characteristics of the ice–bed could be estimated by combining the DOA data and folded dipoles mounted in the across-track direction. The the radar waveform data. Based on the data, the across-track array was divided into two five-element subarrays installed slope of the bed was estimated as a fitted model parameter. under each wing, as shown in Fig. 1. The left wing subarray Finally, information on the bed roughness in terms of the rms was used for transmission and the right for reception. All slope was obtained by forward modeling using the incoherent elements in the transmit array were excited with uniform μ Kirchhoff model (IKM). weights during transmission. The pulse length was 10 s with a total transmit power of 800 W. A multichannel receiver was C. Paper Outline used to sample signals from each receive-antenna element This paper is organized as follows. Section II provides individually. The spacing of the effective phase centers was . λ λ details on the MCRDS system and the associated data set. approximately 0 3 ,where is the wavelength in the free A signal model is presented in Section III along with algo- space of the center frequency. rithms for DOA estimation. In Section IV, the algorithms are Data acquired with the MCRDS system in 2006 at the applied to data and used to provide an alternative representa- Jakobshavn Glacier were used for the DOA analysis. The tion based on DOA. This representation is used for detection data were acquired according to the flight track shown in of the bed in Section V and for retrieval of its backscat- Fig.
Recommended publications
  • 2010-2011 Science Planning Summaries
    Find information about current Link to project web sites and USAP projects using the find information about the principal investigator, event research and people involved. number station, and other indexes. Science Program Indexes: 2010-2011 Find information about current USAP projects using the Project Web Sites principal investigator, event number station, and other Principal Investigator Index indexes. USAP Program Indexes Aeronomy and Astrophysics Dr. Vladimir Papitashvili, program manager Organisms and Ecosystems Find more information about USAP projects by viewing Dr. Roberta Marinelli, program manager individual project web sites. Earth Sciences Dr. Alexandra Isern, program manager Glaciology 2010-2011 Field Season Dr. Julie Palais, program manager Other Information: Ocean and Atmospheric Sciences Dr. Peter Milne, program manager Home Page Artists and Writers Peter West, program manager Station Schedules International Polar Year (IPY) Education and Outreach Air Operations Renee D. Crain, program manager Valentine Kass, program manager Staffed Field Camps Sandra Welch, program manager Event Numbering System Integrated System Science Dr. Lisa Clough, program manager Institution Index USAP Station and Ship Indexes Amundsen-Scott South Pole Station McMurdo Station Palmer Station RVIB Nathaniel B. Palmer ARSV Laurence M. Gould Special Projects ODEN Icebreaker Event Number Index Technical Event Index Deploying Team Members Index Project Web Sites: 2010-2011 Find information about current USAP projects using the Principal Investigator Event No. Project Title principal investigator, event number station, and other indexes. Ainley, David B-031-M Adelie Penguin response to climate change at the individual, colony and metapopulation levels Amsler, Charles B-022-P Collaborative Research: The Find more information about chemical ecology of shallow- USAP projects by viewing individual project web sites.
    [Show full text]
  • Studies of Granites and Metamorphic Rocks, Byrd Glacier Area
    On a local scale, vitrinite reflectance decreases with increas- sistent with an intrusive event that was located along the con- ing distance from intrusive bodies (Homer and Krissek 1989). tinental margin of Antarctica during Jurassic time. This pattern is consistent with the effects on organic carbon distributions that were discussed above. References Vitrinite reflectance values also exhibit a regional pattern Blatt, H. 1985. Provenance studies and mudrocks. Journal of Sedimentary (table). The northern sections consistently have lower average Petrology, 55(1), 69-75. vitrinite reflectance values, and the vitrinite reflectance values Homer, T.C., and L.A. Krissek. 1987. Depositional environments of the increase progressively toward the central sections. The south- Permian Mackellar Formation, central Transantarctic Mountains: A syn- ern section has intermediate vitrinite reflectance values. This thesis of field data and mineralogy. (Abstract.) Abstract volume Fifth pattern is visible in the "lower," "middle," and "upper" Mac- International Symposium on Antarctic Earth Sciences, Cambridge, kellar Formation. England. Conclusions. Analysis of 105 samples from the Mackellar For- Homer, T.C., and L.A. Krissek. 1989, Paleogeographic interpretations mation yields an average organic carbon content of 0.40 per- using organic carbon and mineral abundance patterns in the Permian cent. Localized reductions in this value are due to the presence Mackellar Formation, Antarctica. Geographical Society of America, Ab- of intrusive bodies. Organic carbon contents are relatively uni- stracts with Programs, 21(4), 15. Krissek, L.A., and T.C. Homer. 1986. Sedimentology of fine-grained form within most sections, and organic carbon contents show Permian clastics, central Transantarctic Mountains. Antarctic Journal little regional variation with the exception of the southernmost of the U.S., 21(5), 30-32.
