Packet-Level Analytics in Software Without Compromises

Total Page:16

File Type:pdf, Size:1020Kb

Packet-Level Analytics in Software Without Compromises Packet-Level Analytics in Software without Compromises Oliver Michel John Sonchack University of Colorado Boulder University of Pennsylvania Eric Keller Jonathan M. Smith University of Colorado Boulder University of Pennsylvania Abstract just could not process the information fast enough. These approaches, of course, reduce information – aggregation Traditionally, network monitoring and analytics systems reduces the load of the analytics system at the cost of rely on aggregation (e.g., flow records) or sampling to granularity, as per-packet data is reduced to groups of cope with high packet rates. This has the downside packets in the form of sums or counts [3, 16]. Sampling that, in doing so, we lose data granularity and accu- and filtering reduces the number of packets or flows to be racy, and, in general, limit the possible network analytics analyzed. Reducing information reduces load, but it also we can perform. Recent proposals leveraging software- increases the chance of missing critical information, and defined networking or programmable hardware provide restricts the set of possible applications [30, 28]. more fine-grained, per-packet monitoring but are still Recent advances in software-defined networking based on the fundamental principle of data reduction in (SDN) and more programmable hardware have provided the network, before analytics. In this paper, we pro- opportunities for more fine-grained monitoring, towards vide a first step towards a cloud-scale, packet-level mon- packet-level network analytics. Packet-level analytics itoring and analytics system based on stream processing systems provide the benefit of complete insight into the entirely in software. Software provides virtually unlim- network and open up opportunities for applications that ited programmability and makes modern (e.g., machine- require per-packet data in the network [37]. But, com- learning) network analytics applications possible. We promises are still being made. identify unique features of network analytics applica- For example, [34, 23, 21] leverage processing prim- tions which enable the specialization of stream process- itives in hardware for custom aggregation (as opposed ing systems. As a result, an evaluation with our pre- to fixed aggregation in legacy hardware). Although cus- liminary implementation shows that we can scale up to tom, the aggregation is still limited to a set of pre-defined several million packets per second per core and together functions that are implementable in programmable for- with load balancing and further optimizations, the vision warding engines (PFE) [5, 10], and thus imposes re- of cloud-scale per-packet network analytics is possible. strictions on possible applications (e.g., [9, 19, 24, 31]). 1 Introduction These new programmable data planes have also been used for more granular and iteratively refined filtering in Network monitoring and analytics are crucial for the re- hardware [37, 15]. This, however, is only effective at re- liable and secure operation of cloud-scale networking ducing load if the application is only interested in a small environments. A monitoring system captures informa- subset of the overall traffic (e.g., only DNS packets). tion about traffic. An analytics system processes that in- In summary, monitoring systems are historically de- formation to detect equipment failures, incorrect behav- signed to reduce the load of the software analytics plat- ior (e.g., packet drops or routing loops), and attacks, as form based on the assumption that it cannot handle the well as to identify and locate performance issues within load. the infrastructure [34, 23, 21, 37, 15, 20]. In order to In this paper we challenge that assumption. We ask: reduce the load on the analytics systems, compromises What are the limits of software analytics systems – is it have been made in the monitoring systems. Aggregation possible to perform packet-level analytics on cloud scale e.g, ( pre-calculating information about entire flows, and infrastructures in software? aggregating into a flow record) and sampling (only look- We start with the assumption that hardware can send ing at a subset of the flows or packets), have been the per-packet records [29] to the software-based analytics de-facto standards for decades as the software systems system. The challenge is then processing those records 3 Stream Processing for Packet Records as (i) modern networks run at traffic rates of several ter- abits of data per second, which can equate to hundreds of Stream processing is widely used in many domains be- millions of packets per second [27], and (ii) modern an- cause it is a flexible and scalable way to process un- alytics systems, specifically stream processing systems bounded streams of records in real-time. These prop- (which is an ideal programming model for network an- erties also make stream processing a natural fit for real- alytics), such as Apache Flink [6], or Kafka [7], simply izing the goal of a software platform capable