Institute of Paper Science and Technology a Tanta, Georgia

Total Page:16

File Type:pdf, Size:1020Kb

Institute of Paper Science and Technology a Tanta, Georgia Institute of Paper Science and Technology A tanta, Georgia IPST Technical Paper Series Number 825 Rapid and Direct Pulp Kappa Number Determination Using Spectrophotometry X.S. Chai and J.Y. Zhu November 1999 Subm itted to Journal of Pulp and Paper Science Copyright@ 1999 by the Institute of Paper Science and Technology For Members Only INSTITUTE OF PAPER SCIENCE AND TECHNOLOGY PURPOSE AND MISSIONS The Institute of Paper Science and Technology is an independent graduate school, research organization, and information center for science and technology mainly concerned with manufacture and uses of pulp, paper, paperboard, and other forest products and byproducts. Established in 1929, the Institute provides research and information services to the wood, fiber, and allied industries in a unique partnership between education and business. The Institute is supported by 52 North American companies. The purpose of the Institute is fulfilled through four missions, which are: . top rovide a multidisciplinary education to students who advance the science and technology of the industry and who rise into leadership positions within the industry; l to conduct and foster research that creates knowledge to satisfy the technological needs of the industry; l to serve as a key global resou rce for the acquisition, assessment, and dissemination of industry information, P roviding critically im portant information to decision-makers at all. levels of the industry; and l to aggressively seek out technological opportunities and facilitate the transfer and implementation of those technologies in collaboration with industry partners. ACCREDITATION The Institute of Paper Science and Technology is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools to award the Master of Science and Doctor of Philosophy degrees. NOTICE AND DISCLAIMER The Institute of Paper Science and Technology (IPST) has provided a high standard of professional service and has put forth its best efforts within the time and funds available for this project. The information and conclusions are advisory and are intended only for internal use by any company who may receive this report. Each company must decide for itself the best approach to solving any problems it may have and how, or whether, this reported information should be considered in its approach. IPST does not recommend particular products, procedures, materials, or service. These are included only in the interest of completeness within a laboratory context and budgetary constraint. Actual products, procedures, materials, and services used may differ and are peculiar to the operations of each company. In no event shall IPST or its employees and agents have any obligation or liability for damages including, but not limited to, consequential damages arising out of or in connection with any company’s use of or inability to use the reported information. IPST provides no warranty or guaranty of results. The Institute of Paper Science and Technology assures equal opportunity to all qualified persons without regard to race, color, religion, sex, national origin, age, disability, marital status, or Vietnam era veterans status in the admission to, participation in, treatment of, or employment in the programs and activities which the Institute operates. To be published in J Pulp & Paper Sci., 25( 1l), 1999 (in press) Also Presentedat the 1Uh ISWPC Main Symposium, June 7-10, 1999,Yokohama, Japan Rapid and Direct Pulp Kappa Number Determination Using Spectrophotometry X.S. Chai andJ.Y. Zhu’ Institute of Paper Scienceand Technology 500 ltih Street, N. W. Atlanta, GA 30318 (404) 894 -5310, (404) 894-5752(Fa ABSTRACT A spectrophotometricmethod has been developed for rapid pulp kappanumber measurements under strongly acidic reactionconditions. Pulp kappanurnber is derived from the ratio of the absorptionspectral intensities at a specificwavelength measured at the beginningand end of the reactionof the pulp with permanganate.Therefore, no calibration is necessary.Strong acidificationis usedto preventMnO, precipitationand interference with the permanganateabsorption spectrum. A methodis proposedto determinethe end of the pulp oxidationreactions with permanganateusing the reactionkinetics andrate derived from the time-dependentspectrophotometric measurements of the reactingsolution. It was found that the pulp oxidationwas completedin