    [Show full text]
  • Provenance Signatures of the Antarctic Ice Sheets in the Ross Embayment During the Late Miocene to Early Pliocene: the ANDRILL AND-1B Core Record
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln ANDRILL Research and Publications Antarctic Drilling Program 11-2009 Provenance signatures of the Antarctic Ice Sheets in the Ross Embayment during the Late Miocene to Early Pliocene: The ANDRILL AND-1B core record Franco M. Talarico Università di Siena, [email protected] Sonia Sandroni Università di Siena, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/andrillrespub Part of the Environmental Indicators and Impact Assessment Commons Talarico, Franco M. and Sandroni, Sonia, "Provenance signatures of the Antarctic Ice Sheets in the Ross Embayment during the Late Miocene to Early Pliocene: The ANDRILL AND-1B core record" (2009). ANDRILL Research and Publications. 49. https://digitalcommons.unl.edu/andrillrespub/49 This Article is brought to you for free and open access by the Antarctic Drilling Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in ANDRILL Research and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Global and Planetary Change 69:3 (November 2009), pp. 103–123; doi:10.1016/j.gloplacha.2009.04.007 Copyright © 2009 Elsevier B.V. Used by permission. Submitted December 23, 2008; accepted April 22, 2009; published online May 4, 2009. Provenance signatures of the Antarctic Ice Sheets in the Ross Embayment during the Late Miocene to Early Pliocene: The ANDRILL AND-1B core record F. M. Talarico Dipartimento di Scienze della Terra, Università di Siena, Via Laterina 8, Siena, Italy (Corresponding author; tel 39 577233812, fax 39 577233938, email [email protected] ) S. Sandroni Museo Nazionale dell’Antartide, Università di Siena, Via Laterina 8, Siena, Italy Abstract Significant down-core modal and compositional variations are described for granule- to cobble-sized clasts in the Early Pliocene to Middle/Late Miocene sedimentary cycles of the AND-1B drill core at the NW edge of the Ross Ice Shelf (McMurdo Sound).
    [Show full text]
  • Dynamics and Mass Balance of Four Large East Antarctic Outlet Glaciers
    116 Annals of Glaciology 52(59) 2011 Dynamics and mass balance of four large East Antarctic outlet glaciers Leigh A. STEARNS Department of Geology and Center for Remote Sensing of Ice Sheets, University of Kansas, Lawrence, KS 66045, USA E-mail: [email protected] ABSTRACT. The East Antarctic ice sheet (EAIS) is Earth’s largest reservoir of fresh water and has the potential to raise sea level by 50 m. A significant amount of the ice sheet’s mass is discharged by outlet glaciers draining through the Transantarctic Mountains, the balance characteristics of which are largely unknown. Here the mass balance is estimated for four glaciers draining ice from the EAIS through the Transantarctic Mountains into the Ross Sea embayment: David, Mulock, Byrd and Nimrod glaciers. Remote-sensing observations are used to map changes in ice flow and surface elevation, and ultimately to compute the mass balance of each glacier using the input–output method and three separate estimates for accumulation rate. Results computed using this method indicate small positive balances for David (2.41 Æ 1.31 Gt a–1), Mulock (1.91 Æ 0.84 Gt a–1) and Nimrod (0.88 Æ 0.39 Gt a–1) glaciers, and a large positive imbalance for Byrd Glacier (21.67 Æ 4.04 Gt a–1). This large imbalance for Byrd Glacier is inconsistent with other observations, and is likely due to an overestimation of accumulation rates across large regions of the interior catchment. INTRODUCTION buttressing than other outlet glaciers. Consequently, modest Large outlet glaciers and ice streams are the primary means thinning or retreat of the Ross Ice Shelf might initiate an by which ice is transported from the interior of Antarctica to adjustment in the flow speeds of Transantarctic Mountain the ocean (e.g.
