Leukocyte Membrane Molecules—An Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Leukocyte Membrane Molecules—An Introduction 1 Leukocyte Membrane Molecules—An Introduction 1.1 HISTORY “Workshop conditions” (multiple labo- ratories examining coded panels of anti- In the late 1970s and early 1980s, as immu- bodies), demonstrated that the antibodies nologists came to appreciate the power of all reacted with the same antigen. The monoclonal antibodies as reagents, large differences in the individual descriptions numbers of new antibodies were made, reflected differences in technique, antibody analyzed, and published. It was difficult to affinity, and interpretation. know whether two different antibodies A small group of immunologists recog- were directed against the same antigen.The nized the problem and devised a solution: antigen that was later named CD9 is a good multi-laboratory blind analysis and statisti- example. Five antibodies were described cal evaluation of the results. This solution independently; they shared some features: led to the First International Workshop on precipitation of a protein band of 24–26kD, Human Leukocyte Differentiation Anti- reactivity with platelets, and non-T-non-B gens (HLDA), organized in Paris by Lau- acute lymphoblastic leukemia. There were rence Boumsell and Alain Bernard in 1984 some apparently important differences: (Bernard et al., 1984). The purpose of this one antibody was described as reacting and subsequent workshops was to stan- with 26% of normal blood lymphocytes, dardize reagents and, through the use of whereas the other four were reported to standardized reagents, to develop an under- react with less than 2%; only one of the five standing of the structure and function of was reported to react with monocytes and leukocyte cell surface molecules and their polymorphs; there were differences in utility as diagnostic and therapeutic targets. reported reactivity with chronic lympho- Important tools in this process were a cytic leukemia. Later analysis, under nomenclature (the CD nomenclature) and Leukocyte and Stromal Cell Molecules: The CD Markers, by Heddy Zola, Bernadette Swart, Ian Nicholson, and Elena Voss Copyright © 2007 by John Wiley & Sons, Inc. 3 4 LEUKOCYTE MEMBRANE MOLECULES—AN INTRODUCTION the publication of books (Leukocyte antigen. However, antibody was still the Typing I-VII), which contained the conclu- primary tool for antigen discovery and sions of the workshops and the data on characterization. which these conclusions were based. As molecular technologies improved, new human proteins were increasingly identified by first cloning the gene, either 1.1.1 The Significance of the CD through sequence homology with a gene of Nomenclature and HLDA Workshops animal origin or by searching for genes The CD nomenclature, supported by the with sequence similarity to known mole- HLDA workshops and the Leukocyte cules. With increasing frequency, the anti- Typing volumes, has become accepted body was made after the protein had been universally. All immunology journals and identified, expressed, and characterized. journals in other fields that deal with these The quality and reliability of good mol- molecules use the CD nomenclature. The ecular data has changed the methodologic U.S. Food and Drug Administration (FDA) focus of the HLDA workshops. The has mandated the workshops in the sense primary focus of HLDA has moved to the that antibodies that seek approval as diag- functional molecules (the “antigens”); nostic reagents against CD molecules must the antibodies are tools used in their study. have been validated through the HLDA In the late 1970s and early 1980s, the ques- workshops. The World Health Organiza- tion behind many studies was “What does tion (WHO) and the International Union my antibody react with?” Today we can of Immunological Societies have mandated focus on much more fundamental ques- the CD nomenclature. tions about intercellular interactions and Nevertheless, there have been major cell–molecule interactions. The ligands and changes in the nature and importance of receptors involved in these interactions still the contribution made by HLDA work- need to be described, detected, and mea- shops in the years since the first one was sured, and monoclonal antibodies are still conducted. The main business of the early the most powerful tools for achieving an HLDA workshops was to identify new understanding of these interactions. human leukocyte cell surface molecules, using antibodies that had been made by 1.1.2 Why Does HLDA Focus on immunizing mice with whole cells or cell Surface Membrane Molecules? membranes. The major tools were analysis of reactivity of antibodies with a variety of The early studies (1970s–1980s) focused on cell types and statistical analysis of the the cell surface simply because that was the resulting expression data. The statistical major focus of immunology at the time— procedure used to identify antibodies with immunologists wanted to know how cells a high probability of reacting with the same interacted with other lymphocytes, with molecule was cluster analysis, hence, the