lessthan 3 minutes. The measuredkappa numbersof three pulp samplesof two wood species,with andwithout bleaching,agreed well with thoseobtained by the current TAPPI standardmethod using thiosulfate titration. The presentmethod is simple,rapid, andaccurate. Key Words: Kappanumber; pulp; spectrophotometry;UWVis absorption; lignin oxidation;permanganate. l Author to whom correspondenceshould be addressed 1 Accepted for Publication by J. Pulp & Paper Sci., 25( 1l), 1999 (in press) BACKGROUND The kappanumber of pulp is one of the importantparameters in pulp manufacturing becauseit relatesto the bleachability,or degreeof delignification,of the pulp. The kappa numberis definedas the volume of 0.02 mole/L (0.1 normality) potassiumpermanganate solutionconsumed by one gram of moisture-freepulp in an acidic mediumthrough the following reactions,depending on the acidity of the medium: MI@‘; + 8H+ +5e E”=+lslV >ib2+ + 4H,o (1 a> MnO~ + 4H’ + 3e E”=+1*6gv) it&O, + 2H,O (lb) The current, commonlyused method for kappanumber measurements, such as TAPPI Test Method T236 cm-85 [l], was first proposedin 1934by Wiles [2] and later developedin the 1950’sbased on researchby Watson[3], Valeur and Torngren[4], and Tasmanand Berzins [S]. The methodcalculates the volume of 0.02 mole/L (0.1 N) potassiumperrnanganate consumed by one gram of moisture-freepulp by the difference betweenthe initial andthe final excessvolumes of potassiumpermanganate after a lo- minute reactionat 25OCunder weakly acidic conditions. The final excessvolume of potassiumpermanganate after the lo-minute oxidationreaction is determinedby titrimetry using a standardthiosulfate solution after addingan excessof potassiumiodide to the slurry to react with the excesspertnanganate to form iodine. The key assumptionsof this methodare: (1) the perrnanganateconsumed was mainly due to reactionwith lignin, and the rapid oxidationwas completedin 10 minutes; (2) the effects of reactiontemperature, time, andthe variationin excesspermanganate volume are not significant and canbe correctedby a non-constantcorrection factor as tabulatedin the TAPPI method [l]; and (3) the thiosulphatetitration methodis accurate.The disadvantages of this method are: (1) thiosulfatetitration of iodine is tediousbecause a blank experiment (without pulp, andusing exactly the sameprocedures) is neededto reducethe experimental error in the titration due to the high volatility of iodine; (2) the thiosulfatetitration requires that the reactionbe kept underweakly acidic conditions,which causeslarge variations in kappameasurements as reportedby Valeur and Torngren[4]; (3) the lOominuteoxidation Accepted for Publication by J. Pulp & Paper Sci., 25( 1 1), 1999 (in press) reaction time is arbitrary and can causeerrors in determiningkappa numbers for various pulps, becausepermanganate can be both oxidizedand decomposed by other organic materialsin pulp as explainedby Tasmanand Berzins[5]; the actualoxidation time is much shorterthan 10 minutes,as found by Li andGellerstedt [6] and in the presentstudy; (4) the methodrequires that the volume of consumedpermanganate after the lo-minute reaction shouldbe around50% of the initial volume to obtain goodmeasurements; this is impossible becausethe final excesspermanganate volume can only be known after the kappanumber has beendetermined; (5) the non-constantcorrection factor is purely empirical,derived through experimentalcalibration, and cancause errors; and (6) compoundsother than lignin in a pulp, suchas a significant amountof hexenuronicacid in bleachedpulps, canbe oxidizedby permanganatein the first lo-minute reaction. As a result, the existing kappa test methodshave many shortcomingsand the kappanumber itself is not scientificallywell defined;however, the kappanumber of a pulp obtainedby thesemethods has significant practical importance. A commerciallyavailable instrument, based on thesemethods, has beendeveloped (KAPPAMAT, Kebo Lab, Sweden). Spectroscopicmethods can provide direct and instantaneousmeasurement of chemicalconcentrations in reactions. Spectroscopicmethods using W andFTIR absorptionto determinepulp kappanumber have been reported [7,8]. In thesemethods, the linear relationshipbetween the lignin contentof the pulp and the light absorptionwas used to determinepulp kappanumber. Unfortunately,the perrnanganateconsumption by different types of lignin is different. Therefore,calibration is requiredfor a specificpulp sampleusing the traditional methodof kappanumber determination [l]. By the time the presentstudy was completed,Li and Gellerstedt[6] had reportedthe resultsof a study on the kinetics andmechanism of pulp-permanganatereaction under conditionssuggested in standardkappa testing methods. They directly measuredthe permanganateconcentration in lignin-permanganatereaction solutions using W/Vis spectrophotometry. Accordingto Li and Gellerstedt[6] and Stewart [9], both reactions(la) and (lb) can take placeunder conditions suggested in commonkappa number test methods, suchas TAPPI Test Method - T236 cm-85 [ 1] and SCAN-Cl Test Method [lo], where the dominantreaction is an overall conversionof permanganateto MnO, accordingto