of flexible are not capable of handling these rates. Even more re- analytics with visibility into every packet. cent work, such as StreamBox, a stream processor de- As explained in the introduction, using general pur- signed for efficiency [22], can only support around 30M pose stream processors for packet analytics, however, is records/s with a 56 core server for a basic example appli- not efficient enough to be practical. The root cause of cation unrelated to network processing. In modern net- these issues are the differences between the workloads works, where even 10 Gb/s links have packet arrival rates for packet analytics and those typical to stream process- of 500K packets per second [4], real time packet ana- ing. The differences present challenges, but also intro- lytics with such general purpose systems would require duce new opportunities for optimization. By taking ad- racks full of servers. vantage of them, we can specialize stream processing Our insight is that stream processing for network an- systems for packet analytics to build systems that have alytics has fundamentally different characteristics than not only the flexibility and scalability benefits inherent traditional uses of stream processing. In this paper to the processing model, but also the efficiency to make we highlight some of these differences and show how software visibility into every packet practical at large they can impact the achievable processing rates (Sec- scales. tion 3). As a step towards validating our vision, we In this section, we explore some of the distinct charac- outline an architecture (Section 4), and built a proto- teristics of packet analytics workloads and how we can type with some preliminary optimizations (Section 5). optimize stream processors for them. With this, our evaluations indicate more than two orders 3.1 Packet Analytics Workloads of magnitude speedup (163×) over state-of-the-art solu- We illustrate the differences between a packet analytics tions [15, 37, 22] (Section 6). Based on data from Face- workload and that of a typical stream processing task book [27], we demonstrate that for an entire cluster in with a case study based on Twitter’s well-documented a Facebook data center our prototype can analyze every use of stream processing [32, 33]. packet leaving the cluster on a single commodity server (representing only 0.5% of the cluster’s hardware). As a High Record Rates One of the most striking differ- result, we believe that powerful packet-level analytics in ences between packet analytics workloads and typical software at cloud scale (without compromise) is indeed stream processing workloads are higher record rates. For within reach. example, Twitter reports that their stream processing sys- tems handle up to 46 M events per second. For compari- son, the aggregate rate of packets leaving one small com- ponent of their platform is over 320 M per second. This 2 Stream Processing Overview network (the “Twitter Cache”), only represents 3% of the total infrastructure. Stream processing is a paradigm for parallel data pro- cessing applications. Stream processors are composed of Small Records Although record rates are higher for sequential data processing functions, that are connected packet analytics, the sizes of individual records are by FIFO queues transferring the streams of data. The smaller, which makes the overall bit-rate of the process- benefit of stream processing is that it compartmentalizes ing manageable. Network analytics applications are pre- state and logic. Processing functions only share data via dominately interested in statistics derived from packet streams. This allows each processing element to run in headers and processing metadata, which are only a small parallel, on a separate processing core or even a separate portion of each packet. A 40 B packet record, for ex- server. In this model, each processor (or kernel) usually ample, can contain the headers required for most packet transforms data (or tuples) from one or multiple input analytics tasks. In contrast, records in typical stream pro- streams into one or multiple output streams by perform- cessing workloads are much larger. ing some sort of stateful or stateless computation on the Event Rate Reduction Packet analytics applications tuples and including the results in the output tuple. Re- often aggregate data significantly before applying heavy- cently, with the increasing focus on real time and big data weight data mining or visualization algorithms, e.g., by analysis, there have been many new streaming platforms TCP connection. This is not true for general stream pro- that focus on efficient scaling and ease of use [7, 6, 35]. cessing workloads, where the back-end algorithm may mirrored packet Packet Queue Switch headers Kernel Bypass Alerting (e.g., DPDK, NIC intermediate netmap) results Switch parsed packet kernel Storage headers Figure 1: System Architecture operate on features derived from each record. such as DPDK [2], PF RING [25], or netmap [26], to Simple, Well Formed Records Packet analytics reduce overhead by mapping the packet records directly records are also simple and well formed.