endothelium, and with antigen.Without the name “Cluster of Differentiation.” Infor- tools to identify, visualize in tissue, and mation of a confirmatory nature was often isolate individual cell types, many of the contributed by protein analysis—Western questions that have engaged immunolo- blotting or immunoprecipitation followed gists for the last generation could not even by gel electrophoresis. By the third HLDA be formulated, let alone addressed. Diag- workshop, antibodies were also being used nostic distinctions, for example, between to identify antigen expressed in cDNA different types of leukemia, seemed at the libraries, allowing the cloning of the cDNA time to be capable of being addressed with and molecular characterization of the cell surface markers. From the start of the HISTORY 5 monoclonal antibody era (and indeed We cannot be sure, but the evidence sug- earlier, using polyclonal antisera), therapy gests that we are less than halfway there. using antibodies to knock out cancer cells Estimates of the numbers of surface mole- or immune cells (to prevent organ graft cules expressed by one functional category rejection) was a major driver of research, of leukocyte, the T lymphocytes, arrive at and here the targets were clearly cell a number around 1000 (Zola and Swart, surface molecules. 2003). The number of T cell markers cur- Once we had an extensive catalog of cell rently known to be on T cell surfaces is surface molecules, and the tools with which 100–200. The T cells are the best character- to study their function, cell signaling ized leucocytes, so the journey is unlikely to became a new front in the development of be more advanced in the other leukocyte understanding of the immune system. The families. myriad intracellular molecules—syk, zap, The estimate of the total number of mol- cbl, and their ilk—cry out for a nomencla- ecules is based on counting of proteins or ture accessible to scientists from other messenger RNA species expressed by cells fields. The HLDA considered on several and multiplying by the estimated propor- occasions whether to extend the CD system tion of expressed proteins that are mem- to cover these molecules and decided on brane proteins. Some known proteins that several occasions not to. The reasons have not been identified on T cells may included an anxiety that if the CD nomen- nevertheless be expressed on T cells. In clature covered these many hundreds of arriving at the estimated number of mole- additional molecules it would lose its focus cules, we have not taken into account post- and ability to help scientists classify and translational modifications. Clearly, there is remember them, and the concern that room for error in either direction. But the many reagents were polyclonal and so of conclusion that we are nowhere nearly uncertain specificity. “there” receives some support from two Recognition of the significant capacity other lines of evidence. of intracellular molecules to serve as First, for the recent Eighth HLDA markers of differentiation stage [see, for Workshop, we identified 180 known mole- example, Marafioti et al., (2003)] and that cules that could qualify for CD status, and the workshops could perform a useful task half of them were given CD status at the without necessarily allocating CD names, end of the workshop (Zola et al., 2005). finally led the HLDA Council to include This yield is better than any previous intracellular markers of differentiation HLDA workshop (Fig. 1.1). If we were (Zola et al., 2005), in a set of major changes. nearly at the end of the list, we would expect to be seeing diminishing returns. Second, several proteomics-based dis- 1.1.3 Are We Nearly There? covery projects have found more new mol- Any parent will recognize this question— ecules than known ones, (Peirce et al., 2004; asked by children at any stage in a journey, Nicholson et al., 2005; Loyet et al., 2005; including the very early stages. The child Watarai et al., 2005). Again, there is no evi- has no concept of the length of the journey, dence of the diminishing returns we would so it’s a reasonable question. If the journey expect to see if we had a near-complete of the HLDA is from the early chaos catalog of leukocyte molecules. described earlier in this chapter to the goal The availability of genomic sequence, of having a complete catalog of the leuko- coupled with recent developments in pro- cyte cell surface molecules, how far do we teomics technology, indicates that there is a have still to travel? window of opportunity over the next 5–10 6 LEUKOCYTE MEMBRANE MOLECULES—AN INTRODUCTION Figure 1.1. New CDs assigned per HLDA workshop. The numbers of CD molecules assigned have contin- ued to increase, suggesting that we have not yet characterized the majority of leukocyte membrane molecules. years to complete the discovery process. Thus, given an amino acid sequence, Based on the number of CD molecules usually translated from a DNA sequence, known currently that serve as targets for we can predict the structure, and at least diagnosis and therapy, we can reasonably some likely functions, for any protein.