    [Show full text]
  • Antarctic Palaeoenvironments and Earth-Surface Processes
    Spine = 23mm SP381 cover v2 ready to go 24-7-13_SP243 v3 .xp 08/10/2013 13:39 Page 1 a A n n d t a E r a c t r i t c h P - S a u l a Antarctic Palaeoenvironments r f e Antarctic Palaeoenvironments a o c e and Earth-Surface Processes e n P v r i and Earth-Surface Processes r Edited by o o c n M. J. Hambrey, P. F. Barker, P. J. Barrett, V. B ow m an, e m s B. Davies, J. L. Smellie and M. Tranter s Edited by e e n s t M. J. Hambrey, P. F. Barker, P. J. Barrett, V. B ow m an, s The volume highlights developments in our understanding of the palaeogeographical, B. Davies, J. L. Smellie and M. Tranter palaeobiological, palaeoclimatic and cryospheric evolution of Antarctica. It focuses on the sedimentary record from the Devonian to the Quaternary Period. It features tectonic evolution and stratigraphy, as well as processes taking place adjacent to, beneath and Geological beyond the ice-sheet margin, including the continental shelf. Society Geological Society Special The contributions in this volume include several invited Publication Special Publication 381 review papers, as well as original research papers arising 381 from the International Symposium on Antarctic Earth Sciences in Edinburgh, in July 20 11. These papers B M demonstrate a remarkable diversity of Earth science interests E d . i D t in the Antarctic. Following international trends, there is particular emphasis on the J e . a d H v Cenozoic Era, reflecting the increasing emphasis on the documentation and b i a e y m s understanding of the past record of ice-sheet fluctuations.
    [Show full text]
  • GIS Applications to Glaciology: Construction of the Mount Rainier Glacier Database
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 6-11-1997 GIS Applications to Glaciology: Construction of the Mount Rainier Glacier Database Jeremy Laurence Mennis Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geography Commons Let us know how access to this document benefits ou.y Recommended Citation Mennis, Jeremy Laurence, "GIS Applications to Glaciology: Construction of the Mount Rainier Glacier Database" (1997). Dissertations and Theses. Paper 5348. https://doi.org/10.15760/etd.7221 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. THESIS APPROVAL The abstract and thesis of Jeremy Laurence Mennis for the Master of Science in Geography were presented June 11, 1997, and accepted by the thesis committee and the department. COMMITTEE APPROVALS: Ric Vrana Kenneth Dueker Representative of the Office of Graduate Studies DEPARTMENT APPROVAL: ****************************** ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIBRARY .)??( ;IQ, (Clcf 7--·· by on r - ABSTRACT An abstract of the thesis of Jeremy Laurence Mennis for the Master of Science in Geography presented June 11, 1997. Title: GIS Applications to Glaciology: Construction of the Mount Rainier Glacier Database. This thesis explores the application of Geographic Information Systems (GIS) to glaciology through the construction of a GIS database of glaciers on Mount Rainier, Washington (the Database). The volume and areal extent of these glaciers, and the temporal change to each, are calculated as a demonstration of GIS analytical capabilities.
