Changelog for All of You Interested in the Changes Between Specific Driver Releases Please See the Details Below
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AMD Accelerated Parallel Processing Opencl Programming Guide
AMD Accelerated Parallel Processing OpenCL Programming Guide November 2013 rev2.7 © 2013 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD Accelerated Parallel Processing, the AMD Accelerated Parallel Processing logo, ATI, the ATI logo, Radeon, FireStream, FirePro, Catalyst, and combinations thereof are trade- marks of Advanced Micro Devices, Inc. Microsoft, Visual Studio, Windows, and Windows Vista are registered trademarks of Microsoft Corporation in the U.S. and/or other jurisdic- tions. Other names are for informational purposes only and may be trademarks of their respective owners. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos. The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. The information contained herein may be of a preliminary or advance nature and is subject to change without notice. No license, whether express, implied, arising by estoppel or other- wise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as compo- nents in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or envi- ronmental damage may occur. -
Comparison of Technologies for General-Purpose Computing on Graphics Processing Units
Master of Science Thesis in Information Coding Department of Electrical Engineering, Linköping University, 2016 Comparison of Technologies for General-Purpose Computing on Graphics Processing Units Torbjörn Sörman Master of Science Thesis in Information Coding Comparison of Technologies for General-Purpose Computing on Graphics Processing Units Torbjörn Sörman LiTH-ISY-EX–16/4923–SE Supervisor: Robert Forchheimer isy, Linköpings universitet Åsa Detterfelt MindRoad AB Examiner: Ingemar Ragnemalm isy, Linköpings universitet Organisatorisk avdelning Department of Electrical Engineering Linköping University SE-581 83 Linköping, Sweden Copyright © 2016 Torbjörn Sörman Abstract The computational capacity of graphics cards for general-purpose computing have progressed fast over the last decade. A major reason is computational heavy computer games, where standard of performance and high quality graphics con- stantly rise. Another reason is better suitable technologies for programming the graphics cards. Combined, the product is high raw performance devices and means to access that performance. This thesis investigates some of the current technologies for general-purpose computing on graphics processing units. Tech- nologies are primarily compared by means of benchmarking performance and secondarily by factors concerning programming and implementation. The choice of technology can have a large impact on performance. The benchmark applica- tion found the difference in execution time of the fastest technology, CUDA, com- pared to the slowest, OpenCL, to be twice a factor of two. The benchmark applica- tion also found out that the older technologies, OpenGL and DirectX, are compet- itive with CUDA and OpenCL in terms of resulting raw performance. iii Acknowledgments I would like to thank Åsa Detterfelt for the opportunity to make this thesis work at MindRoad AB. -
MSI Afterburner V4.6.4
MSI Afterburner v4.6.4 MSI Afterburner is ultimate graphics card utility, co-developed by MSI and RivaTuner teams. Please visit https://msi.com/page/afterburner to get more information about the product and download new versions SYSTEM REQUIREMENTS: ...................................................................................................................................... 3 FEATURES: ............................................................................................................................................................. 3 KNOWN LIMITATIONS:........................................................................................................................................... 4 REVISION HISTORY: ................................................................................................................................................ 5 VERSION 4.6.4 .............................................................................................................................................................. 5 VERSION 4.6.3 (PUBLISHED ON 03.03.2021) .................................................................................................................... 5 VERSION 4.6.2 (PUBLISHED ON 29.10.2019) .................................................................................................................... 6 VERSION 4.6.1 (PUBLISHED ON 21.04.2019) .................................................................................................................... 7 VERSION 4.6.0 (PUBLISHED ON -
Mode D'emploi