Recommended publications
  • Making! the E-Magazine for the Fibrous Forest Products Sector
    PAPERmaking! The e-magazine for the Fibrous Forest Products Sector Produced by: The Paper Industry Technical Association Volume 5 / Number 1 / 2019 PAPERmaking! FROM THE PUBLISHERS OF PAPER TECHNOLOGY Volume 5, Number 1, 2019 CONTENTS: FEATURE ARTICLES: 1. Wastewater: Modelling control of an anaerobic reactor 2. Biobleaching: Enzyme bleaching of wood pulp 3. Novel Coatings: Using solutions of cellulose for coating purposes 4. Warehouse Design: Optimising design by using Augmented Reality technology 5. Analysis: Flow cytometry for analysis of polyelectrolyte complexes 6. Wood Panel: Explosion severity caused by wood dust 7. Agriwaste: Soda-AQ pulping of agriwaste in Sudan 8. New Ideas: 5 tips to help nurture new ideas 9. Driving: Driving in wet weather - problems caused by Spring showers 10. Women and Leadership: Importance of mentoring and sponsoring to leaders 11. Networking: 8 networking skills required by professionals 12. Time Management: 101 tips to boost everyday productivity 13. Report Writing: An introduction to report writing skills SUPPLIERS NEWS SECTION: Products & Services: Section 1 – PITA Corporate Members: ABB / ARCHROMA / JARSHIRE / VALMET Section 2 – Other Suppliers Materials Handling / Safety / Testing & Analysis / Miscellaneous DATA COMPILATION: Installations: Overview of equipment orders and installations since November 2018 Research Articles: Recent peer-reviewed articles from the technical paper press Technical Abstracts: Recent peer-reviewed articles from the general scientific press Events: Information on forthcoming national and international events and courses The Paper Industry Technical Association (PITA) is an independent organisation which operates for the general benefit of its members – both individual and corporate – dedicated to promoting and improving the technical and scientific knowledge of those working in the UK pulp and paper industry.
    [Show full text]
  • Extended Impregnation Kraft Cooking of Softwood: Effects on Reject, Yield, Pulping Uniformity, and Physical Properties
    Extended Impregnation Kraft Cooking of Softwood: Effects on reject, yield, pulping uniformity, and physical properties Katarina Karlström Licentiate thesis Royal Institute of Technology (KTH) Department of Fibre and Polymer Technology Division of Wood Chemistry and Pulp Technology Stockholm 2009 TRITA-CHE-Report 2009:59 ISSN 1654-1081 ISBN 978-91-7415-496-2 Extended impregnation kraft cooking of softwood: Effects on reject, yield, pulping uniformity, and physical properties Katarina Karlström AKADEMISK AVHANDLING Som med tillstånd av Kungliga Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av teknologie licentiatexamen fredagen den 18:e december 2009, kl. 10.00 i STFI-salen, Innventia AB, Drottning Kristinas väg 61, Stockholm. Avhandlingen försvaras på svenska. © Katarina Karlström Stockholm 2009 Department of Fibre and Polymer Technology Teknikringen 56-58 SE-100 44 Stockholm Sweden Abstract Converting wood into paper is a complex process involving many different stages, one of which is pulping. Pulping involves liberating the wood fibres from each other, which can be done either chemically or mechanically. This thesis focuses on the most common chemical pulping method, the kraft cooking process, and especially on a recently developed improvement of the impregnation phase, which is the first part of a kraft cook. Extended impregnation kraft cooking (EIC) technique is demonstrated to be an improvement of the kraft pulping process and provides a way to utilize softwood to a higher degree, at higher pulp yield. We demonstrate that it is possible to produce softwood ( Picea abies ) kraft pulp using a new cooking technique, resulting in a pulp that can be defibrated without inline refining at as high lignin content as 8% on wood, measured as kappa numbers above 90.