    [Show full text]
  • A.PMD Cover Photos
    Cover Photos Top Photo This photo shows the launching of a tethered, helium-filled balloon attached to an instrument that measures the characteristics of water vapor at different altitudes above the South Pole. By attaching this instrument to a tethered balloon, the instrument can be sent to different altitudes and readily recovered. The building from which the tethered balloon and instrument are being launched in this photo is a temporary facility located adjacent to the Clean Air Sector boundary at the South Pole. The trench in front of this building provides a location for the balloon to be stored between launch periods. (Photo by Jeff Inglis) Bottom Photo This photo shows the launching of a balloon and accompanying ozone sonde from the VXE-6 platform at McMurdo Station. The balloon-borne measurements provide good methods to measure the detailed altitude structure of ozone and Polar Stratospheric Clouds (PSCs) from the ground up to the lower stratosphere, where the bulk of ozone exists and where PSCs form. (Photo by Ginny Figlar) This Science Planning Summary publication was prepared by the Science Support Division of Raytheon Polar Services Company Under contract to the National Science Foundation OPP-0000373 Foreword This United States Antarctic Program (USAP) Science Planning Sum- mary contains a synopsis of the 2000-2001 season (i.e., from mid-August 2000 to mid-August 2001) for the USAP. This publication is a preseason summary (i.e., prior to the 2000-2001 austral-summer season); it contains the current information available as of early September 2000. Some of this information may change throughout the austral summer and winter-over periods as project planning evolves.
    [Show full text]
  • SPQ Module 20 – Ice Flows
    SPQ Module 20 – Ice Flows When Ray, Richard & Kevin received their sleds in Southern Chili they opened them with excitement, and Kevin remarked “they look like little canoes”. It is perhaps appropriate that the team is proceeded with ‘little canoes’ because – if you use your imagination – they in fact travelled up the widest river in the world. For if you define a river as a body of water that flows down hill then they are are on a massive frozen river of ice that flows gradually off the highlands of central Antarctica into the Southern Ocean. The Antarctic Ice Cap is composed of 14.1 million Did You Know? square Kilometers of perpetually shifting, flowing ice. To put the size of the Antarctic Ice Cap in The expedition sleds perspective the entire land mass of Canada and are made of Kevlar, a the United States are both smaller at 9.9 million light weight material square kilometers, and 9.2 million square that is very strong and kilometers respectively. Remarkably the entire is also used to make volume of the Antarctic Ice Cap, estimated to be police vests. 30 million cubic kilometers, was built one little snow flake at a time. Indeed glaciers form when the amount of snow accumulating in a location exceeds the amount that melts during the summer months. In a place like Antarctica were the summer temperatures do not go above freezing there is very little melt, and the glaciers grow. The weight of this accumulating snow on that which lies underneath gradually compresses it into ice.
    [Show full text]
  • Holocene Thinning of Darwin and Hatherton Glaciers, Antarctica, and Implications for Grounding-Line Retreat in the Ross Sea
    The Cryosphere, 15, 3329–3354, 2021 https://doi.org/10.5194/tc-15-3329-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Holocene thinning of Darwin and Hatherton glaciers, Antarctica, and implications for grounding-line retreat in the Ross Sea Trevor R. Hillebrand1,a, John O. Stone1, Michelle Koutnik1, Courtney King2, Howard Conway1, Brenda Hall2, Keir Nichols3, Brent Goehring3, and Mette K. Gillespie4 1Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA 2School of Earth and Climate Science and Climate Change Institute, University of Maine, Orono, ME 04469, USA 3Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA 70118, USA 4Faculty of Engineering and Science, Western Norway University of Applied Sciences, Sogndal, 6856, Norway anow at: Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA Correspondence: Trevor R. Hillebrand ([email protected]) Received: 8 December 2020 – Discussion started: 15 December 2020 Revised: 4 May 2021 – Accepted: 27 May 2021 – Published: 20 July 2021 Abstract. Chronologies of glacier deposits in the available records from the mouths of other outlet glaciers Transantarctic Mountains provide important constraints in the Transantarctic Mountains, many of which thinned by on grounding-line retreat during the last deglaciation in hundreds of meters over roughly a 1000-year period in the the Ross Sea. However, between Beardmore Glacier and Early Holocene. The deglaciation histories of Darwin and Ross Island – a distance of some 600 km – the existing Hatherton glaciers are best matched by a steady decrease in chronologies are generally sparse and far from the modern catchment area through the Holocene, suggesting that Byrd grounding line, leaving the past dynamics of this vast region and/or Mulock glaciers may have captured roughly half of largely unconstrained.
