Conservation, Development, and Function of a Cement Gland-Like Structure in the fish Astyanax Mexicanus

Total Page:16

File Type:pdf, Size:1020Kb

Conservation, Development, and Function of a Cement Gland-Like Structure in the fish Astyanax Mexicanus Conservation, development, and function of a cement gland-like structure in the fish Astyanax mexicanus Karen Pottin, Carole Hyacinthe, and Sylvie Rétaux1 NeD UPR2197, Centre National de la Recherche Scientifique (CNRS), Institut A. Fessard, 91198 Gif/Yvette, France Edited by Sean B. Carroll, University of Wisconsin, Madison, WI, and approved August 17, 2010 (received for review April 19, 2010) The larvae of the fish Astyanax mexicanus transiently develop to be carried out to support homology between the frog CG and a flat and adhesive structure on the top of their heads that we these organs, which appear widely diversified in number, size, have called “the casquette” (cas, meaning “hat”). We hypothesized shape, structure, and location on larval bodies. that the cas may be a teleostean homolog of the well-studied Astyanax mexicanus, the Mexican tetra, belongs to the order of Xenopus cement gland, despite their different positions and struc- characiforms. Astyanax has become increasingly popular for evo- tures. Here we show that the cas has an ectodermal origin, se- lutionary developmental studies because the species includes Bmp4 cretes mucus, expresses bone morphogenic protein 4 ( ) and many populations of blind and depigmented cavefish (CF), allow- Pitx1/2 pituitary homeobox 1/2 ( ), is innervated by the trigeminal ing the study of mechanisms of morphological and behavioral ganglion and serotonergic raphe neurons, and has a role in the evolution in adaptive context (18, 19). Here, we present evi- control and the development of the larval swimming behavior. fi Astyanax These developmental, connectivity, and behavioral functional data dence that both CF and surface sh (SF) larvae possess support a level of deep homology between the frog cement gland an adhesive organ, and we gather developmental, connectivity, and the Astyanax cas and suggest that attachment organs can and behavioral functional data to compare that organ with the develop in varied positions on the head ectoderm by recruitment frog CG, despite their major differences in morphology and po- of a Bmp4-dependent developmental module. We also show that sition. We also show that the attachment organ of the cichlid the attachment organs of the cichlid Tilapia mariae larvae display Tilapia mariae larvae shares some of these features. some of these features. We discuss the possibility that these highly diversified attachment glands may be ancestral to chordates and Results have been lost repetitively in many vertebrate classes. A Sticky, Mucus-Secreting, and Transient Organ on the Head of Astyanax Larvae. In the course of our studies on Astyanax,we bone morphogenic protein 4 | pituitary homeobox 1/2 | trigeminal | fish observed a peculiar structure located on top of the dorsal brain, behavior | homology overlying the midbrain–hindbrain boundary (Fig. 1 A–C, live larvae), which is not seen in other model fishes such as zebra- any vertebrate aquatic larvae possess an adhesive organ fish or medaka. We have called that structure the “casquette” Mthat secretes sticky mucus. The most popular among these (cas, meaning “hat”). The cas is very sticky and retains any par- organs is the amphibian cement gland (CG), which has been ticle in the swimming medium (Fig. 1B). It is a transient structure, studied widely from functional and developmental points of view, visible as a thickening of the epidermis as early as 20 h post- mainly in Xenopus (1, 2). The mature gland is composed of elon- fertilization (hpf) and well seen from 24 hpf (hatching time for gated secretory cells with basal cells underlying them (3). This Astyanax)to∼50 hpf. The cas is composed of elongated and organ allows the newly hatched larvae to hang motionless from parallel large cells containing a basally located nucleus and nu- the water surface or from plant leaves before they can swim or merous granules (Fig. 1C). These elongated cells are supported feed. Because it is innervated by the trigeminal nerve, the CG by a thin monolayer of small cells with horizontally oriented nu- mediates a stopping response when the larva encounters a surface clei that we interpret as basal supporting cells (Figs. 1H and 2 J or is safely attached (4, 5). It thus is a transient organ that fulfils and K). The cas undergoes massive and specific cell death (Fig. both an attachment and a mechano-sensory function. The Xenopus CG derives from the outer ectoderm at the 1D) but no proliferation (Fig. 1E) and disappears completely anteroventral side of the head and is visible by pigmentation by after 3 d of development. The high granule content and adhesive neurula stage (6). By that time, the CG starts to express