    [Show full text]
  • A Review on the Modeling, Control and Diagnostics of Continuous Pulp Digesters
    processes Review A Review on the Modeling, Control and Diagnostics of Continuous Pulp Digesters Moksadur Rahman * , Anders Avelin and Konstantinos Kyprianidis School of Business, Society and Engineering, Mälardalen University, Box 883, 72123 Västerås, Sweden; [email protected] (A.V.); [email protected] (K.K.) * Correspondence: [email protected]; Tel.: +46-(0)21-10-1594 Received: 12 August 2020; Accepted: 23 September 2020; Published: 1 October 2020 Abstract: Being at the heart of modern pulp mills, continuous pulp digesters have attracted much attention from the research community. In this article, a comprehensive review in the area of modeling, control and diagnostics of continuous pulp digesters is conducted. The evolution of research focus within these areas is followed and discussed. Particular effort has been devoted to identifying the state-of-the-art and the research gap in a summarized way. Finally, the current and future research directions in the areas have been analyzed and discussed. To date, digester modeling following the Purdue approach, Kappa number control using model predictive controllers and health index-based diagnostic approaches by utilizing different statistical methods have dominated the field. While the rising research interest within the field is evident, we anticipate further developments in advanced sensors and integration of these sensors for improving model prediction and controller performance; and the exploration of different AI-based approaches will be at the core of future research. Keywords: Kraft pulping; pulp digester; modeling; control; diagnostics 1. Introduction With the widespread expansion of the Internet, electronic media and paperless communication, the demand for the graphic paper (i.e., newsprint and higher-value printing and writing paper) has been declining since 2000 [1].
    [Show full text]
  • Importance of Unbleached Pulp Lignin Content
    ENVIRONMENTAL FOOTPRINT COMPARISON TOOL A tool for understanding environmental decisions related to the pulp and paper industry EFFECTS OF DECREASED RELEASE OF CHLORINATED COMPOUNDS ON ENERGY USE Importance of Unbleached Pulp Lignin Content Kappa number is a measure of the amount of lignin remaining in pulp. The higher the kappa number value, the higher the use of bleaching chemicals required to brighten the pulp. The kappa numbers of pulps leaving the digester are typically about 30 for softwoods and 20 for hardwoods in bleached kraft mills that employ conventional cooking methods. Several modifications to conventional cooking, known collectively as extended cooking (EC), have enabled kappa numbers to be further reduced in the digester in ways that minimize yield and strength losses. Kappa numbers associated with EC are about 20 for softwoods and about 14 for hardwoods. Oxygen delignification (OD) is another technology that is used extensively to lower the residual lignin content prior to the bleach plant. The technology is more selective than most extended cooking processes. Lignin reductions of approximately 50% are achievable with OD, resulting in softwood kappa number in the 14-18 range. Some mills use both extended cooking and oxygen delignification to achieve very low kappa number pulps prior to bleaching, producing pulps with kappa number values in the range of 10-12, perhaps even lower. Deterioration of pulp strength properties is the limiting obstacle for kappa number reduction prior to the bleach plant. More recent strategies have been focused away from obtaining the most delignification possible in the digester and toward optimizing the fiberline as a whole based on economic, quality, and environmental factors.
    [Show full text]
  • Effect of Different Locations on the Morphological, Chemical, Pulping and Papermaking Properties of Trema Orientalis (Nalita)
    Bioresource Technology 101 (2010) 1892–1898 Contents lists available at ScienceDirect Bioresource Technology journal homepage: www.elsevier.com/locate/biortech Effect of different locations on the morphological, chemical, pulping and papermaking properties of Trema orientalis (Nalita) M. Sarwar Jahan a,b,*, Nasima Chowdhury a, Yonghao Ni b a Pulp and Paper Research Division, BCSIR Laboratories, Dr. Qudrat-E-Khuda Road, Dhaka 1205, Bangladesh b Pulp and Paper Research Centre, University of New Brunswick, Fredericton, Canada article info abstract Article history: The chemical compositions and fiber morphology of stem and branch samples from Trema orientalis at Received 24 August 2009 three different sites planted in Bangladesh were determined and their pulping, bleaching and the result- Received in revised form 1 October 2009 ing pulp properties were investigated. A large difference between the stem and branch samples was Accepted 13 October 2009 observed. The stem samples have consistently higher a-cellulose and lower lignin content, and longer Available online 14 November 2009 fibers than the branch samples in all sites. T. orientalis from the Dhaka and Rajbari region had higher a-cellulose content and longer fiber length, resulting in higher pulp yield and better papermaking prop- Keyword: erties. The T. orientalis pulp from Rajbari region also showed the best bleachability. Trema orientalis, Variation of wood Ó 2009 Elsevier Ltd. All rights reserved. properties Stem and branch Pulping and bleaching 1. Introduction sely to those of Malaysian-grown mangium and other fast-grow- ing plantation species, including the traditionally-used pulpwood The increased demand for wood and fiber and declining avail- of the Philippines.