MODE D'EMPLOI Moniteur de jeu C49RG90SS* La couleur et l'aspect du produit peuvent varier en fonction du modèle, et ses spécifications peuvent être modifiées sans préavis pour des raisons d'amélioration des performances. Le contenu du présent guide est sujet à modification sans préavis à des fins d'amélioration de la qualité. © Samsung Electronics Samsung Electronics détient les droits d'auteur du présent guide. Toute utilisation ou reproduction du présent guide, en partie ou intégralement, est interdite sans l'autorisation de Samsung Electronics. Les marques de fabrique autres que celles de Samsung Electronics sont la propriété de leurs détenteurs respectifs. Des frais d'administration peuvent vous être facturés dans les situations suivantes : (a) Un technicien intervient à votre demande alors que le produit ne présente aucun défaut (c.-à-d. vous n'avez pas lu le manuel d'utilisation). (b) Vous amenez le produit dans un centre de réparation alors que le produit ne présente aucun défaut (c.-à-d. vous n'avez pas lu le manuel d'utilisation). Le montant des frais d'administration vous sera communiqué avant la visite du technicien. Table des matières Avant utilisation du produit Connexion et utilisation d'un Jeu périphérique source Sécurisation de l'espace d'installation 4 Mode image 28 Précautions de stockage 4 Points à vérifier avant la connexion 21 Fréqu. rafraîch. 29 Consignes de sécurité 4 Branchement et utilisation d'un PC 21 Ég. zones sombres 30 Nettoyage 5 Branchement par câble HDMI 21 Électricité et sécurité 5 Connexion à l'aide du câble DP 21 Temps de réponse 30 Installation 6 Branchement au casque 22 FreeSync 30 Fonctionnement 7 Branchement au microphone 22 Connexion à l'aide du câble audio 22 Retard aff. -
3D Animation
Contents Zoom In Zoom Out For navigation instructions please click here Search Issue Next Page ComputerINNOVATIONS IN VISUAL COMPUTING FOR THE GLOBAL DCC COMMUNITY June 2007 www.cgw.com WORLD Making Waves Digital artists create ‘pretend spontaneity’ in the documentary-style animation Surf’s Up $4.95 USA $6.50 Canada Contents Zoom In Zoom Out For navigation instructions please click here Search Issue Next Page A CW Previous Page Contents Zoom In Zoom Out Front Cover Search Issue Next Page BEF MaGS _____________________________________________________ A CW Previous Page Contents Zoom In Zoom Out Front Cover Search Issue Next Page BEF MaGS A CW Previous Page Contents Zoom In Zoom Out Front Cover Search Issue Next Page BEF MaGS June 2007 • Volume 30 • Number 6 INNOVATIONS IN VISUAL COMPUTING FOR THE GLOBAL DCC COMMUNITY Also see www.cgw.com for computer graphics news, special surveys and reports, and the online gallery. ____________ » Director Luc Besson discusses Computer WORLD his black-and-white fi lm, WORLD Post Angel-A. » Trends in broadcast design. » Getting the most out of canned music and sound. See it in www.postmagazine.com Features Cover story Radical, Dude 12 3D ANIMATION | In one of the most unusual animated features to hit the Departments screen, Surf’s Up incorporates a documentary fi lming style into the Editor’s Note 2 CG medium. Triple the Fun Summer blockbusters are making their By Barbara Robertson debut at theaters, and this year, it is Wrangling Waves 18 apparent that three’s a charm, as ani- 3D ANIMATION | The visual effects mators upped the graphics ante in 12 supervisor on Surf’s Up takes us on an Spider-Man 3, Shrek 3, and At World’s incredible behind-the-scenes journey End. -
Time Complexity Parallel Local Binary Pattern Feature Extractor on a Graphical Processing Unit
ICIC Express Letters ICIC International ⃝c 2019 ISSN 1881-803X Volume 13, Number 9, September 2019 pp. 867{874 θ(1) TIME COMPLEXITY PARALLEL LOCAL BINARY PATTERN FEATURE EXTRACTOR ON A GRAPHICAL PROCESSING UNIT Ashwath Rao Badanidiyoor and Gopalakrishna Kini Naravi Department of Computer Science and Engineering Manipal Institute of Technology Manipal Academy of Higher Education Manipal, Karnataka 576104, India f ashwath.rao; ng.kini [email protected] Received February 2019; accepted May 2019 Abstract. Local Binary Pattern (LBP) feature is used widely as a texture feature in object recognition, face recognition, real-time recognitions, etc. in an image. LBP feature extraction time is crucial in many real-time applications. To accelerate feature extrac- tion time, in many previous works researchers have used CPU-GPU combination. In this work, we provide a θ(1) time complexity implementation for determining the Local Binary Pattern (LBP) features of an image. This is possible by employing the full capa- bility of a GPU. The implementation is tested on LISS medical images. Keywords: Local binary pattern, Medical image processing, Parallel algorithms, Graph- ical processing unit, CUDA 1. Introduction. Local binary pattern is a visual descriptor proposed in 1990 by Wang and He [1, 2]. Local binary pattern provides a distribution of intensity around a center pixel. It is a non-parametric visual descriptor helpful in describing a distribution around a center value. Since digital images are distributions of intensity, it is helpful in describing an image. The pattern is widely used in texture analysis, object recognition, and image description. The local binary pattern is used widely in real-time description, and analysis of objects in images and videos, owing to its computational efficiency and computational simplicity. -
Graviton: Trusted Execution Environments on Gpus
In Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI’18) Graviton: Trusted Execution Environments on GPUs Stavros Volos Kapil Vaswani Rodrigo Bruno Microsoft Research Microsoft Research INESC-ID / IST, University of Lisbon Abstract tors. This limitation gives rise to an undesirable trade-off between security and performance. We propose Graviton, an architecture for supporting There are several reasons why adding TEE support trusted execution environments on GPUs. Graviton en- to accelerators is challenging. With most accelerators, ables applications to offload security- and performance- a device driver is responsible for managing device re- sensitive kernels and data to a GPU, and execute kernels sources (e.g., device memory) and has complete control in isolation from other code running on the GPU and all over the device. Furthermore, high-throughput accelera- software on the host, including the device driver, the op- tors (e.g., GPUs) achieve high performance by integrat- erating system, and the hypervisor. Graviton can be in- ing a large number of cores, and using high bandwidth tegrated into existing GPUs with relatively low hardware memory to satisfy their massive bandwidth requirements complexity; all changes are restricted to peripheral com- [4, 11]. Any major change in the cores, memory man- ponents, such as the GPU’s command processor, with agement unit, or the memory controller can result in no changes to existing CPUs, GPU cores, or the GPU’s unacceptably large overheads. For instance, providing MMU and memory controller. We also propose exten- memory confidentiality and integrity via an encryption sions to the CUDA runtime for securely copying data engine and Merkle tree will significantly impact avail- and executing kernels on the GPU. -
Graviton: Trusted Execution Environments on Gpus
Graviton: Trusted Execution Environments on GPUs Stavros Volos and Kapil Vaswani, Microsoft Research; Rodrigo Bruno, INESC-ID / IST, University of Lisbon https://www.usenix.org/conference/osdi18/presentation/volos This paper is included in the Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’18). October 8–10, 2018 • Carlsbad, CA, USA ISBN 978-1-939133-08-3 Open access to the Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation is sponsored by USENIX. Graviton: Trusted Execution Environments on GPUs Stavros Volos Kapil Vaswani Rodrigo Bruno Microsoft Research Microsoft Research INESC-ID / IST, University of Lisbon Abstract tors. This limitation gives rise to an undesirable trade-off between security and performance. We propose Graviton, an architecture for supporting There are several reasons why adding TEE support trusted execution environments on GPUs. Graviton en- to accelerators is challenging. With most accelerators, ables applications to offload security- and performance- a device driver is responsible for managing device re- sensitive kernels and data to a GPU, and execute kernels sources (e.g., device memory) and has complete control in isolation from other code running on the GPU and all over the device. Furthermore, high-throughput accelera- software on the host, including the device driver, the op- tors (e.g., GPUs) achieve high performance by integrat- erating system, and the hypervisor. Graviton can be in- ing a large number of cores, and using high bandwidth tegrated into existing GPUs with relatively low hardware memory to satisfy their massive bandwidth requirements complexity; all changes are restricted to peripheral com- [4, 11]. -
Resolution Experiences to Gamers Worldwide
Source: Advanced Micro Devices, Inc. June 22, 2021 09:00 ET With AMD FidelityFX Super Resolution, AMD Brings High-Quality, High- Resolution Experiences to Gamers Worldwide More than 40 game developers pledge support for new cutting-edge spatial upscaling solution; first wave of games supporting AMD FidelityFX Super Resolution available today SANTA CLARA, Calif., June 22, 2021 (GLOBE NEWSWIRE) -- AMD (NASDAQ: AMD) today announced availability of its cutting-edge spatial upscaling solution, AMD FidelityFX Super Resolution (FSR)1. AMD FSR is an open-source, cross-platform technology designed to boost framerates and deliver high-quality, high-resolution gaming experiences. More than 40 game developers announced support for FSR in their games and/or game engines, and today seven games are adding support for FSR – 22 Racing Series, Anno 1800, Evil Genius 2, Godfall, Kingshunt, Terminator: Resistance and The Riftbreaker – with more expected by the end of this year, including DOTA 2, Far Cry 6 and Resident Evil Village. Offering broad support on more than 100 AMD processors and GPUs, FSR delivers 2.4X higher performance on average in “Performance” mode at 4K across select titles compared to native resolution2. The spatial upscaling technology utilizes an advanced edge reconstruction algorithm to analyze features in the source image and recreate them at a higher target resolution, followed by a sharpening pass to further improve quality by enhancing texture details. The result is an image with super high-quality edges and distinctive pixel detail when compared to basic upscaling methods. “Our goal with FidelityFX Super Resolution was to develop an advanced, world-class upscaling solution based on industry standards that can quickly and easily be implemented by game developers, and is designed for how gamers really play games,” said Scott Herkelman, corporate vice president and general manager, Graphics Business Unit at AMD. -
Flexwafe - an Architecture For