Recommended publications
  • High-Level and Efficient Stream Parallelism on Multi-Core Systems
    WSCAD 2017 - XVIII Simp´osio em Sistemas Computacionais de Alto Desempenho High-Level and Efficient Stream Parallelism on Multi-core Systems with SPar for Data Compression Applications Dalvan Griebler1, Renato B. Hoffmann1, Junior Loff1, Marco Danelutto2, Luiz Gustavo Fernandes1 1 Faculty of Informatics (FACIN), Pontifical Catholic University of Rio Grande do Sul (PUCRS), GMAP Research Group, Porto Alegre, Brazil. 2Department of Computer Science, University of Pisa (UNIPI), Pisa, Italy. {dalvan.griebler, renato.hoffmann, junior.loff}@acad.pucrs.br, [email protected], [email protected] Abstract. The stream processing domain is present in several real-world appli- cations that are running on multi-core systems. In this paper, we focus on data compression applications that are an important sub-set of this domain. Our main goal is to assess the programmability and efficiency of domain-specific language called SPar. It was specially designed for expressing stream paral- lelism and it promises higher-level parallelism abstractions without significant performance losses. Therefore, we parallelized Lzip and Bzip2 compressors with SPar and compared with state-of-the-art frameworks. The results revealed that SPar is able to efficiently exploit stream parallelism as well as provide suit- able abstractions with less code intrusion and code re-factoring. 1. Introduction Over the past decade, vendors realized that increasing clock frequency to gain perfor- mance was no longer possible. Companies were then forced to slow the clock frequency and start adding multiple processors to their chips. Since that, software started to rely on parallel programming to increase performance [Sutter 2005]. However, exploiting par- allelism in such multi-core architectures is a challenging task that is still too low-level and complex for application programmers.
    [Show full text]
  • Queue Streaming Model Theory, Algorithms, and Implementation
    Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 1-1-2019 Queue Streaming Model Theory, Algorithms, and Implementation Anup D. Zope Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Zope, Anup D., "Queue Streaming Model Theory, Algorithms, and Implementation" (2019). Theses and Dissertations. 3708. https://scholarsjunction.msstate.edu/td/3708 This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Queue streaming model: Theory, algorithms, and implementation By Anup D. Zope A Dissertation Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computational Engineering in the Center for Advanced Vehicular Systems Mississippi State, Mississippi May 2019 Copyright by Anup D. Zope 2019 Queue streaming model: Theory, algorithms, and implementation By Anup D. Zope Approved: Edward A. Luke (Major Professor) Shanti Bhushan (Committee Member) Maxwell Young (Committee Member) J. Mark Janus (Committee Member) Seongjai Kim (Committee Member) Manav Bhatia (Graduate Coordinator) Jason M. Keith Dean Bagley College of Engineering Name: Anup D. Zope Date of Degree: May 3, 2019 Institution: Mississippi State University Major Field: Computational Engineering Major Professor: Edward A. Luke Title of Study: Queue streaming model: Theory, algorithms, and implementation Pages of Study: 195 Candidate for Degree of Doctor of Philosophy In this work, a model of computation for shared memory parallelism is presented.