    [Show full text]
  • Single Fiber Lignin Distributions Based on the Density Gradient Column Method
    Single Fiber Lignin Distributions Based on the Density Gradient Column Method Brian Boyer Patent Attorney 3676 Highland Avenue Redwood City, CA 94062 [email protected] Alan Rudie USDA Forest Service, Forest Products Laboratory One Gifford Pinchot Drive Madison, WI 53726 [email protected] ABSTRACT The density gradient column method was used to determine the effects of uniform and non-uniform pulping processes on variation in individual fiber lignin concentrations of the resulting pulps. A density gradient column uses solvents of different densities and a mixing process to produce a column of liquid with a smooth transition from higher density at the bottom to lower density at the top. Properly prepared pulp fibers float in the column, stabilizing at the level where the mixed solvent density equals the density of the fiber. Because lignin is the lowest density component of pulp fibers and has the largest influence on fiber density, the column effectively separates fibers by lignin concentration and allows them to be counted and the distribution of lignin concentrations determined. Ten experimental kraft pulps and three commercial pulps were evaluated. The laboratory pulps were produced from a single loblolly pine tree using 2.5-mm and 10-mm chips. All cooks used a 24% effective alkali (EA) charge on wood, 6-to-1 liquor-to-wood ratio, and 30% sulfidity. The cooking schedule was constant at 60 min rise to temperature and 240 min at temperature. The maximum cooking temperature was varied from 150°C to 170°C to provide a kappa number variation from about 60 to approximately 20.
    [Show full text]
  • Optimization of Ecf Bleaching and Refining of Kraft Pulping from Olive Tree Pruning
    PEER-REVIEWED ARTICLE bioresources.com OPTIMIZATION OF ECF BLEACHING AND REFINING OF KRAFT PULPING FROM OLIVE TREE PRUNING Ana Requejo,a,* Alejandro Rodríguez,a Jorge L. Colodette,b José L. Gomide,b and Luis Jiménez a The aim of the present work was to find an optimum kraft pulping process for olive tree pruning (OTP) in order to produce a bleachable grade pulp of Kappa number about 17. The kraft pulp produced under optimized conditions showed a viscosity of 31.5 mPa.s and good physical, mechanical, and optical properties, which are acceptable for paper grade production. The strength and optical properties were measured on pulps unrefined and refined in a PFI mill with up to 2000 revolutions before and after bleaching. The OTP pulp was bleached to 90% ISO brightness (kappa < 1); however the process demanded a long sequence of stages, OD(EP)D(EP)D, and a higher than usual total chemical dosage (24.78 kg/odt pulp). Overall, OTP is suggested as an interesting raw material for cellulosic pulp production because its properties are comparable to those of other agricultural residues currently used in the paper industry. Keywords: Kraft pulping; Olea europaea; Agricultural wastes; Refining, ECF bleaching Contact information: a: Chemical Engineering Department, Campus de Rabanales, Building Marie Curie (C-3), University of Córdoba, 14071, Córdoba, Spain; b: Laboratory of pulp and paper, Department of Forest Engineering, Federal University of Viçosa, Campus UFV, 36570, MG, Brazil. * Corresponding author: [email protected] INTRODUCTION Pulp production in Europe amounts to 36.9 million tons per year, which represents 21.6% of the world’s production; the production of paper and cardboard accounts for 25.3% of the total with 88.7 million tons.