proteins nature of the cas suggested that it may secrete substances such as such as anterior gradient (xAgr) that are used as CG markers and mucus. Indeed, it is stained selectively and strongly by the pe- are important for the gland’s secreting function (7, 8). The posi- riod acid-Schiff (PAS) histological method, which labels mucus- tioning and inducing of the CG relies on the expression of or- secreting cells (Fig. 1 F–H). The intensity of PAS staining of the thodenticle homeobox 2 (Otx2) and pituitary homeobox (Pitx) cas increases as development proceeds (Fig. 1 F–H), and the la- genes (2, 8–12), whereas adequate levels of bone morphogenic beling is concentrated at the apical/external surface of the elon- protein 4 (Bmp4) signals are permissive for its development (13). gated cas cells (Fig. 1 G and H). There are no differences between The study of the amphibian CG has been confined mainly to CF and SF larvae in these events, so the data presented are taken the Xenopus laevis species, although a recently published, com- collectively from both forms, except as otherwise indicated. plete survey of the existence and morphology of the CG in 20 anuran species discusses the CG with regard to the species’ hab- itat, behavior, and mode of development (14). The balancers of Author contributions: K.P. and S.R. designed research; K.P., C.H., and S.R. performed re- urodele amphibians have been suggested to be related evolu- search; K.P., C.H., and S.R. analyzed data; and S.R. wrote the paper. tionarily to the anuran CG, and some support for this idea comes The authors declare no conflict of interest. from the description of trigeminal innervation and Otx5 expres- This article is a PNAS Direct Submission. sion in the balancers (5, 15, 16). Among other chordates, a similar Data deposition: The sequences reported in this paper have been deposited in the Gen- transient adhesive organ has been described in ascidians (17) and Bank database (accession nos. HQ225730 to HQ225734). in some fishes belonging to the basal actinopterygians and to the 1To whom correspondence should be addressed. E-mail: [email protected]. cichlids (Discussion). However, relevant comparative morpho- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. logical, molecular, developmental, and functional studies have yet 1073/pnas.1005035107/-/DCSupplemental. 17256–17261 | PNAS | October 5, 2010 | vol. 107 | no. 40 www.pnas.org/cgi/doi/10.1073/pnas.1005035107 Downloaded by guest on September 30, 2021 Fig. 2. The cas expresses high levels of Bmp4 and Pitx genes. In all panels, a thick black arrow indicates the cas. (A–G) Bmp4 expression (blue) in toto (A, B, D, and E) and on sections (F and G). C′ Inset shows a high magnification of a section double-labeled for Bmp4 (black) and Hnk1 (green). (A and B) Lateral views. (D and E) Dorsal views. (H–K) Pitx1/2 expression in toto (H, dorsal; I, lateral) and in sections (J and K). In H the dashed line delineates the cas contours. In I the asterisks indicate the expressing lamina below the posterior cas. In J and K (high power), DAPI-stained nuclei are blue. White arrows point to the nuclei of secretory cells; white arrowheads point to nuclei of basal cells. Stages are indicated. Cp, choroid plexus; e, eye; ot, otic Fig. 1. The cas is a sticky, transient, and mucus-secreting structure. (A) vesicle; rl, rhombic lip; rp, roof plate; tb, tailbud; tc, tela choroida. General view and (B) close-up of the cas (black arrow in A) of a live CF embryo at 24 hpf. The asterisk indicates a particle adhering to the cas. (C) terior aspect (Fig. 2 D and E). Observation of transverse sections Nomarski image of a live CF at 36 hpf. White arrows show basally located nuclei of elongated cells; arrowheads point to basal cells. Both types of cells shows Bmp4 expression in both the elongated and the basal cas and their nuclei are delineated by dotted lines. Note the high density of cells, as well as in the forming and underlying choroid plexuses granules. (D) LysoTracker live fluorescent imaging of an SF at 40 hpf. Cell (neurohemal organs that secrete the cerebrospinal fluid) of the death is seen in the cas (white arrows). (E) Section from a 36-hpf SF stained brain ventricle (Fig. 2 F and G). for proliferating cell nuclear antigen (PCNA, brown). (F–H) Sections of CF cas We also tested whether the cas expresses Pitx genes, consid- after PAS staining (pink) at indicated stages. (G) High magnification image. ered as CG specifiers in Xenopus (1). We cloned Pitx1- and Pitx2- The asterisk indicates the PAS-negative adjacent skin. (H) DAPI nuclear type sequences, both of which showed complex, placodal-related fi staining is blue. In all gures, anterior is to the left, and dorsal is up. Cp, expression patterns at neurula stages. Slightly later, when the cas choroid plexus; e, eye; fb, forebrain; hb, hindbrain; mb, midbrain; mhb, midhindbrain boundary; ot, otic vesicle; pi, pineal gland.