Recommended publications
  • M.Tech. BT ( R14 Regulations)
    M.Tech. BT ( R14 Regulations) CMR COLLEGE OF ENGINEERING & TECHNOLOGY (An Autonomous Institution) ACADEMIC REGULATIONS FOR M. TECH. (REGULAR) DEGREE COURSE Applicable for the students of M. Tech. (Regular) Course from the Academic Year 2014-15 and onwards The M. Tech. degree shall be conferred on candidates who are admitted to the program and who fulfil all the requirements for the award of the degree. 1.0 Eligibility for Admissions Admission to the above program shall be made subject to eligibility, qualification and specialization as prescribed by the State Government from time to time. 2.0 Award of M. Tech. degree 2.1 A student shall be declared eligible for the award of the M. Tech. Degree, if he pursues a course of study in not less than two and not more than four academic years. 2.2 A student, who fails to fulfill all the academic requirements for the award of the degree within four academic years from the year of his admission, shall forfeit his seat in M. Tech. course. 2.3 The student shall register for all 88 credits and secure all the 88 credits. 2.4 The minimum instruction days in each semester are 90. 2.5 The medium of instruction and examination shall be English. 3.0 A. Courses of Study The following specializations are offered at present for the M. Tech. course of study. 1. Bio-Technology 2. Embedded Systems 3. Power Electronics 4. Structural Engineering 5. Computer Science & Engineering 6. Machine Design and any other course as approved by the College/ University/AICTE from time to time.
    [Show full text]
  • A Fratricide-Resistant Allogeneic CAR T
    Investigation of ALLO-316: A Fratricide- Resistant Allogeneic CAR T Targeting CD70 As a Potential Therapy for the Treatment of AML Surabhi Srinivasan, Nguyen Tan, Hsin-Yuan Cheng, Yi Zhang, Silvia Tacheva-Grigorova, Tom Van Blarcom, Cesar Sommer, Duy Nguyen , Barbra Sasu, and Siler Panowski 1 Disclosures • Full-time employee of Allogene Therapeutics • Equity interest in Allogene Therapeutics ALLO-316 (CD70) utilizes TALEN® gene-editing technology pioneered and owned by Cellectis. Allogene has an exclusive license to the Cellectis technology for allogeneic products directed at this target and holds all global development and commercial rights for this investigational candidate. 22 CONFIDENTIAL Disclaimers This presentation is not intended for product promotion. All information is related to investigational therapies not available for commercial use. The safety and efficacy of the therapies have not been established for FDA approval. Forward-Looking Statements To the extent statements contained in this Presentation are not descriptions of historical facts regarding Allogene Therapeutics, Inc. (“Allogene,” “we,” “us,” or “our”), they are forward-looking statements reflecting management’s current beliefs and expectations. Forward-looking statements are subject to known and unknown risks, uncertainties, and other factors that may cause our or our industry’s actual results, levels or activity, performance, or achievements to be materially different from those anticipated by such statements. You can identify forward-looking statements by words such as “anticipate,” “believe,” “could,” “estimate,” “expect,” “intend,” “may,” “plan,” “potential,” “predict,” “project,” “should,” “will,” “would” or the negative of those terms, and similar expressions that convey uncertainty of future events or outcomes. Forward-looking statements contained in this Presentation include, but are not limited to, statements regarding: the ability to progress the clinical development of allogeneic CAR T (AlloCAR T™) therapies and the potential benefits of AlloCAR T™ therapy, including ALLO-316.
