Free Analysis and Visualization Programs for Electrochemical Impedance Spectroscopy Coded in Python Kiyoshi KOBAYASHI * and Tohru S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IGOR XOP 8 Toolkit Reference Manual
IGOR XOP TOOLKIT REFERENCE MANUAL Version 8.01 WaveMetrics, Inc. Copyright This manual and the Igor XOP Toolkit are copyrighted by WaveMetrics with all rights reserved. Under copyright laws it is illegal for you to copy this manual or the software without written permission from WaveMetrics. WaveMetrics gives you permission to make unlimited copies of the software on any number of machines but only for your own personal use. You may not copy the software for any other reason. You must ensure that only one copy of the software is in use at any given time. Notice All brand and product names are trademarks or registered trademarks of their respective companies. Manual Revision: September 28, 2018 (8.01) © Copyright 2018 WaveMetrics, Inc. All rights reserved. WaveMetrics, Inc. PO Box 2088 Lake Oswego, OR 97035 USA Email: [email protected], [email protected] Web: http://www.wavemetrics.com/ Table of Contents Chapter 1 - Introduction to XOPs About This Manual .............................................................................................. 1 What is an XOP?.................................................................................................. 1 Who Can Write an XOP?..................................................................................... 2 A Brief History of Igor ........................................................................................ 2 XOP Toolkit 8...................................................................................................... 4 Choosing Which XOP Toolkit -
Pclamp 10 Data Acquisition and Analysis Software User Guide
pCLAMP™ 10 Data Acquisition & Analysis Software User Guide 1-2500-0180 G January 2016 pCLAMP 10 Data Acquisition and Analysis Software User Guide This document is provided to customers who have purchased Molecular Devices equipment, software, reagents, and consumables to use in the operation of such Molecular Devices equipment, software, reagents, and consumables. This document is copyright protected and any reproduction of this document, in whole or any part, is strictly prohibited, except as Molecular Devices may authorize in writing. Software that may be described in this document is furnished under a non-transferrable license. It is against the law to copy, modify, or distribute the software on any medium, except as specifically allowed in the license agreement. Furthermore, the license agreement may prohibit the software from being disassembled, reverse engineered, or decompiled for any purpose. Portions of this document may make reference to other manufacturers and/or their products, which may contain parts whose names are registered as trademarks and/or function as trademarks of their respective owners. Any such usage is intended only to designate those manufacturers’ products as supplied by Molecular Devices for incorporation into its equipment and does not imply any right and/or license to use or permit others to use such manufacturers’ and/or their product names as trademarks. Each product is shipped with documentation stating specifications and other technical information. Molecular Devices products are warranted to meet the stated specifications. Molecular Devices makes no other warranties or representations express or implied, including but not limited to, the fitness of this product for any particular purpose and assumes no responsibility or contingent liability, including indirect or consequential damages, for any use to which the purchaser may put the equipment described herein, or for any adverse circumstances arising therefrom. -
IGOR XOP 6 Toolkit Reference Manual
IGOR XOP TOOLKIT REFERENCE MANUAL Version 6.40 WaveMetrics, Inc. Copyright This manual and the Igor XOP Toolkit are copyrighted by WaveMetrics with all rights reserved. Under copyright laws it is illegal for you to copy this manual or the software without written permission from WaveMetrics. WaveMetrics gives you permission to make unlimited copies of the software on any number of machines but only for your own personal use. You may not copy the software for any other reason. You must ensure that only one copy of the software is in use at any given time. Notice All brand and product names are trademarks or registered trademarks of their respective companies. Manual Revision: October 27, 2015 (6.40) © Copyright 2015 WaveMetrics, Inc. All rights reserved. WaveMetrics, Inc. PO Box 2088 Lake Oswego, OR 97035 USA Voice: 503-620-3001 FAX: 503-620-6754 Email: [email protected], [email protected] Web: http://www.wavemetrics.com/ Table of Contents Chapter 1 - Introduction to XOPs About This Manual .............................................................................................. 1 What is an XOP?.................................................................................................. 2 Who Can Write an XOP?..................................................................................... 2 A Brief History of Igor ........................................................................................ 2 XOP Toolkit 6.4.................................................................................................. -
