Parakeet: a Continuous Speech Recognition System for Mobile

Total Page:16

File Type:pdf, Size:1020Kb

Parakeet: a Continuous Speech Recognition System for Mobile Parakeet: A Continuous Speech Recognition System for Mobile Touch-Screen Devices Keith Vertanen and Per Ola Kristensson Cavendish Laboratory, University of Cambridge JJ Thomson Avenue, Cambridge, UK {kv277, pok21}@cam.ac.uk ABSTRACT We present Parakeet, a system for continuous speech recognition on mobile touch-screen devices. The design of Parakeet was guided by computational experiments and validated by a user study. Participants had an average text entry rate of 18 words-per-minute (WPM) while seated indoors and 13 WPM while walking outdoors. In an expert pilot study, we found that speech recognition has the potential to be a highly competitive mobile text entry method, particularly in an actual mobile setting where users are walking around while entering text. Author Keywords Continuous speech recognition, mobile text entry, text input, touch-screen interface, error correction, speech input, word confusion network, predictive keyboard Figure 1. The Nokia N800 device and a Bluetooth headset. The Parakeet continuous speech recognition system is shown ACM Classification Keywords running on the device. H5.2. User Interfaces: Voice I/O From an engineering perspective, speech recognition demands a device with more memory and processing power INTRODUCTION than required by traditional mobile text entry methods, such The advantages of speech recognition as a mobile text entry as predictive text or character recognition. method seem obvious and highly attractive. Speaking is a naturally acquired skill which does not demand much Despite these challenges, there has been recent interest in practice from users. Speech can also be very fast. Users can creating continuous speech recognition engines for speak up to 200 WPM [22]. embedded and mobile devices [4]. Two projects in this direction are PocketSphinx [11] and PocketSUMMIT [10]. However, speech recognition remains to prove itself as a competitive mobile text entry method. At least in the past, These developments pave the way for the study of speech speech recognition performance suffered from poor recognition as a mobile text entry method. Two important accuracy [12]. The privacy implications of using speech as research questions arise. First, what constitutes a good the sole modality for text entry are also obvious. Further, it design for a speech recognition system on a modern mobile has been argued that using speech as a text entry method device? Second, how efficient and practical is speech also carries cognitive costs that may limit speech recognition as a mobile text entry method? recognition entry rates in practice [23]. In this paper, we describe Parakeet: a system designed for efficient mobile text entry using speech recognition. We have built a complete mobile speech recognition system that recognizes American and British English. Users enter text into their mobile Linux device (such as the Nokia Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are N800) by speaking into a Bluetooth headset microphone not made or distributed for profit or commercial advantage and that copies (Figure 1). bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior The design and development of Parakeet followed several specific permission and/or a fee. design cycles. Our design was to a large extent guided by IUI’09, February 8–11, 2009, Sanibel Island, Florida, USA. computational experiments on recorded speech audio. Copyright 2009 ACM 978-1-60558-331-0/09/02...$5.00. These experiments helped us from two perspectives. First, 237 they helped us visualize the tradeoffs between different explicit action, whether the desired correction was design choices, and thereby guided our creative design available. If the desired correction was not easily available, process. Second, they aided us in finding the optimal the user could then undertake a more costly corrective parameter settings for our graphical user interface. measure (but a measure guaranteed to be successful). This work provides insight into the design issues related to Efficient and Practical Interaction by Touch speech-based mobile text entry. We also present the first Mobile devices increasingly come with stylus or touch study of speech-based text entry on an actual mobile device sensitive screens. These modalities enable us to implement in an actual mobile setting. a full direct manipulation user interface. Direct The rest of this paper is structured as follows. First, we manipulation enables us to design a user interface where discuss the principles which guided our design. Second, we users can view and act on the rich set of recognition describe our interface and detail the experiments which hypotheses we wanted to display. helped shape the design. Third, we describe the details of We preferred touch-interaction to stylus for three reasons. our mobile speech recognition system. Fourth, we present a First, touch doesn’t require the user to utilize a stylus while user study validating our design. Fifth, we present results on the go. Second, one-handed usage is impossible with a from an expert pilot study demonstrating the promising stylus, and users tend to prefer mobile interfaces that can be potential our system has as a mobile text entry solution. operated with one hand [13]. Third, a well-designed touch- Finally, we discuss limitations and implications of our screen interface can also be used with a stylus, but the findings, point to future work, and conclude. converse does not necessarily hold. By creating a good touch-screen design, we are also creating an interface DESIGN PRINCIPLES suitable for stylus use. Avoid Cascading Errors Speech recognition is imperfect and recognition errors are Support Fragmented Interaction ultimately unavoidable. Thus, error correction is a crucial When users are entering text