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) Balancing effector lymphocyte formation via CD27-CD70 interactions Arens, R. Publication date 2003 Link to publication Citation for published version (APA): Arens, R. (2003). Balancing effector lymphocyte formation via CD27-CD70 interactions. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 Chapter 3 Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNy-mediated B cell depletion Ramon Arens*, Kiki Tesselaar*, Paul A. Baars, Gijs M.W. van Schijndel, Jenny Hendriks, Steven T. Pals, Paul Krimpenfort, Jannie Borst, Marinus H.J. van Oers, and René A.W. van Lier 'These authors contributed equally to this work Immunity 15, 801-812 (2001) Chapter 3 Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNy-mediated B cell depletion Ramon Arens123#, Kiki Tesselaar23", Paul A.
    [Show full text]
  • Defining Natural Antibodies
    PERSPECTIVE published: 26 July 2017 doi: 10.3389/fimmu.2017.00872 Defining Natural Antibodies Nichol E. Holodick1*, Nely Rodríguez-Zhurbenko2 and Ana María Hernández2* 1 Department of Biomedical Sciences, Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States, 2 Natural Antibodies Group, Tumor Immunology Division, Center of Molecular Immunology, Havana, Cuba The traditional definition of natural antibodies (NAbs) states that these antibodies are present prior to the body encountering cognate antigen, providing a first line of defense against infection thereby, allowing time for a specific antibody response to be mounted. The literature has a seemingly common definition of NAbs; however, as our knowledge of antibodies and B cells is refined, re-evaluation of the common definition of NAbs may be required. Defining NAbs becomes important as the function of NAb production is used to define B cell subsets (1) and as these important molecules are shown to play numerous roles in the immune system (Figure 1). Herein, we aim to briefly summarize our current knowledge of NAbs in the context of initiating a discussion within the field of how such an important and multifaceted group of molecules should be defined. Edited by: Keywords: natural antibody, antibodies, natural antibody repertoire, B-1 cells, B cell subsets, B cells Harry W. Schroeder, University of Alabama at Birmingham, United States NATURAL ANTIBODY (NAb) PRODUCING CELLS Reviewed by: Andre M. Vale, Both murine and human NAbs have been discussed in detail since the late 1960s (2, 3); however, Federal University of Rio cells producing NAbs were not identified until 1983 in the murine system (4, 5).
    [Show full text]
  • Instant Notes: Immunology, Second Edition
    Immunology Second Edition The INSTANT NOTES series Series Editor: B.D. Hames School of Biochemistry and Molecular Biology, University of Leeds, Leeds, UK Animal Biology 2nd edition Biochemistry 2nd edition Bioinformatics Chemistry for Biologists 2nd edition Developmental Biology Ecology 2nd edition Immunology 2nd edition Genetics 2nd edition Microbiology 2nd edition Molecular Biology 2nd edition Neuroscience Plant Biology Chemistry series Consulting Editor: Howard Stanbury Analytical Chemistry Inorganic Chemistry 2nd edition Medicinal Chemistry Organic Chemistry 2nd edition Physical Chemistry Psychology series Sub-series Editor: Hugh Wagner Dept of Psychology, University of Central Lancashire, Preston, UK Psychology Cognitive Psychology Forthcoming title Physiological Psychology Immunology Second Edition P.M. Lydyard Department of Immunology and Molecular Pathology, Royal Free and University College Medical School, University College London, London, UK A. Whelan Department of Immunology, Trinity College and St James’ Hospital, Dublin, Ireland and M.W. Fanger Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA © Garland Science/BIOS Scientific Publishers Limited, 2004 First published 2000 This edition published in the Taylor & Francis e-Library, 2005. “To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.” Second edition published 2004 All rights reserved. No part of this book may be reproduced or