FlexWAFE - an Architecture for Reconfigurable Image Processing Systems FlexWAFE - eine Architektur für rekonfigurierbare-Bildverarbeitungssysteme Von der Fakultät für Elektrotechnik, Informationstechnik, Physik der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Dissertation von: Eng. Amilcar do Carmo Lucas aus: Almeirim, Portugal eingereicht am: 19.04.2012 mündliche Prüfung am: 23.07.2012 Vorsitzender: Prof. Dr.-Ing. Harald Michalik 1. Referent: Prof. Dr.-Ing. Rolf Ernst 2. Referent: Prof. Dr.-Ing. Holger Blume 2012 Kurzfassung Kürzlich gab es eine Zunahme der Nachfrage nach hochauflösenden digitalen Medieninhalten in den Kino- und Fernsehenindustrien. Derzeit vorhandene Systeme entsprechen nicht den Anforderungen, oder sind zu teuer. Neue Hardware-Systeme und neuer Programmiertechniken sind erforderlich, um den hochauflösenden, hochwertigen, Bildanforderungen zu genügen und Kosten zu verringern. Die Industrie sucht eine flexible Architektur zur Ausführung mehrerer Anwendungen auf Standard-Komponenten, mit reduzierten Entwicklungszeiten. Bis jetzt ist gängige Praxis, spezialisierten Architektur und Systeme zu entwickeln, die eine einzelne Anwendung zielen. Dieses hat wenig Flexibilität und führt zu hohe Entwicklungs- kosten, jede neue Anwendung ist fast von Grund auf neu konzipiert. Unser Fokus war es, eine für Bild Verarbeitung geeignet Architektur zu entwickeln dass die Flexibilität hat mehrere Anwendungen an dieselbe FPGA-basierte Hardware-Plattform zu laufen. Die Neuheit in unserem Ansatz ist, dass wir Teile der Architektur zur Laufzeit rekon- figurieren, aber, ohne das Zeit und constraints strafe von FPGA Partielle-Rekonfiguration- Techniken. Die Architektur verwendet eine hierarchische Kontrollstruktur, die zur paral- lel Verarbeitung gut geeignet ist, und Single-Cycle-Latenz Rekonfiguration von Teilen der Verarbeitungs-Pipeline ermöglicht. Dieses wird unter Verwendung relativ weniger Ressour- cen für die verteiltes Steuerung Strukturen erzielt. -
Porting and Maintaining a Developing Optix Path Tracer for Non-NVIDIA Devices
Master Thesis Porting and Maintaining a Developing OptiX Path Tracer for Non-NVIDIA Devices Supervisors: Dr. ing. Jacco Bikker, Dr. Zerrin Yumak Satwiko Wirawan Indrawanto ICA-6201539 Faculty of Science Department of Informatics and Computing Science 13 August 2019 Contents 1. Introduction ............................................................................................................................................ 4 1.1 Objectives ..................................................................................................................................... 4 1.2 Research Questions ...................................................................................................................... 4 1.3 Content Overview ........................................................................................................................ 4 2. Preliminaries .......................................................................................................................................... 6 2.1 Rendering ..................................................................................................................................... 6 2.1.1 Rendering Equation ................................................................................................................. 6 2.1.2 Path Tracing ............................................................................................................................. 7 2.1.3 Performance ............................................................................................................................ -
SAPPHIRE NITRO+ Radeon™ RX 580 8GD5
30.1.2018 SAPPHIRE Technology Radeon™ R5 200 Series weitere Produkte... (http://us.dl.sapphiretech.com/archive/gm/PDimg/Sapphire_201717155555.jpg) (h SAPPHIRE NITRO+ Radeon™ RX 580 8GD5 (SapphireSPI.asp) http://www.sapphiretech.com/productdetial.asp?pid=B66182B7-1EA6-42A9-8762-FCCE003B491A&lang=deu 2/5 30.1.2018 SAPPHIRE Technology To continuous streamlining of FinFET 14 nm production process, the latest Polaris GPUs that power SAPPHIRE NITRO+ Radeon RX 580 cards are even more energy-efficient. This allowed SAPPHIRE to crank up the clocks and reach up to 10% better performance compared to previous series. To add even more headroom for overclocking. Factory overclocked cores of the standard SAPPHIRE NITRO+ RX 580 run with a 1411 MHz boost clock. 4th generation Graphics Core Next GPUs of the Radeon RX 500 Series feature improved geometry engine, new display engine, increased caches and native asynchronous shaders. Equipped with 2304 GCN-based stream processors, the SAPPHIRE NITRO+ Radeon RX 580 is the card to run modern games in 1080p and beyond, as well as deliver premium VR experiences. ADD TO COMPARE (compare.asp?AddID=2779) ÜBERSICHT SPEZIFIKATION DOWNLOAD 11265-01 11265-03 GPU 2304 Stream Prozessoren 14 nm FinFET 4th Graphics Core Next (GCN) 1411 MHz GPU Boost Takt Speicher 256 bit Speicherinterface GDDR5 Speichertyp 2000 MHz effektiver Speichertakt 8 GB Größe BIOS Support UEFI BIOS Monitore Maximum 5 Ausgänge Ausgänge 1 x DVI-D 2 x HDMI 2 x Displa yPort 1.4 Auflösung 5120×2880 (60Hz) Pixel DisplayPort Auflösung 2560x1600 (60Hz)