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Aggressive Behaviours of Territorial Cichlid Fishes Against Larger Heterospecific Intruders
    African Swdy Monographs, 15(2): 69-75, October 1994 69 AGGRESSIVE BEHAVIOURS OF TERRITORIAL CICHLID FISHES AGAINST LARGER HETEROSPECIFIC INTRUDERS Masanori KOHDA Laboratory of Animal Sociology, Department of Biology, Faculty of Science, Osaka City University Sima Keita l\1BOKO Centre de Recherche en Sciences Nature/les, Station d'Uvira ABSTRACT Aggressive behaviours at nesting territories of cichlid fishes were observ­ ed in Lake Tanganyika. Subject fishes were Neolamprologus toae, Tropheus moorii, Ophthalmotilapia nasutus, Limnotilapia dardennii and Petrochromis po/yodon. They attacked and repelled various sized heterospecific fishes from the territories. Against much larger intruders. the fishes quickly approached and pecked them. The larger fishes never con­ ducted counter-attack, and left the territories. Such pecking beha\iour was regarded as a kind of attack, but greatly different from attacks in interspecific territorialities of cichlids re­ ported hitherto, which are usually organized in size-dependent dominance relationships. This paper discusses the domination of the nesting territory owners in a context of 'sym­ metry' of territoriality. Key Words: Territorial behaviour: Domination; Nesting territory: Territorial mosaic. INTRODUCTION Tropical waters usually include large numbers of fish species. In such habitats. fishes develop a variety of interspecific relationships (Lowe-McConnell, 1987; Hori, 1987, 1991; Kohda. 199la, 1991b). among which interspecific territoriality is common and has been studied by many authors (Miller, 1978; Kohda. 1993). In­ terspecific feeding territories of herbivorous damselfishes or cichlid fishes, as well as intraspecific ones, are arranged in a territorial mosaic (Keenleyside. 1979) and are usually organized by size-dependent dominance relationships (Myrberg, 1972: Keenleyside, 1979; Kohda, 1991, 1993; Kohda & Yanagisawa.