    [Show full text]
  • Immunosenescence: a Key Player in Cancer Development Jingyao Lian1,2†, Ying Yue1,2,3†, Weina Yu1,2† and Yi Zhang1,2*
    Lian et al. J Hematol Oncol (2020) 13:151 https://doi.org/10.1186/s13045-020-00986-z REVIEW Open Access Immunosenescence: a key player in cancer development Jingyao Lian1,2†, Ying Yue1,2,3†, Weina Yu1,2† and Yi Zhang1,2* Abstract Immunosenescence is a process of immune dysfunction that occurs with age and includes remodeling of lymphoid organs, leading to changes in the immune function of the elderly, which is closely related to the development of infections, autoimmune diseases, and malignant tumors. T cell–output decline is an important feature of immunose- nescence as well as the production of senescence-associated secretory phenotype, increased glycolysis, and reactive oxygen species. Senescent T cells exhibit abnormal phenotypes, including downregulation of CD27, CD28, and upreg- ulation of CD57, killer cell lectin-like receptor subfamily G, Tim-3, Tight, and cytotoxic T-lymphocyte-associated protein 4, which are tightly related to malignant tumors. The role of immunosenescence in tumors is sophisticated: the many factors involved include cAMP, glucose competition, and oncogenic stress in the tumor microenvironment, which can induce the senescence of T cells, macrophages, natural killer cells, and dendritic cells. Accordingly, these senescent immune cells could also afect tumor progression. In addition, the efect of immunosenescence on the response to immune checkpoint blocking antibody therapy so far is ambiguous due to the low participation of elderly cancer patients in clinical trials. Furthermore, many other senescence-related interventions could be possible with genetic and pharmacological methods, including mTOR inhibition, interleukin-7 recombination, and NAD + activation. Overall, this review aims to highlight the characteristics of immunosenescence and its impact on malignant tumors and immunotherapy, especially the future directions of tumor treatment through senescence-focused strategies.
    [Show full text]
  • Role of Lymphocytic Choriomeningitis Virus (LCMV) in Understanding Viral Immunology: Past, Present and Future
    Viruses 2012, 4, 2650-2669; doi:10.3390/v4112650 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Role of Lymphocytic Choriomeningitis Virus (LCMV) in Understanding Viral Immunology: Past, Present and Future Xin Zhou 1, Srividya Ramachandran 1, Margaret Mann 1 and Daniel L. Popkin 2,* 1 Department of Dermatology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; E-Mails: [email protected] (X.Z.); [email protected] (S.R.); [email protected] (M.M.) 2 Department of Dermatology, Pathology, Microbiology & Molecular Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-216-368-0237; Fax: +1-216-844-8993. Received: 30 September 2012; in revised form: 18 October 2012 / Accepted: 24 October 2012 / Published: 29 October 2012 Abstract: Lymphocytic choriomeningitis virus (LCMV) is a common infection of rodents first identified over eighty years ago in St. Louis, MO, U.S.A. It is best known for its application in immunological studies. The history of LCMV closely correlates with the development of modern immunology. With the use of LCMV as a model pathogen several key concepts have emerged: Major Histocompatibility Complex (MHC) restriction, T cell memory, persistent infections, T cell exhaustion and the key role of immune pathology in disease. Given the phenomenal infrastructure within this field (e.g., defined immunodominant and subdominant epitopes to all T cell receptor specificities as well as the cognate tetramers for enumeration in vivo) the study of LCMV remains an active and productive platform for biological research across the globe to this day.