while walking around, they part of any speech recognition interface. As previous need to divide their attention between interacting with the research has shown (e.g. [12]), users have difficultly mobile device and dealing with their surroundings. correcting recognition errors using only speech. This is Oulasvirta et al. [19] found that users interacting with a partly because errors may cascade – recognition in the mobile web browser while walking in a demanding setting correction phase may fail, requiring further corrections, and attended to the device in 4-8 second bursts. This finding has so on [12]. A possible solution is to use a different modality two implications. First, our system needs to enable users to than speech for correction. For example, Suhm et al. [25] quickly process and respond to the interface. Second, our investigated a speech system which enabled corrections via system needs to be designed so that it is easy for users to pen gestures. For an in-depth review of multimodal speech pick up from where they left off after an interruption. interfaces, we refer the reader to Oviatt et al. [20]. We therefore designed Parakeet to minimize attention To avoid cascading errors, we decided to create a demands. For example, after recognition is completed, we multimodal speech interface. In our system, recognition is flash the entire display screen and beep. This simple first performed on a user’s utterance. The recognition result feedback frees the user to attend to their surrounding almost is then corrected in a manner which is simple, direct and entirely while waiting for recognition to complete. transparent to the user. The correction process does not We also wanted to minimize the physical actions required. rely on any further error-prone recognition technologies. In a mobile setting, a large sequence of precise touch actions is likely to go wrong. We designed towards an Exploit the Speech Recognition Hypothesis Space In a typical speech recognition interface, such as Dragon interface presenting more visual information (perhaps NaturallySpeaking, only the best recognition hypothesis is requiring several bursts of attention) but requiring fewer initially shown to the user. In order to explore alternatives motor actions. For example, the user might enter a few to this best hypothesis, the user must take explicit action letters of a word and then scan a list of predictions which such as highlighting some text and issuing a command. As allow completion of the entire word with a single touch. observed by Kristensson and Zhai [16], this style of error INTERFACE DESCRIPTION correction interface introduces a degree of uncertainty. The The main part of our correction interface displays the user has to hope his or her action will expose the desired recognizer’s best hypothesis along a single line at the top correction. If it does not, the user has wasted effort. Such (Figure 2). If the best hypothesis cannot fit on the screen, interfaces may lead to user frustration, which is a common the user can scroll using the buttons on the left and right problem in intelligent user interfaces in general. sides. In addition to the best hypothesis, likely alternatives Therefore, we designed our correction interface so it avoids for each word in the best hypothesis are also displayed. For forcing users to blindly search the hypothesis space. We example, in Figure 2 the word “imports” has two other wanted the user to be able to see immediately, and without competing words (“imported” and “import”). 238 This display is based on a word confusion network [9]. A several words at once, the user can slide across adjacent word confusion network is a time-ordered set of clusters delete buttons. In speech recognition, often the recognizer where each cluster contains competing word hypotheses gets off track and outputs several erroneous words in a row. along with their posterior probabilities. The word In such instances, it is particularly useful to delete several confusion network is built from the lattice generated during words at once by crossing contiguous delete buttons.
Recommended publications
  • Powering Inclusion: Artificial Intelligence and Assistive Technology
    POLICY BRIEF MARCH 2021 Powering Inclusion: Artificial Intelligence and Assistive Technology Assistive technology (AT) is broadly defined as any equipment, product or service that can make society more inclusive. Eye- glasses, hearing aids, wheelchairs or even some mobile applica- tions are all examples of AT. This briefing explores the power of Key facts using Artificial Intelligence (AI) to enhance the design of current and future AT, as well as to increase its reach. The UN Convention on the Context Rights of Persons with Dis- Globally, over 1 billion people are currently in need of AT. Lack of access to basic AT excludes individuals, reduces their ability to live independent abilities (UNCRPD) estab- lives [3], and is a barrier to the realisation of the Sustainable Development lished AT provision as a Goals (SDGs) [2]. human right [1]. Advances in AI offer the potential to develop and enhance AT and gain new insights into the scale and nature of AT needs (although the risks of potential bias and discrimination in certain AI-based tools must also be Over 1 billion people are acknowledged). In June 2019, the Conference of State Parties to the UN currently in need of AT. Convention on the Rights of Persons with Disabilities (CRPD) recognized that AI has the potential to enhance inclu- By 2050, this number is sion, participation, and independence for people with disabilities [5]. AI- predicted to double [2]. enabled tools – such as predictive text, visual recognition, automatic speech- to-text transcription, speech recognition, and virtual assistants - have experi- enced great advances in the last few years and are already being Only 10% of those who used by people with vision, hearing, mobility and learning impairments.