    [Show full text]
  • Pulp and Papermaking Properties of Bamboo Species Melocanna Baccifera
    CELLULOSE CHEMISTRY AND TECHNOLOGY PULP AND PAPERMAKING PROPERTIES OF BAMBOO SPECIES MELOCANNA BACCIFERA SANDEEP KUMAR TRIPATHI, OM PRAKASH MISHRA, NISHI KANT BHARDWAJ and RAGHAVAN VARADHAN Avantha Centre for Industrial Research and Development, BILT Paper Mill Campus, Yamuna Nagar, Haryana, India ✉Corresponding author: S. Kumar Tripathi, [email protected] Received August, 17, 2016 Pulp and paper making properties of bamboo species Melocanna baccifera were studied with a focus on the physical properties and chemical composition of bamboo chips, on pulping behavior, bleaching response, fiber morphology, refining behavior and strength properties of the bleached pulp. Melocanna baccifera species was found to have 52.8% cellulose, 21.1% hemicelluloses and 25.2% lignin, i.e. similar to hardwood. The produced pulp could be bleached to 89 ± 1% ISO brightness. The bleached pulp refined to 25 °SR had 54.6 Nm/g tensile index, 10.7 mN.m 2/g tear index, 4.95 kN.m 2/g burst index and 328 double folds. Also, the bleached pulp had an average fiber length of 1.68 mm, which is higher than that of hardwood pulp (0.88-1.1 mm), but lower than that of softwood pulp (2.2-3.5 mm). Meanwhile, the pulp had an average fiber width of 17.1 µm, which is similar to that of hardwood fiber (16-20 µm), but lower than that of softwood fiber (28-35 µm). Keywords : bamboo, bleaching, extractives, papermaking properties, pulping INTRODUCTION dimensions has been reported among the species, Bamboo is one of the most versatile plants in but no significant differences in the chemical the world.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,953,111 Millar Et Al
    USOO5953111A United States Patent (19) 11 Patent Number: 5,953,111 Millar et al. (45) Date of Patent: *Sep. 14, 1999 54 CONTINUOUS IN-LINE KAPPA 57 ABSTRACT MEASUREMENT SYSTEM A System for the continual, real-time, in-situ generation of a 75 Inventors: Ord D. Millar, Pierrefonds, Canada; Kappa number used by a process control System to control Richard J. Van Fleet, Cave Creek, the delignification of papermaking pulps that includes inject Ariz. ing broad-spectrum light energy from a light energy Source into the pulp and collecting the resultant reflected light 73 Assignee: Honeywell Inc., Minneapolis, Minn. energy from a near-and a far-light collector. The reflected light energy collected by the light collectorS is analyzed by c: - - - asSociated near- and far-light analyzers that generate analog * Notice: This patent is Subject to a terminal dis output signals representing the intensity of Selected wave claimer. lengths of light energy received by the light collectors. An included feedback arrangement conducts the light energy emitted by the light Source to a location proximate the point 21 Appl. No.: 08/989,720 of injection and then to an associated light analyzer that 22 Filed: Dec. 11, 1997 generates analog output signals representing the intensity of the light energy emitted by the light Source in Selected (51) Int. Cl. ............................................... G01N 21/64 wavelengths. The output Signals from the near-, far- and 52 U.S. Cl. ............................................... 356/73; 356/425 feedback-light analyzers are transmitted to a measurement processing System that converts the analog signals to digital 58 Field of Search ................................. 356/73, 42,318 Signals and passes the Signals to a measurement computer.
    [Show full text]
  • Using Oxygen and Peroxide to Bleach Kraft Pulps
    Using Oxygen and Peroxide to Bleach Kraft Pulps B. VAN LIEROP, N. LIEBERGOTT and M.G. FAUBERT An oxygen-clielation-pero~ide(OQe 15, and removal of transition metal ions from stage to obtain the maximum brightness gain EopQP or QEopP) sequence brightened a the pulp before the peroxide stage. A low from OQP and QEopP sequences. kraft pulp to an IS0 brightness of 70%, kappa pulp is achieved without difficulty in provided that the kappa number of the pulp mills equipped with an oxygen delignifica- entering the peroxide stage was below 17. tion stage. The next chlorination tower and EXPERIMENTAL When the kappa number before P was as low washer can be adapted for a chelation (Q) Various commercially prepared soft- as IO, the brightness afrer QP increased stage [l] or for pulp acidification (A) [6] to wood and hardwood kraft pulps were either linearly to about 79%. High temperatures remove metal ions. The peroxide treatment oxygen-delignified in the mill, or in a spe- (90°C) and long retention times (4 h) in the can be done in the extraction stage or even cially designed laboratoq mixer described P stage increased the brightness of the pulp in the chlorine dioxide towers, provided that elsewhere [8]. The treatments listed in Table provided that the pulp wasfirst chelated and the metallurgy is compatible. This combina- I reduced the kappa numbers by approxi- that residual peroxide remained in the tion of stages is designated OQP, and one mately 30% (Eop) and 45% (0). bleach liquor: The correct combination of version of the process has been named the A chelation treatment with DTPA or H202, NaOH, and DTPA in the "Lignox" process by Eka-Nobel [l].