    [Show full text]
  • České Názvy Živočichů V
    ČESKÉ NÁZVY ŽIVOČICHŮ V. RYBY A RYBOVITÍ OBRATLOVCI (PISCES) 2. NOZDRATÍ (SARCOPTERYGII) PAPRSKOPLOUTVÍ (ACTINOPTERYGII) CHRUPAVČITÍ (CHONDROSTEI) KOSTNATÍ (NEOPTERYGII) KOSTLÍNI (SEMIONOTIFORMES) – BEZOSTNÍ (CLUPEIFORMES) LUBOMÍR HANEL, JINDŘICH NOVÁK Národní muzeum Praha 2001 Hanel L., Novák J., 2001: České názvy živočichů V. Ryby a rybovití obratlovci (Pisces) 2., nozdratí (Sarcopterygii), paprskoploutví (Actinopterygii) [chrupavčití (Chondrostei), kostnatí (Neopterygii): kostlíni (Semionotiformes) – bezostní (Clupeiformes)]. – Národní muzeum (zoologické oddělení), Praha. Lektor: Ing. Petr Ráb, DrSc. Editor řady: Miloš Anděra Počítačová úprava textu: Lubomír Hanel (TK net) a DTP KORŠACH Tisk: PBtisk Příbram Náklad: 800 výtisků © 2001 Národní muzeum, Praha ISBN 80-7036-130-1 Kresba na obálce: Lubomír Hanel OBSAH ÚVOD . .5 TAXONOMICKÉ POZNÁMKY . 6 ERRATA K 1. DÍLU . 7 ADDENDA K 1. DÍLU . 8 STRUNATCI (CHORDATA) . 9 OBRATLOVCI (VERTEBRATA) . 9 ČELISTNATCI (GNATHOSTOMATA) . 9 NOZDRATÍ (SARCOPTERYGII) . 9 LALOKOPLOUTVÍ (COELACANTHIMORPHA) . 9 LATIMÉRIE (COELACANTHIFORMES) . 9 DVOJDYŠNÍ (DIPNOI) . 9 JEDNOPLICNÍ (CERATODIFORMES) . 9 DVOUPLICNÍ (LEPIDOSIRENIFORMES) . 9 PAPRSKOPLOUTVÍ (ACTINOPTERYGII) . 10 CHRUPAVČITÍ (CHONDROSTEI) . 10 MNOHOPLOUTVÍ (POLYPTERIFORMES) . 10 JESETEŘI (ACIPENSERIFORMES) . 10 KOSTNATÍ (NEOPTERYGII) . 11 KOSTLÍNI (SEMIONOTIFORMES) . 11 KAPROUNI (AMIIFORMES) . 11 OSTNOJAZYČNÍ (OSTEOGLOSSIFORMES) . 12 3 TARPONI (ELOPIFORMES) . 16 ALBULOTVAŘÍ (ALBULIFORMES) . 16 HOLOBŘIŠÍ (ANGUILLIFORMES) . 17 VELKOTLAMKY (SACCOPHARYNGIFORMES)
    [Show full text]
  • Aggression Heuristics Underlie Animal Dominance Hierarchies and Provide Evidence of Group-Level Social Information
    Aggression heuristics underlie animal dominance hierarchies and provide evidence of group-level social information Elizabeth A. Hobsona,b,*, Dan Mønsterc,d,e, and Simon DeDeob,f aDepartment of Biological Sciences, University of Cincinnati, Cincinnati, OH USA bSanta Fe Institute, Santa Fe, NM USA cInteracting Minds Centre, Aarhus University, Aarhus C, Denmark dSchool of Business and Social Sciences, Aarhus University, Aarhus V, Denmark eCognition and Behavior Lab, Aarhus University, Aarhus V, Denmark fSocial and Decision Sciences, Dietrich College, Carnegie Mellon University, Pittsburgh, PA USA *Corresponding author: [email protected] Abstract Members of a social species need to make appropriate decisions about who, how, and when to interact with others in their group. However, it has been difficult for researchers to detect the inputs to these decisions and, in particular, how much information individuals actually have about their social context. We present a new method that can serve as a social assay to quantify how patterns of aggression depend upon information about the ranks of individuals within social dominance hierarchies. Applied to existing data on aggression in 172 social groups across 85 species in 23 orders, it reveals three main patterns of rank-dependent social dominance: the downward heuristic (aggress uniformly against lower-ranked opponents), close competitors (aggress against opponents ranked slightly below self), and bullying (aggress against opponents ranked much lower than self). The majority of the groups (133 groups, 77%) follow a downward heuristic, but a significant minority (38 groups, 22%) show more complex social dominance patterns (close competitors or bullying) consistent with higher levels of social information use.