    [Show full text]
  • Differential Movement Across Byrd Glacier, Antarctica, As Indicated by Apatite
    1 Differential Movement across Byrd Glacier, Antarctica, 2 3 as indicated by Apatite (U–Th)/He thermochronology 4 Q1 and geomorphological analysis 5 6 7 Q2 D. J. FOLEY, E. STUMP, M. VAN SOEST, K. X. WHIPPLE & K. V. HODGES 8 School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA 9 10 11 Abstract: The objectives of this study were to assess possible differential movement across an 12 inferred fault beneath Byrd Glacier, and to measure the timing of unroofing in this portion of 13 the Transantarctic Mountains. Apatites separated from rock samples collected from known 14 elevations at various locations north and south of Byrd Glacier were dated using single crystal (U–Th)/He analysis. Results indicate a denudation rate of c. 0.04 mm a21 in the time range c. 15 140–40 Ma. Distinct age v. elevation plots from north and south of Byrd Glacier indicate an 16 offset of c. 1 km across the glacier with south side up. A Landsat image of the Byrd Glacier 17 area was overlain on an Aster Global Digital Elevation Model and spot elevations of the Kukri 18 erosion surface to the north and south of Byrd Glacier were mapped. The difference in elevation 19 of the erosion surface across Byrd Glacier also shows an offset of c. 1 km with south side up. 20 Results support a model of relatively uniform cooling and unroofing of the region with later, 21 post-40 Ma fault displacement that uplifted the south side of Byrd Glacier relative to the north.
    [Show full text]
  • Structure-From-Motion Photogrammetry of Antarctic Historical Aerial Photographs in Conjunction with Ground Control Derived from Satellite Data
    remote sensing Article Structure-From-Motion Photogrammetry of Antarctic Historical Aerial Photographs in Conjunction with Ground Control Derived from Satellite Data Sarah F. Child 1,2,* , Leigh A. Stearns 1,3 , Luc Girod 4 and Henry H. Brecher 5 1 Department of Geology, University of Kansas, Lawrence, KS 66045, USA; [email protected] 2 Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA 3 Center for Remote Sensing of Ice Sheets, University of Kansas, Lawrence, KS 66045, USA 4 Department of Geosciences, University of Oslo, 0315 Oslo, Norway; [email protected] 5 Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH 43210, USA; [email protected] * Correspondence: [email protected] Abstract: A longer temporal scale of Antarctic observations is vital to better understanding glacier dynamics and improving ice sheet model projections. One underutilized data source that expands the temporal scale is aerial photography, specifically imagery collected prior to 1990. However, pro- cessing Antarctic historical aerial imagery using modern photogrammetry software is difficult, as it requires precise information about the data collection process and extensive in situ ground control is required. Often, the necessary orientation metadata for older aerial imagery is lost and in situ data collection in regions like Antarctica is extremely difficult to obtain, limiting the use of traditional photogrammetric methods. Here, we test an alternative methodology to generate elevations from historical Antarctic aerial imagery. Instead of relying on pre-existing ground control, we use structure- from-motion photogrammetry techniques to process the imagery with manually derived ground control from high-resolution satellite imagery.
    [Show full text]
  • US Geological Survey Scientific Activities in the Exploration of Antarctica: 1946–2006 Record of Personnel in Antarctica and Their Postal Cachets: US Navy (1946–48, 1954–60), International
    Prepared in cooperation with United States Antarctic Program, National Science Foundation U.S. Geological Survey Scientific Activities in the Exploration of Antarctica: 1946–2006 Record of Personnel in Antarctica and their Postal Cachets: U.S. Navy (1946–48, 1954–60), International Geophysical Year (1957–58), and USGS (1960–2006) By Tony K. Meunier Richard S. Williams, Jr., and Jane G. Ferrigno, Editors Open-File Report 2006–1116 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Cover: 2006 postal cachet commemorating sixty years of USGS scientific innovation in Antarctica (designed by Kenneth W. Murphy and Tony K. Meunier, art work by Kenneth W. Murphy). ii Table of Contents Introduction......................................................................................................................................................................1 Selected.References.........................................................................................................................................................2
    [Show full text]