    [Show full text]
  • Pash: Light-Touch Data-Parallel Shell Processing
    PaSh: Light-touch Data-Parallel Shell Processing Nikos Vasilakis∗ Konstantinos Kallas∗ Konstantinos Mamouras MIT University of Pennsylvania Rice University [email protected] [email protected] [email protected] Achilles Benetopoulos Lazar Cvetković Unaffiliated University of Belgrade [email protected] [email protected] Abstract Parallelizability Parallelizing Runtime Classes §3 Transformations §4.3 Primitives §5 Dataflow This paper presents PaSh, a system for parallelizing POSIX POSIX, GNU §3.1 Regions shell scripts. Given a script, PaSh converts it to a dataflow Annotations §3.2 § 4.1 DFG § 4.4 graph, performs a series of semantics-preserving program §4.2 transformations that expose parallelism, and then converts Seq. Script Par. Script the dataflow graph back into a script—one that adds POSIX constructs to explicitly guide parallelism coupled with PaSh- Fig. 1. PaSh overview. PaSh identifies dataflow regions (§4.1), converts provided Unix-aware runtime primitives for addressing per- them to dataflow graphs (§4.2), applies transformations (§4.3) based onthe parallelizability properties of the commands in these regions (§3.1, §3.2), formance- and correctness-related issues. A lightweight an- and emits a parallel script (§4.4) that uses custom primitives (§5). notation language allows command developers to express key parallelizability properties about their commands. An accompanying parallelizability study of POSIX and GNU • Command developers, responsible for implementing indi- commands—two large and commonly used groups—guides vidual commands such as sort, uniq, and jq. These de- the annotation language and optimized aggregator library velopers usually work in a single programming language, that PaSh uses. PaSh’s extensive evaluation over 44 unmod- leveraging its abstractions to provide parallelism when- ified Unix scripts shows significant speedups (0.89–61.1×, ever possible.
    [Show full text]
  • A Personal Analytics Platform for the Internet of Things Implementing Kappa Architecture with Microservice-Based Stream Processing
    A Personal Analytics Platform for the Internet of Things Implementing Kappa Architecture with Microservice-based Stream Processing Theo Zschörnig1, Robert Wehlitz1 and Bogdan Franczyk2,3 1Institute for Applied Informatics (InfAI), Leipzig University, Hainstr. 11, 04109 Leipzig, Germany 2Information Systems Institute, Leipzig University, Grimmaische Str. 12, 04109 Leipzig, Germany 3Business Informatics Institute, Wrocław University of Economics, ul. Komandorska 118-120, 53-345 Wrocław, Poland Keywords: Personal Analytics, Internet of Things, Kappa Architecture, Microservices, Stream Processing. Abstract: The foundation of the Internet of Things (IoT) consists of different devices, equipped with sensors, actuators and tags. With the emergence of IoT devices and home automation, advantages from data analysis are not limited to businesses and industry anymore. Personal analytics focus on the use of data created by individuals and used by them. Current IoT analytics architectures are not designed to respond to the needs of personal analytics. In this paper, we propose a lightweight flexible analytics architecture based on the concept of the Kappa Architecture and microservices. It aims to provide an analytics platform for huge numbers of different scenarios with limited data volume and different rates in data velocity. Furthermore, the motivation for and challenges of personal analytics in the IoT are laid out and explained as well as the technological approaches we use to overcome the shortcomings of current IoT analytics architectures. 1 INTRODUCTION also the opportunities they provide (Section 2). We give an overview of the state of the art in IoT analytics It is estimated that the number of Internet of Things regarding technologies and architectures and show (IoT) devices will grow in huge quantities, to around that these are not fully suitable for personal analytics 24 billion in the year 2020 (Greenough, 2016).
    [Show full text]
  • Paving the Way Towards High-Level Parallel Pattern Interfaces for Data Stream Processing
    This is a postprint version of the following published document: Del Río Astorga, D., Dolz, M. F., Fernández, J., García, J.D., (2018). Paving the way towards high- level parallel pattern interfaces for data stream processing. Future Generation Computer Systems, 87, pp. 228-241. DOI: https://doi.org/10.1016/j.future.2018.05.011 © 2018 Elsevier B.V. All rights reserved. This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International License. Paving the Way Towards High-Level Parallel Pattern Interfaces for Data Stream Processing David del Rio Astorga1, Manuel F. Dolz1, Javier Fernandez´ 1 and J. Daniel Garc´ıa1 1 Universidad Carlos III de Madrid, 28911–Leganes,´ Spain The emergence of data stream applications has posed a number of new challenges to existing infrastruc- tures, processing engines and programming models. In this sense, high-level interfaces, encapsulating algorithmic aspects in pattern-based constructions, have considerable reduced the development and par- allelization efforts of these type of applications. An example of parallel pattern interface is GrPPI, a C++ generic high-level library that acts as a layer between developers and existing parallel programming frameworks, such as C++ threads, OpenMP and Intel TBB. In this paper, we complement the basic pat- terns supported by GrPPI with the new stream operators Split-Join and Window, and the advanced parallel patterns Stream-Pool, Windowed-Farm and Stream-Iterator for the aforementioned back ends. Thanks to these new stream operators, complex compositions among streaming patterns can be expressed. On the other hand, the collection of advanced patterns allows users to tackle some domain-specific applications, ranging from the evolutionary to the real-time computing areas, where compositions of basic patterns are not capable of fully mimicking the algorithmic behavior of their original sequential codes.