    [Show full text]
  • Targeting Costimulatory Molecules in Autoimmune Disease
    Targeting costimulatory molecules in autoimmune disease Natalie M. Edner1, Gianluca Carlesso2, James S. Rush3 and Lucy S.K. Walker1 1Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, Royal Free Campus, London, UK NW3 2PF 2Early Oncology Discovery, Early Oncology R&D, AstraZeneca, Gaithersburg, MD, USA 3Autoimmunity, Transplantation and Inflammation Disease Area, Novartis Institutes for Biomedical Research, Basel, Switzerland *Correspondence: Professor Lucy S.K. Walker. Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, Royal Free Campus, London, UK NW3 2PF. Tel: +44 (0)20 7794 0500 ext 22468. Email: [email protected]. 1 Abstract Therapeutic targeting of immune checkpoints has garnered significant attention in the area of cancer immunotherapy, and efforts have focused in particular on the CD28 family members CTLA-4 and PD-1. In autoimmunity, these same pathways can be targeted to opposite effect, to curb the over- exuberant immune response. The CTLA-4 checkpoint serves as an exemplar, whereby CTLA-4 activity is blocked by antibodies in cancer immunotherapy and augmented by the provision of soluble CTLA-4 in autoimmunity. Here we review the targeting of costimulatory molecules in autoimmune disease, focusing in particular on the CD28 family and TNFR family members. We present the state-of-the-art in costimulatory blockade approaches, including rational combinations of immune inhibitory agents, and discuss the future opportunities and challenges in this field. 2 The risk of autoimmune disease is an inescapable consequence of the manner in which the adaptive immune system operates. To ensure effective immunity against a diverse array of unknown pathogens, antigen recognition systems based on random gene rearrangement and mutagenesis have evolved to anticipate the antigenic universe.
    [Show full text]
  • Immunology 101
    Immunology 101 Justin Kline, M.D. Assistant Professor of Medicine Section of Hematology/Oncology Committee on Immunology University of Chicago Medicine Disclosures • I served as a consultant on Advisory Boards for Merck and Seattle Genetics. • I will discuss non-FDA-approved therapies for cancer 2 Outline • Innate and adaptive immune systems – brief intro • How immune responses against cancer are generated • Cancer antigens in the era of cancer exome sequencing • Dendritic cells • T cells • Cancer immune evasion • Cancer immunotherapies – brief intro 3 The immune system • Evolved to provide protection against invasive pathogens • Consists of a variety of cells and proteins whose purpose is to generate immune responses against micro-organisms • The immune system is “educated” to attack foreign invaders, but at the same time, leave healthy, self-tissues unharmed • The immune system can sometimes recognize and kill cancer cells • 2 main branches • Innate immune system – Initial responders • Adaptive immune system – Tailored attack 4 The immune system – a division of labor Innate immune system • Initial recognition of non-self (i.e. infection, cancer) • Comprised of cells (granulocytes, monocytes, dendritic cells and NK cells) and proteins (complement) • Recognizes non-self via receptors that “see” microbial structures (cell wall components, DNA, RNA) • Pattern recognition receptors (PRRs) • Necessary for priming adaptive immune responses 5 The immune system – a division of labor Adaptive immune system • Provides nearly unlimited diversity of receptors to protect the host from infection • B cells and T cells • Have unique receptors generated during development • B cells produce antibodies which help fight infection • T cells patrol for infected or cancerous cells • Recognize “foreign” or abnormal proteins on the cell surface • 100,000,000 unique T cells are present in all of us • Retains “memory” against infections and in some cases, cancer.