    [Show full text]
  • An Improved Text Sentiment Classification Model Using TF-IDF and Next Word Negation
    An Improved Text Sentiment Classification Model Using TF-IDF and Next Word Negation Bijoyan Das Sarit Chakraborty Student Member, IEEE Member, IEEE, Kolkata, India Abstract – With the rapid growth of Text sentiment tickets. Although this is a very trivial problem, text analysis, the demand for automatic classification of classification can be used in many different areas as electronic documents has increased by leaps and bound. follows: The paradigm of text classification or text mining has been the subject of many research works in recent time. Most of the consumer based companies use In this paper we propose a technique for text sentiment sentiment classification to automatically classification using term frequency- inverse document generate reports on customer feedback. It is an frequency (TF-IDF) along with Next Word Negation integral part of CRM. [2] (NWN). We have also compared the performances of In medical science, text classification is used to binary bag of words model, TF-IDF model and TF-IDF analyze and categorize reports, clinical trials, with ‘next word negation’ (TF-IDF-NWN) model for hospital records etc. [2] text classification. Our proposed model is then applied Text classification models are also used in law on three different text mining algorithms and we found on the various trial data, verdicts, court the Linear Support vector machine (LSVM) is the most transcripts etc. [2] appropriate to work with our proposed model. The Text classification models can also be used for achieved results show significant increase in accuracy Spam email classification. [7] compared to earlier methods. In this paper we have demonstrated a study on the three different techniques to build models for text I.
    [Show full text]
  • Extraction of Predictive Document Spans with Neural Attention
    SpanPredict: Extraction of Predictive Document Spans with Neural Attention Vivek Subramanian, Matthew Engelhard, Samuel Berchuck, Liqun Chen, Ricardo Henao, and Lawrence Carin Duke University {vivek.subramanian, matthew.engelhard, samuel.berchuck, liqun.chen, ricardo.henao, lcarin}@duke.edu Abstract clinical notes, for example, attributing predictions to specific note content assures clinicians that the In many natural language processing applica- tions, identifying predictive text can be as im- model is not relying on data artifacts that are not portant as the predictions themselves. When clinically meaningful or generalizable. Moreover, predicting medical diagnoses, for example, this process may illuminate previously unknown identifying predictive content in clinical notes risk factors that are described in clinical notes but not only enhances interpretability, but also al- not captured in a structured manner. Our work is lows unknown, descriptive (i.e., text-based) motivated by the problem of autism spectrum dis- risk factors to be identified. We here formal- order (ASD) diagnosis, in which many early symp- ize this problem as predictive extraction and toms are behavioral rather than physiologic, and address it using a simple mechanism based on linear attention. Our method preserves dif- are documented in clinical notes using multiple- ferentiability, allowing scalable inference via word descriptions, not individual terms. Morever, stochastic gradient descent. Further, the model extended and nuanced descriptions are important decomposes predictions into a sum of contri- in many common document classification tasks, for butions of distinct text spans. Importantly, we instance, the scoring of movie or food reviews. require only document labels, not ground-truth Identifying important spans of text is a recurring spans.
    [Show full text]
  • Alternate Keypad Designs and Novel Predictive Disambiguation Methods
    Improved Text Entry for Mobile Devices: Alternate Keypad Designs and Novel Predictive Disambiguation Methods A DISSERTATION SUBMITTED TO THE COLLEGE OF COMPUTER SCIENCE OF NORTHEASTERN UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY By Jun Gong October 2007 ©Jun Gong, 2007 ALL RIGHTS RESERVED Acknowledgements I would like to take this chance to truly thank all the people who have supported me throughout my years as a graduate student. Without their help, I do not think I could have achieved one of my life-long goals and dreams of earning a doctorate, and would not be where I am today. First of all, I have to express my sincerest appreciation to my advisors Peter Tarasewich and Harriet Fell. I shall never forget these four years when I worked with such distinguished researchers and mentors. Thank you for always putting your trust and belief in me, and for your guidance and insights into my research. I also have to thank my other thesis committee members: Professors Scott MacKenzie, Carole Hafner, and Javed Aslam. I would not be where I am now without the time and effort you spent helping me complete my dissertation work. I am most indebted to my beloved parents, Pengchao Gong and Baolan Xia. I have been away from you for such a long time, and could not always be there when I should have. But in return, you have still given me the warmest care and greatest encouragement. I am forever grateful that you have given me this opportunity, and will continue to do my best to make you proud.