    [Show full text]
  • A Complete Bibliography of Publications in the International
    A Complete Bibliography of Publications in The International Journal of Supercomputer Applications, The International Journal of Supercomputer Applications and High-Performance Computing, and The International Journal of High Performance Computing Applications Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 18 May 2021 Version 2.03 Title word cross-reference IGDQO19, MC21, YZC+15]. M × N [BYCB05, DP05, JLO05]. N [HJ96, SWW94, DAB+12, FT19, RTRG+07, INS+20]. ? 2 [VSS+13, Wal18]. 2564 [IKY+10]. 3 [NC18]. [AKW19, ARR99, BGM15, CSGM17, + + FIMU19, GGS01, HSLK11, KC18, PR95, -Body [HJ96, SWW94, INS 20, RTRG 07, + SSCF19, THL88]. 2 [AMC+18]. 3 [KPST18]. DAB 12, FT19]. -D α [TKSK88]. d = 2 [BRT+92]. H [YIYD19]. [SSCF19, ARR99, GGS01, PR95, THL88]. * ∗ * -matrix [YIYD19]. CH + H2 ) CH3 ) CH2 + H [ASW91]. CuO2 [SSSW91]. ILU [SZ11]. k [TNLP13]. 0th K2 [CBW95]. LU [BLRR01, DD89, DD91, [RAGW93]. 1 2 100 [IHMM87]. 100k [INY+14]. 10P Accessing [HLP+03]. Accuracy [DD89]. 164 [LT88]. 1917-1991 [Mar91]. [HCCG20, SK20]. Accurate 1A [HXW+13]. 1s [McN89]. [LR09, LRO10, TMWS91, VFD04, WSD+14]. Acknowledgments [Ano02c, Ano02d]. 2 [CL95, CC95, CLM+16, DD89, DD91, Acoustic [GKN+96, MBF+11, ALE+20]. GCL93, HGMW12, LT90, LYL+16, Mor89a]. Across [KS05, SB19]. ACS [Mar88a]. 200/VF [DD89]. 2000 [CLBS17]. 2003 Action [DBA+09, Num04]. Active [Her91]. [OL05].
    [Show full text]
  • Balancing Performance and Reliability in Software Components
    Balancing Performance and Reliability in Software Components by Javier López-Gómez A dissertation submitted by in partial fulfillment of the requirements for the degreee of Doctor in Philosophy in Computer Science and Technology Universidad Carlos III de Madrid Advisors: José Daniel García Sánchez Javier Fernández Muñoz October 2020 This thesis is distributed under license “Creative Commons Attribution – Non Commercial – Non Derivatives”. A mis padres. To my parents. Acknowledgements Quiero dedicar esta página a recordar a aquellas personas que me han acom- pañado durante esta etapa y a las que, lamentablemente, no pudieron hacerlo. En primer lugar, a mis padres. Os debo todo lo que soy y seré. Gracias por el cuidado y educación recibidos, por los buenos (y malos) momentos, por aquellos días de piscina en Playa de Madrid, por las barbacoas en la Fundación del Lesionado Medular/ASPAYM Madrid, por las comidas en “La Bodeguita” y en el Centro Municipal de Mayores Ascao. Gracias a vosotros aprendí a ser fuerte. A mamá, porque me enseñaste lo más importante, a sonreir a pesar de la adversidad, y otras cosas de menor importancia, como mantener un hogar. A papá, por enseñarme gran parte de lo que sé, el equilibrio, e iluminarme el camino; aunque fuera de forma accidental, sin tí, mi vocación sería otra. Nunca os lo podré agradecer tanto como lo merecisteis. D.E.P. En segundo lugar, a mis compañeros de trabajo: Manu, Javi Doc, y David. Por todos los momentos compartidos en el laboratorio y fuera de él; por ayu- darme y presionarme para que trabajara. Sin vosotros, dudo que estuviera es- cribiendo estas líneas ahora.