    [Show full text]
  • Banggai Cardinalfish ([I]Pterapogon Kauderni[I])
    1 Banggai cardinalfish ( Pterapogon kauderni ) populations (stocks) around Banggai Island, 2 a geometric and classical morphometric approach 1 2 3 Samliok Ndobe and Abigail Moore 4 1 Faculty of Animal Husbandry and Fisheries, Tadulako University, Palu, Central Sulawesi, 5 Indonesia. Email: [email protected] 6 2 Sekolah Tinggi Perikanan dan Kelautan (STPL), Palu, Central Sulawesi, Indonesia. Email: 7 [email protected] 8 Corresponding author: Abigail M. Moore s t n 9 Postal Address: Sekolah Tinggi Perikanan dan Kelautan (STPL), Kampus Madani, i r P 10 Jl Soekarno-Hatta km6, Palu 94118, Sulawesi Tengah, Indonesia e r 11 Telephone (office): +62 451 4709936 P 12 Email: [email protected] 13 ABSTRACT 14 Background. The identification and characterisation of appropriate management units 15 (stocks) is important as a basis for responsible fisheries management as well as conservation 16 of within species biodiversity. The Banggai cardinalfish Pterapogon kauderni (F.P. 17 Koumans,1933), a mouthbrooding apogonid with Endangered status (IUCN Red List) has 18 been shown to have a high level of genetic population structure across the endemic 19 distribution in the Banggai Archipelago. With a life-cycle making recovery frrm extirpation 20 extremely unlikely, this indicates a need to conserve each reproductively isolated population 21 (stock), in particular to support zonation of Banggai Island in the context of the proposed 22 district marine protected area. Genetic and morphological variations are often but not always 23 related, and ideally both should be used in stock identification. However there were no data 24 on classical or geometric morphometric characteristics of P. kauderni populations. PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.182v1 | CC-BY 3.0 Open Access | received: 30 Dec 2013, published: 30 Dec 2013 1 25 Methods.
    [Show full text]
  • Genome Sequences of Tropheus Moorii and Petrochromis Trewavasae, Two Eco‑Morphologically Divergent Cichlid Fshes Endemic to Lake Tanganyika C
    www.nature.com/scientificreports OPEN Genome sequences of Tropheus moorii and Petrochromis trewavasae, two eco‑morphologically divergent cichlid fshes endemic to Lake Tanganyika C. Fischer1,2, S. Koblmüller1, C. Börger1, G. Michelitsch3, S. Trajanoski3, C. Schlötterer4, C. Guelly3, G. G. Thallinger2,5* & C. Sturmbauer1,5* With more than 1000 species, East African cichlid fshes represent the fastest and most species‑rich vertebrate radiation known, providing an ideal model to tackle molecular mechanisms underlying recurrent adaptive diversifcation. We add high‑quality genome reconstructions for two phylogenetic key species of a lineage that diverged about ~ 3–9 million years ago (mya), representing the earliest split of the so‑called modern haplochromines that seeded additional radiations such as those in Lake Malawi and Victoria. Along with the annotated genomes we analysed discriminating genomic features of the study species, each representing an extreme trophic morphology, one being an algae browser and the other an algae grazer. The genomes of Tropheus moorii (TM) and Petrochromis trewavasae (PT) comprise 911 and 918 Mbp with 40,300 and 39,600 predicted genes, respectively. Our DNA sequence data are based on 5 and 6 individuals of TM and PT, and the transcriptomic sequences of one individual per species and sex, respectively. Concerning variation, on average we observed 1 variant per 220 bp (interspecifc), and 1 variant per 2540 bp (PT vs PT)/1561 bp (TM vs TM) (intraspecifc). GO enrichment analysis of gene regions afected by variants revealed several candidates which may infuence phenotype modifcations related to facial and jaw morphology, such as genes belonging to the Hedgehog pathway (SHH, SMO, WNT9A) and the BMP and GLI families.