    [Show full text]
  • Graph Neural Networks for Natural Language Processing: a Survey
    GRAPH NEURAL NETWORKS FOR NLP: A SURVEY Graph Neural Networks for Natural Language Processing: A Survey ∗ Lingfei Wu [email protected] JD.COM Silicon Valley Research Center, USA ∗ Yu Chen [email protected] Rensselaer Polytechnic Institute, USA y Kai Shen [email protected] Zhejiang University, China Xiaojie Guo [email protected] JD.COM Silicon Valley Research Center, USA Hanning Gao [email protected] Central China Normal University, China z Shucheng Li [email protected] Nanjing University, China Jian Pei [email protected] Simon Fraser University, Canada Bo Long [email protected] JD.COM, China Abstract Deep learning has become the dominant approach in coping with various tasks in Natural Language Processing (NLP). Although text inputs are typically represented as a sequence of tokens, there is a rich variety of NLP problems that can be best expressed with a graph structure. As a result, there is a surge of interests in developing new deep learning techniques on graphs for a large number of NLP tasks. In this survey, we present a comprehensive overview on Graph Neural Networks (GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, which systematically organizes existing research of GNNs for NLP along three axes: graph construction, graph representation learning, and graph based encoder-decoder models. We further introduce a large number of NLP applications that are exploiting the power of GNNs and summarize the corresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discuss various outstanding challenges for making the full use of GNNs for NLP as well as future research arXiv:2106.06090v1 [cs.CL] 10 Jun 2021 directions.
    [Show full text]
  • AI in HR: the New Frontier INTRODUCTION the Robots Have Arrived
    INHR PEOPLE + FOCUSSTRATEGY’S WHITE PAPER SERIES AI in HR: The New Frontier INTRODUCTION The robots have arrived. Only they don’t look like robots. AI- and machine learning-based technology is embedded in the tools you likely interact with every day—navigation apps; predictive text in e-mail and messaging; digital assistants like Alexa and Siri; and recommendation engines on Netflix, YouTube and Spotify. Today, AI-powered technology seamlessly integrates into the things we already do—and it’s poised to do the same for HR. Since AI-based solutions predict, recommend and communicate based on data, AI has the opportunity to transform HR practices in areas where there is adequate data and where that data can be utilized to create greater efficiency, communicate at scale, provide recommendations and predict outcomes. Many companies already have a vast amount of data on candidates and employees that can help them source, assess, hire, train, develop and pay people more efficiently with the application of AI-driven tools. he International Data Corporation smarter hiring choices that ensure quali- T(IDC) estimates that worldwide spend- ty hires while eliminating hidden biases. ing on AI systems will reach $35.8 billion The recruiting process is filled with in 2019 and $79 billion by 2022. And Gart- numerous repeatable tasks such as re- ner estimates that, by 2022, AI-derived sume screening and interview scheduling business value will reach $3.9 trillion. that, when given to AI, free up recruiters’ With its vast amount of underutilized time to focus on what matters: the human data, HR has the potential to lead digital interaction between candidates and com- transformation and drive business value pany personnel.
    [Show full text]
  • Linguistics 1
    Linguistics 1 Purpose of the PhD Program LINGUISTICS The goal of the linguistics doctoral program is to prepare graduates to design and conduct original, empirically based research within a Linguistics is the study of all aspects of human language: how languages theoretical framework. Doctoral students prepare for careers in academic make it possible for us to construe another person's ideas and feelings; research and teaching or applied work in industry or other organizations. how and why languages are similar and different; how we develop We encourage doctoral students to begin engaging in research projects different styles and dialects; what will be required for computers to early, as these will contribute to developing the research program that understand and produce spoken language; and how languages are used will lead to the thesis project. Early projects not only lead to preliminary in everyday communication as well as in formal settings. Linguists exam topics and/or publishable papers, but also enable students to pilot try to figure out what it is that speakers know and do by observing the methods that will be usable for the dissertation project. Early projects structure of languages, the way children learn language, slips of the may be extensions of coursework and may involve a faculty advisor other tongue, conversations, storytelling, the acoustics of sound waves and the than the thesis advisor. way people's brains react when they hear speech or read. Linguists also reconstruct prehistoric languages, and try to deduce the principles behind Doctoral students complete a core of required courses that provide their evolution into the thousands of languages of the world today.