    [Show full text]
  • Raftlib: a C++ Template Library for High Performance Stream Parallel Processing
    RaftLib: A C++ Template Library for High Performance Stream Parallel Processing Jonathan C. Beard Peng Li Roger D. Chamberlain Jonathan C. Beard, Peng Li and Roger D. Chamberlain. “RaftLib: A C++ Template Library for High Performance Stream Parallel Processing,” in Proc. of 6th Int’l Workshop on Programming Models and Applications for Multicores and Manycores (PMAM), February 2015, pp. 96-105. Dept. of Computer Science and Engineering Washington University in St. Louis RaftLib: A C++ Template Library for High Performance Stream Parallel Processing Jonathan C. Beard, Peng Li and Roger D. Chamberlain Dept. of Computer Science and Engineering Washington University in St. Louis {jbeard,pengli,roger}@wustl.edu ABSTRACT Stream processing or data-flow programming is a compute source paradigm that has been around for decades in many forms yet has failed garner the same attention as other mainstream sum print languages and libraries (e.g., C++ or OpenMP [15]). Stream processing has great promise: the ability to safely exploit extreme levels of parallelism. There have been many im- source plementations, both libraries and full languages. The full languages implicitly assume that the streaming paradigm cannot be fully exploited in legacy languages, while library approaches are often preferred for being integrable with the Figure 1: Simple streaming application example vast expanse of legacy code that exists in the wild. Li- with four compute kernels of three distinct types. braries, however are often criticized for yielding to the shape From left to right: the two source kernels each pro- of their respective languages. RaftLib aims to fully exploit vide a number stream, the “sum” kernel adds pairs of the stream processing paradigm, enabling a full spectrum of numbers and the last kernel prints the result.
    [Show full text]
  • User-Defined Execution Relaxations for Enhanced Programmability in High-Performance Parallel Computing
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE INFORMATICA TESIS DOCTORAL User-defined execution relaxations for enhanced programmability in high-performance parallel computing Relajaciones de ejecución definidas por el usuario para la mejora de la programabilidad en computación paralela de altas prestaciones MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Andrés Antón Rey Villaverde Directores Francisco Daniel Igual Peña Manuel Prieto Matías Madrid © Andrés Antón Rey Villaverde, 2019 User-defined Execution Relaxations for Enhanced Programmability in High-Performance Parallel Computing – Relajaciones de Ejecucion´ Definidas por el Usuario para la Mejora de la Programabilidad en Computacion´ Paralela de Altas Prestaciones TESIS DOCTORAL Andres´ Anton´ Rey Villaverde Dirigida por: Francisco Daniel Igual Pena˜ y Manuel Prieto Mat´ıas Facultad de Informatica´ Universidad Complutense de Madrid Madrid, 2019 ii User-defined Execution Relaxations for Enhanced Programmability in High-Performance Parallel Computing – Relajaciones de Ejecucion´ Definidas por el Usuario para la Mejora de la Programabilidad en Computacion´ Paralela de Altas Prestaciones Memoria que presenta para optar al t´ıtulo de Doctor en Informatica´ Andres´ Anton´ Rey Villaverde Dirigida por los Doctores Francisco Daniel Igual Pena˜ y Manuel Prieto Mat´ıas Facultad de Informatica´ Universidad Complutense de Madrid Madrid, 2019 iv v vi This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. I hereby declare that all the content presented in this thesis entitled “User-defined Execution Relaxations for Enhanced Programmability in High-Performance Parallel Computing” has been developed by me, and all other content has been appropriately referenced.