Publication Quality 2D Graphs with Less Manual Effort Due to Explicit Use of Dual Coordinate Systems Daniel a Wagenaar
Wagenaar Source Code for Biology and Medicine 2014, 9:22 http://www.scfbm.org/content/9/1/22 SOFTWARE REVIEW Open Access Publication quality 2D graphs with less manual effort due to explicit use of dual coordinate systems Daniel A Wagenaar Abstract Creating visually pleasing graphs in data visualization programs such as Matlab is surprisingly challenging. One common problem is that the positions and sizes of non-data elements such as textual annotations must typically be specified in either data coordinates or in absolute paper coordinates, whereas it would be more natural to specify them using a combination of these coordinate systems. I propose a framework in which it is easy to express, e.g., “this label should appear 2 mm to the right of the data point at (3, 2)” or “this arrow should point to the datum at (2, 1) and be 5 mm long.” I describe an algorithm for the correct layout of graphs of arbitrary complexity with automatic axis scaling within this framework. An implementation is provided in the form of a complete 2D plotting package that can be used to produce publication-quality graphs from within Matlab or Octave. Keywords: Data plotting, Typography, Matlab Background the label location in data coordinates. By trial and error, Computer programs for the two-dimensional graphical the user can experiment and find that in one particu- display of numerical data abound (e.g., Gnuplot [1], Igor lar graph the annotation should be placed at (1, 0.95) Pro [2], Matlab [3], Octave [4]). Such programs commonly and in another at (1, 0.6) to appear at the desired dis- allow specification of data in arbitrary coordinates, and tance below the data point at (1, 1). -
Combigor: Data Analysis Package for Combinatorial Materials Science
COMBIgor: data analysis package for combinatorial materials science Kevin R. Talley,y,z Sage R. Bauers,y Celeste L. Melamed,y,{ Meagan C. Papac,y,z Karen N. Heinselman,y Imran Khan,y Dennice M. Roberts,y,x Valerie Jacobson,y,z Allison Mis,y,z Geoff L. Brennecka,z John D. Perkins,k and Andriy Zakutayev∗,y yNational Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, CO, 80401, USA zDepartment of Metallurgical and Materials Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO, 80401, USA {Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA xDepartment of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA kNational renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, CO, 80401, USA E-mail: [email protected] Abstract arXiv:1904.07989v2 [cond-mat.mtrl-sci] 30 Apr 2019 Combinatorial experiments involve synthesis of sample libraries with lateral compo- sition gradients requiring spatially-resolved characterization of structure and properties. Due to maturation of combinatorial methods and their successful application in many fields, the modern combinatorial laboratory produces diverse and complex data sets requiring advanced analysis and visualization techniques. In order to utilize these large 1 data sets to uncover new knowledge, the combinatorial scientist must engage in data science. For data science tasks, most laboratories adopt common-purpose data manage- ment and visualization software. However, processing and cross-correlating data from various measurement tools is no small task for such generic programs. Here we describe COMBIgor, a purpose-built open-source software package written in the commercial Igor Pro environment, designed to offer a systematic approach to loading, storing, pro- cessing, and visualizing combinatorial data sets. -
Double IPA® and Sutterpatch® Are Trademarks of Sutter Instrument Company
® / IPA ® DOUBLE IPA Integrated Patch Amplifier ELECTROPHYSIOLOGY PATCH-CLAMP SYSTEM WITH SutterPatch® SOFTWARE Operation Manual One Digital Drive Novato, CA 94949 USA Voice: +1 415-883-0128 Web: www.sutter.com Fax: +1 415-883-0572 Email: [email protected] 2 The IPA and Double IPA systems have two international safety certifications: 1) The CE mark is for compliance to health, safety and environmental protection standards for products sold within the European Economic Area: 2) The RoHS (Restriction of Hazardous Substances) Directive 2002/95/EC restricts the use of hazardous substances for electronic equipment sold within the European Union: Copyright © 2015 - 2021 Sutter Instrument Company. All Rights Reserved. IPA®, Double IPA® and SutterPatch® are trademarks of Sutter Instrument Company. All other product and company names are trademarks or registered trademarks of their respec- tive holders. INTEGRATED PATCH AMPLIFIER – OPERATION MANUAL – REV. 2.1.0 (2021-1) 3 DISCLAIMER The IPA system consists of one electronic amplifier with integrated digitizer and one headstage. The Double IPA system consists of one electronic amplifier with integrated digitizer and two headstages. All references to an IPA system also include a Double IPA system, unless otherwise noted. The purpose of the system is for the stimulation and measurement of cellular prepara- tions. No other use is recommended. This instrument is designed for use in a laboratory environment. It is not intended for, nor should it be used in human experimentation or applied to humans in any way. This is not a medical device. Do not open or attempt to repair the instrument. Do not allow an unauthorized and/or untrained operative to use this instrument.