    [Show full text]
  • Towards a Regional Information Base for Lake Tanganyika Research
    RESEARCH FOR THE MANAGEMENT OF THE FISHERIES ON LAKE GCP/RAF/271/FIN-TD/Ol(En) TANGANYIKA GCP/RAF/271/FIN-TD/01 (En) January 1992 TOWARDS A REGIONAL INFORMATION BASE FOR LAKE TANGANYIKA RESEARCH by J. Eric Reynolds FINNISH INTERNATIONAL DEVELOPMENT AGENCY FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bujumbura, January 1992 The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. PREFACE The Research for the Management of the Fisheries on Lake Tanganyika project (Tanganyika Research) became fully operational in January 1992. It is executed by the Food and Agriculture organization of the United Nations (FAO) and funded by the Finnish International Development Agency (FINNIDA). This project aims at the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake-wide fisheries management policy for the four riparian States (Burundi, Tanzania, Zaïre and Zambia). Particular attention will be also given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the buildup of effective coordination mechanisms to ensure full collaboration between the Governments concerned.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name
    [Show full text]
  • A Small Cichlid Species Flock from the Upper Miocene (9–10 MYA)
    Hydrobiologia https://doi.org/10.1007/s10750-020-04358-z (0123456789().,-volV)(0123456789().,-volV) ADVANCES IN CICHLID RESEARCH IV A small cichlid species flock from the Upper Miocene (9–10 MYA) of Central Kenya Melanie Altner . Bettina Reichenbacher Received: 22 March 2020 / Revised: 16 June 2020 / Accepted: 13 July 2020 Ó The Author(s) 2020 Abstract Fossil cichlids from East Africa offer indicate that they represent an ancient small species unique insights into the evolutionary history and flock. Possible modern analogues of palaeolake Waril ancient diversity of the family on the African conti- and its species flock are discussed. The three species nent. Here we present three fossil species of the extinct of Baringochromis may have begun to subdivide haplotilapiine cichlid Baringochromis gen. nov. from their initial habitat by trophic differentiation. Possible the upper Miocene of the palaeolake Waril in Central sources of food could have been plant remains and Kenya, based on the analysis of a total of 78 articulated insects, as their fossilized remains are known from the skeletons. Baringochromis senutae sp. nov., B. same place where Baringochromis was found. sonyii sp. nov. and B. tallamae sp. nov. are super- ficially similar, but differ from each other in oral-tooth Keywords Cichlid fossils Á Pseudocrenilabrinae Á dentition and morphometric characters related to the Palaeolake Á Small species flock Á Late Miocene head, dorsal fin base and body depth. These findings Guest editors: S. Koblmu¨ller, R. C. Albertson, M. J. Genner, Introduction K. M. Sefc & T. Takahashi / Advances in Cichlid Research IV: Behavior, Ecology and Evolutionary Biology. The tropical freshwater fish family Cichlidae and its Electronic supplementary material The online version of estimated 2285 species is famous for its high degree of this article (https://doi.org/10.1007/s10750-020-04358-z) con- phenotypic diversity, trophic adaptations and special- tains supplementary material, which is available to authorized users.
    [Show full text]
  • Exchange April 2018 Area of Concern—Lake Tanganyika Do You CARE
    The CARES April 2018 Exchange Area of Concern—Lake Tanganyika Do You CARE Crossword Challenge Data Submission Deadline April 30 Welcome to The CARES Exchange. The primary intent of this publication is to make available a listing of CARES fish from the CARES membership to those that may be searching for CARES species. The Cichlid Room Companion is the most It is important to understand that all transac- comprehensive website for reliable cichlid tions are between the buyer and seller and information in the world. For all things cich- CARES in no way moderates any exchanges lid, including information, photos, and videos including shipping problems, refunds, or bad on most CARES Priority List species, visit blood between the two parties. This directo- CRC at www.cichlidae.com. ry merely provides an avenue to which CARES fish may be located. As with all sales, be certain that all the elements of the The CARES Family exchange are worked out before purchasing American Cichlid Association or shipping. Aquarium Club of Lancaster County Brooklyn Aquarium Society No hybrids will knowingly be listed. Capital Cichlid Association Chatham-Kent Aquarium Society There is no cost to place a for sale ad. Your Cichlid Club of York ad may be submitted by contacting the editor, Columbus Area Fish Enthusiasts Greg Steeves, at [email protected]. Danbury Area Aquarium Society Durham Region Aquarium Society If your organization is interested in partici- Federation of Texas Aquarium Societies pating in CARES, review the CARES Startup Grand Valley Aquarium Club tab on the website CARESforfish.org, then Greater Cincinnati Aquarium Society contact Klaus Steinhaus at Greater City Aquarium Society [email protected].