    [Show full text]
  • Online Modeling and Tuning of Parallel Stream Processing Systems Jonathan Curtis Beard Washington University in St
    Washington University in St. Louis Washington University Open Scholarship Engineering and Applied Science Theses & McKelvey School of Engineering Dissertations Summer 8-15-2015 Online Modeling and Tuning of Parallel Stream Processing Systems Jonathan Curtis Beard Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds Part of the Engineering Commons Recommended Citation Beard, Jonathan Curtis, "Online Modeling and Tuning of Parallel Stream Processing Systems" (2015). Engineering and Applied Science Theses & Dissertations. 125. https://openscholarship.wustl.edu/eng_etds/125 This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington University Open Scholarship. It has been accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS School of Engineering and Applied Science Department of Computer Science and Engineering Dissertation Examination Committee: Roger Dean Chamberlain, Chair Jeremy Buhler Ron Cytron Roch Guerin Jenine Harris Juan Pantano Robert B. Pless Online Modeling and Tuning of Parallel Stream Processing Systems by Jonathan Curtis Beard A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2015 Saint
    [Show full text]
  • Intrinsic Compilation Model to Enhance Performance of Real Time
    ISSN (Print) : 2319-8613 ISSN (Online) : 0975-4024 Sumalatha Aradhya et al. / International Journal of Engineering and Technology (IJET) Intrinsic Compilation Model to enhance Performance of real time application in embedded multi core system Sumalatha Aradhya #1, Dr.N K Srinath *2 # F Research Scholar, Department of Computer Science and Engineering, R V College of Engineering, Mysore Road, Bengaluru, Karnataka, India 1 [email protected] * Professor and Dean Academics, R V College of Engineering, Mysore Road, Bengaluru, Karnataka, India 2 [email protected] Abstract— The embedded multi core system has critical performance issues. This is due to extra optimization codes added by the compiler. In many cases, performance becomes challenging due to increased cyclomatic complexity of the embedded software especially in the release version of the code. To ease the extra complexities of the software, a better optimization approach through intrinsic compilation model proposed in the paper. The proposed intrinsic compilation model handles software to hardware integrity complexities through vector dynamic interface algorithm discussed in the paper. The vector dynamic interface algorithm resolves the conflicts of optimization across multi core target by using optimizer conflict resolver algorithm. The optimizer conflict resolver algorithm computed by the recurrence logic derived through probabilities using vector rule algorithm. The intrinsic compilation model makes use of effective partitioning logics to obtain optimized vector code data. The bench mark shows improved speed up results between static code and vector code. Keyword - compiler, intrinsic programming, parallel processing, performance, optimization, simulation I. INTRODUCTION The compiler set up with high optimization levels is not used in embedded integrated environment due to enormous usage of volatile data present in the code.
    [Show full text]
  • Efficiently and Transparently Maintaining High SIMD Occupancy in the Presence of Wavefront Irregularity Stephen V
    Washington University in St. Louis Washington University Open Scholarship Engineering and Applied Science Theses & McKelvey School of Engineering Dissertations Summer 8-15-2017 Efficiently and Transparently Maintaining High SIMD Occupancy in the Presence of Wavefront Irregularity Stephen V. Cole Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds Part of the Computer Engineering Commons Recommended Citation Cole, Stephen V., "Efficiently and Transparently Maintaining High SIMD Occupancy in the Presence of Wavefront Irregularity" (2017). Engineering and Applied Science Theses & Dissertations. 301. https://openscholarship.wustl.edu/eng_etds/301 This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington University Open Scholarship. It has been accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS School of Engineering and Applied Science Department of Computer Science and Engineering Dissertation Examination Committee: Jeremy Buhler, Chair James Buckley Roger Chamberlain Chris Gill I-Ting Angelina Lee Efficiently and Transparently Maintaining High SIMD Occupancy in the Presence of Wavefront Irregularity by Stephen V. Cole A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements
    [Show full text]