    [Show full text]
  • Corpus-Based Language Technology for Indigenous and Minority Languages
    Corpus-based language technology for indigenous and minority languages Kevin Scannell Saint Louis University 5 October 2015 Background ● I was born in the US, but I speak Irish ● Trained as a mathematician ● Began developing tools for Irish in the 90s ● No corpora for doing statistical NLP ● So I built my own with a crawler ● Crúbadán = crawling thing, from crúb=paw Web as Linguistic Archive ● Billions of unique resources, +1 ● Raw data only, no annotations, -1 ● > 2100 languages represented, +1 ● Very little material in endangered languages, -1 ● Full text searchable, +1 ● Can't search archive by language, -1 ● Snapshots archived periodically, +1 ● Resources removed or changed at random, -1 ● Free to download, +1 ● Usage rights unclear for vast majority of resources, -1 An Crúbadán: History ● First attempt at crawling Irish web, Jan 1999 ● 50M words of Welsh for historical dict., 2004 ● ~150 minority languages, 2004-2007 ● ~450 languages for WAC3, 2007 ● Unfunded through 2011 ● Search for “all” languages, started c. 2011 How many languages? ● Finishing a 3-year NSF project ● Phase one: aggressively seek out new langs ● Phrase two: produce free+usable resources ● Current total: 2140 ● At least 200 more queued for training ● 2500? 3000? Design principles ● Orthographies, not languages ● Labelled by BCP-47 codes ● en, chr, sr-Latn, de-AT, fr-x-nor, el-Latn-x-chat ● Real, running texts (vs. word lists, GILT) ● Get “everything” for small languages ● Large samples for English, French, etc. How we find languages ● Lots of manual web searching!
    [Show full text]
  • Predictive Text System for Bahasa with Frequency, N-Gram, Probability Table and Syntactic Using Grammar
    Predictive Text System for Bahasa with Frequency, n-gram, Probability Table and Syntactic using Grammar Derwin Suhartono, Garry Wong, Polim Kusuma and Silviana Saputra Computer Science Department, Bina Nusantara University, K H. Syahdan 9, Jakarta, Indonesia Keywords: Predictive Text, Word Prediction, n-gram, Prediction, KSPC, Keystrokes Saving. Abstract: Predictive text system is an alternative way to improve human communication, especially in matter of typing. Originally, predictive text system was intended for people who have flaws in verbal and motor. This system is aimed to all people who demands speed and accuracy in typing a document. There were many similar researches which develop this system that had their own strengths and weaknesses. This research attempts to develop the algorithm for predictive text system by combining four methods from previous researches and focus only in Bahasa (Indonesian language). The four methods consist of frequency, n-gram, probability table, and syntactic using grammar. Frequency method is used to rank words based on how many times the words were typed. Probability table is a table designed for storing data such as predefined phrases and trained data. N-gram is used to train data so that it is able to predict the next word based on previous word. And syntactic using grammar will predict the next word based on syntactic relationship between previous word and next word. By using this combination, user can reduce the keystroke up to 59% in which the average keystrokes saving is about 50%. 1 INTRODUCTION verbal and motor (Vitoria and Abascal, 2006). Over time, the usage of this system began to change and Conventional process of typing documents using a now is aimed to all people who demands speed and typewriter has become obsolete due to technological accuracy in typing a document.