    [Show full text]
  • Depth Segregation and Diet Disparity Revealed by Stable Isotope Analyses
    Hata et al. Zoological Letters (2015) 1:15 DOI 10.1186/s40851-015-0016-1 RESEARCH ARTICLE Open Access Depth segregation and diet disparity revealed by stable isotope analyses in sympatric herbivorous cichlids in Lake Tanganyika Hiroki Hata1*, Jyunya Shibata2,3, Koji Omori2, Masanori Kohda4 and Michio Hori5 Abstract Background: Lake Tanganyika in the African Great Rift Valley is known as a site of adaptive radiation in cichlid fishes. Diverse herbivorous fishes coexist on a rocky littoral of the lake. Herbivorous cichlids have acquired multiple feeding ecomorphs, including grazer, browser, scraper, and scooper, and are segregated by dietary niche. Within each ecomorph, however, multiple species apparently coexist sympatrically on a rocky slope. Previous observations of their behavior show that these cichlid species inhabit discrete depths separated by only a few meters. In this paper, using carbon (C) and nitrogen (N) stable isotope ratios as markers, we followed the nutritional uptake of cichlid fishes from periphyton in their feeding territories at various depths. Results: δ15N of fish muscles varied among cichlid ecomorphs; this was significantly lower in grazers than in browsers and scoopers, although δ15N levels in periphyton within territories did not differ among territorial species. This suggests that grazers depend more directly on primary production of periphyton, while others ingest animal matter from higher trophic levels. With respect to δ13C, only plankton eaters exhibited lower values, suggesting that these fishes depend on production of phytoplankton, while the others depend on production of periphyton. Irrespective of cichlid ecomorph, δ13C of periphyton correlated significantly with habitat depth, and decreased as habitat depth became deeper.
    [Show full text]
  • A Link Between Host Dispersal and Parasite Diversity in Two Sympatric Cichlids of Lake Tanganyika
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lirias Freshwater Biology (2015) 60, 323–335 doi:10.1111/fwb.12492 A link between host dispersal and parasite diversity in two sympatric cichlids of Lake Tanganyika , † € , ‡ , § , ¶ ARNOUT F. GREGOIR* , PASCAL I. HABLUTZEL*,MAARTENP.M.VANHOVE* , ‡ ANTOINE PARISELLE**, JOLIEN BAMPS , FILIP A. M. VOLCKAERT* AND †† JOOSTA.M.RAEYMAEKERS*, *Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Leuven, Belgium † Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Leuven, Belgium ‡ Biology Department, Royal Museum for Central Africa, Tervuren, Belgium §Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic ¶Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavyssos, Greece **Institut des Sciences de l’Evolution, IRD, CNRS, B.P. 1857, Universite Montpellier 2, Yaounde, Cameroon †† Zoological Institute, University of Basel, Basel, Switzerland SUMMARY 1. A major goal in ecology is to unravel how species assemblages emerge and how they are struc- tured across the landscape. Host–parasite systems are particularly interesting in this context, as limited host dispersal may promote the differentiation of parasite communities. 2. We examined whether the patterns of species diversity in Cichlidogyrus, a genus of monogenean parasitic flatworms with a direct life cycle, are consistent with the hypothesis that parasite diversity is driven by host dispersal. This was carried out by comparing two sympatric cichlid hosts (Tropheus moorii and Simochromis diagramma) with contrasting dispersal abilities. Genetic connectivity among host populations along the Zambian shoreline of Lake Tanganyika was estimated using microsatellite genotyping.
    [Show full text]