    [Show full text]
  • TAPPI Standards: Regulations and Style Guidelines
    TAPPI Standards: Regulations and Style Guidelines REVISED January 2018 1 Preface This manual contains the TAPPI regulations and style guidelines for TAPPI Standards. The regulations and guidelines are developed and approved by the Quality and Standards Management Committee with the advice and consent of the TAPPI Board of Directors. NOTE: Throughout this manual, “Standards” used alone as a noun refers to ALL categories of Standards. For specific types, the word “Standard” is used as an adjective, e.g., “Standard Test Method,” “Standard Specification,” “Standard Glossary,” or “Standard Guideline.” If you are a Working Group Chairman preparing a Standard or reviewing an existing Standard, you will find the following important information in this manual: • How to write a Standard Test Method using proper terminology and format (Section 7) • How to write TAPPI Standard Specifications, Glossaries, and Guidelines using proper terminology and format (Section 8) • What requirements exist for precision statements in Official and Provisional Test Methods (Sections 4.1.1.1, 4.1.1.2, 6.4.5, 7.4.17). • Use of a checklist to make sure that all required sections have been included in a Standard draft (Appendix 4). • How Working Group Chairman, Working Groups, and Standard-Specific Interest Groups fit into the process of preparing a Standard (Section 6.3, 6.4.1, 6.4.2, 6.4.3, 6.4.4, 6.4.6, 6.4.7). • How the balloting process works (Sections 6.4.6, 6.4.7, 6.4.8, 6.4.9) • How to resolve comments and negative votes (Sections 9.5, 9.6, 9.7) NOTE: This document covers only the regulations for TAPPI Standards, which may include Test Methods or other types of Standards as defined in these regulations.
    [Show full text]
  • Production of Dissolving Grade Pulp from Alfa
    PEER-REVIEWED ARTICLE bioresources.com PRODUCTION OF DISSOLVING GRADE PULP FROM ALFA * Baya Bouiri and Moussa Amrani Alfa, also known as Stipa tenacissimaI or “halfa”, is grown in North Africa and south Spain. Due to its short fiber length, paper made from alfa pulp retains bulk and takes block letters well. In this study alfa was evaluated for bleached pulp production. Two cellulose pulps with different chemical compositions were pulped by a conventional kraft process. One sample was taken from the original alfa material and another from alfa that had been pretreated by diluted acid. The pulp produced from the pretreated alfa was bleached by the elemental-chlorine-free sequences DEPD and DEDP. The yield, Kappa number, brightness, and α- cellulose content of bleached and unbleached pulps were evaluated. The results showed that during the chemical pulping process, treated alfa cooked more easily than the original alfa. The treated alfa pulp also showed very good bleaching, reaching a brightness level of 94.8% ISO with a yield of 93.6% at an α-cellulose content 96.8(%) with a DEDP bleaching sequence, compared to 83.2% ISO brightness level, 92.8% yield, and 95.1% α-cellulose content for bleached pulp with a DEPD bleaching sequence. Therefore, this alfa material could be considered as a worthwhile choice for cellulosic fiber supply. Keywords: Alfa; Kraft; Dissolving grade Pulp; Bleaching; Chlorine dioxide; Prehydrolysis Contact information: Laboratory of composite, materials and environment, M’Hamed Bouguerra University, 35000 Boumerdes, Algeria *Corresponding author: [email protected] INTRODUCTION The paper consumption in the world has increased by 50% during the last decade, and the quantitative growth of paper production has been accompanied by a demand for new grades and by technological developments in response to ecological challenges (Lopez et al.
    [Show full text]