    [Show full text]
  • Co-Expression of CD40L with CD70 Or OX40L Increases B-Cell Viability and Antitumor Efficacy
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 29 Research Paper Co-expression of CD40L with CD70 or OX40L increases B-cell viability and antitumor efficacy Chang-Ae Shin1, Hyun-Woo Cho1, A-Ri Shin2,3, Hyun-Jung Sohn2, Hyun-Il Cho2,3, Tai-Gyu Kim1,2,3 1Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea 2Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea 3Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea Correspondence to: Hyun-Il Cho, email: [email protected] Tai-Gyu Kim, email: [email protected] Keywords: cancer vaccine, B-cells, costimulatory ligand, anti-apoptosis, tumor immunity Received: February 24, 2016 Accepted: May 29, 2016 Published: June 15, 2016 ABSTRACT Activated B-cells are a promising alternative source of antigen-presenting cells. They can generally be obtained in sufficient numbers for clinical use, but in most instances produce weak immune responses and therapeutic effects that are suboptimal for use in therapeutic cancer vaccines. To improve the immunogenic potency and therapeutic efficacy of B-cell-based vaccines, ex vivo-activated B-cells were transduced with recombinant lentiviruses in order to express additional costimulatory ligands—CD40L, CD70, OX40L, or 4-1BBL—either individually or in pairs (CD70/CD40L, OX40L/CD40L, or 4-1BBL/CD40L). We observed that the expression of CD40L molecules on B-cells was crucial for T-cell priming and activation. Administration of B-cells co-expressing CD40L with the other costimulatory ligands provided substantial antigen-specific CD8 T-cell responses capable of provoking in vivo proliferation and potent cytolytic activities.
    [Show full text]
  • Biochemical Engineering)
    UNIVERSITY SCHOOL OF CHEMICAL TECHNOLOGY SCHEME OF EXAMINATION B.TECH (BIOCHEMICAL ENGINEERING) Table of Contents FIRST SEMESTER EXAMINATION ......................................................................................................... 4 BA-109 Mathematics I .................................................................................................................................. 5 BA-111 Physics I .......................................................................................................................................... 6 BA-117 Organic Chemistry .......................................................................................................................... 7 HS-101 Communication Skills I ................................................................................................................... 8 BA-119* Impact of Science & Technology on Society ................................................................................ 9 IT-105 Introduction to Computers .............................................................................................................. 10 IT-107 Electrical Science ............................................................................................................................ 11 BA-163 Organic Chemistry Lab ................................................................................................................. 12 BA-153 Physics I Lab ................................................................................................................................
    [Show full text]
  • CD70 Knockout: a Novel Approach to Augment CAR-T Cell Function
    #1537 CD70 knockout: A novel approach to augment CAR-T cell function Mary-Lee Dequeant, Jason Sagert, Demetri Kalaitzidis, Hui Yu, Ashley Porras, Brigid McEwan, Zinkal Padalia, Paul Tetteh, Thao Nguyen, Andrew Dunn, Sarah Spencer, Nicolette Lee, Henia Dar, Daniel Henderson, Sushant Karnik, Pooja Keerthipati, Jonathan A. Terrett CRISPR Therapeutics, 610 Main Street, Cambridge, MA, USA 02139 Abstract KO of certain checkpoint genes is detrimental to CAR-T function CD70 and its ligand, CD27, have been described as both activating and suppressing for different cell types including B and T cells. There has been speculation that the CD70/CD27 axis can act in a checkpoint or co-stimulatory manner in certain Figure 8: CD70 KO confers superior cytotoxic activity than PD1 KO against an RCC Figure 10: KO of multiple checkpoint genes impairs CAR-T cell function immuno-oncology settings. Knockout (KO) of CD70 function scored highly in a CRISPR/Cas9 screen of candidate genes for enhanced T cell activity. Deletion of other checkpoint candidates such as PD1, TIM3, LAG3 and TIGIT scored much lower than CD70, both alone and in combination with each other. T cells with CD70 KO showed resistance to exhaustion upon repeated stimulation in culture. CAR-T cells with CD70 KO similarly showed exhaustion resistance, as well as a reduction in tumor cell line overexpressing PD-L1 A Input Bone Marrow (Day 100) 10000 apoptosis, increased proliferation, and improved target cell lysis upon sequential rechallenges. CTX130 is an investigational allogeneic CAR-T therapy currently being studied in patients with CD70-expressing tumors, including clear cell renal cell 100 2500 No RNP or AAV carcinoma and B and T cell malignancies.
    [Show full text]