    [Show full text]
  • Voice Typing: a New Speech Interaction Model for Dictation on Touchscreen Devices
    Voice Typing: A New Speech Interaction Model for Dictation on Touchscreen Devices †‡ † † Anuj Kumar , Tim Paek , Bongshin Lee † ‡ Microsoft Research Human-Computer Interaction Institute, One Microsoft Way Carnegie Mellon University Redmond, WA 98052, USA Pittsburgh, PA 15213, USA {timpaek, bongshin}@microsoft.com [email protected] [12] and other ergonomic issues such as the “fat finger ABSTRACT problem” [10]. Automatic dictation using speech Dictation using speech recognition could potentially serve recognition could serve as a natural and efficient mode of as an efficient input method for touchscreen devices. input, offering several potential advantages. First, speech However, dictation systems today follow a mentally throughput is reported to be at least three times faster than disruptive speech interaction model: users must first typing on a hardware QWERTY keyboard [3]. Second, formulate utterances and then produce them, as they would compared to other text input methods, such as handwriting with a voice recorder. Because utterances do not get or typing, speech has the greatest flexibility in terms of transcribed until users have finished speaking, the entire screen size. Finally, as touchscreen devices proliferate output appears and users must break their train of thought to throughout the world, speech input is (thus far) widely verify and correct it. In this paper, we introduce Voice considered the only plausible modality for the 800 million Typing, a new speech interaction model where users’ or so non-literate population [26]. utterances are transcribed as they produce them to enable real-time error identification. For fast correction, users However, realizing the potential of dictation critically leverage a marking menu using touch gestures.
    [Show full text]
  • Proceedings of the 55Th Annual Meeting of the Association For
    ComputEL-3 Proceedings of the 3rd Workshop on the Use of Computational Methods in the Study of Endangered Languages Volume 1 (Papers) February 26–27, 2019 Honolulu, Hawai‘i, USA Support: c 2019 The Association for Computational Linguistics Order copies of this and other ACL proceedings from: Association for Computational Linguistics (ACL) 209 N. Eighth Street Stroudsburg, PA 18360 USA Tel: +1-570-476-8006 Fax: +1-570-476-0860 [email protected] ISBN 978-1-950737-18-5 ii Preface These proceedings contain the papers presented at the 3rd Workshop on the Use of Computational Methods in the Study of Endangered languages held in Hawai’i at Manoa,¯ February 26–27, 2019. As the name implies, this is the third workshop held on the topic—the first meeting was co-located with the ACL main conference in Baltimore, Maryland in 2014 and the second one in 2017 was co-located with the 5th International Conference on Language Documentation and Conservation (ICLDC) at the University of Hawai‘i at Manoa.¯ The workshop covers a wide range of topics relevant to the study and documentation of endangered languages, ranging from technical papers on working systems and applications, to reports on community activities with supporting computational components. The purpose of the workshop is to bring together computational researchers, documentary linguists, and people involved with community efforts of language documentation and revitalization to take part in both formal and informal exchanges on how to integrate rapidly evolving language processing methods and tools into efforts of language description, documentation, and revitalization. The organizers are pleased with the range of papers, many of which highlight the importance of interdisciplinary work and interaction between the various communities that the workshop is aimed towards.
    [Show full text]
  • Experts Doubt Ethical AI Design Will Be Broadly Adopted As the Norm Within the Next Decade
    FOR RELEASE June 16, 2021 Experts Doubt Ethical AI Design Will Be Broadly Adopted as the Norm Within the Next Decade A majority worries that the evolution of artificial intelligence by 2030 will continue to be primarily focused on optimizing profits and social control. They also cite the difficulty of achieving consensus about ethics. Many who expect progress say it is not likely within the next decade. Still, a portion celebrate coming AI breakthroughs that will improve life BY Lee Rainie, Janna Anderson and Emily A. Vogels FOR MEDIA OR OTHER INQUIRIES: Lee Rainie, Director, Internet and Technology Research Janna Anderson, Director, Elon University’s Imagining the Internet Center Haley Nolan, Communications Associate 202.419.4372 www.pewresearch.org RECOMMENDED CITATION Pew Research Center, June 16, 2021. “Experts Doubt Ethical AI Design Will Be Broadly Adopted as the Norm in the Next Decade” 1 PEW RESEARCH CENTER About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping America and the world. It does not take policy positions. It conducts public opinion polling, demographic research, content analysis and other data-driven social science research. The Center studies U.S. politics and policy; journalism and media; internet, science and technology; religion and public life; Hispanic trends; global attitudes and trends; and U.S. social and demographic trends. All of the center’s reports are available at www.pewresearch.org. Pew Research Center is a subsidiary of The Pew Charitable Trusts, its primary funder. For this project, Pew Research Center worked with Elon University’s Imagining the Internet Center, which helped conceive the research and collect and analyze the data.
    [Show full text]