Magnetostratigraphy of a Core from Raton Basin, New Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Magnetostratigraphy of a Core from Raton Basin, New Mexico Magnetostratigraphyof a core lrom Raton Basin, NewMexico-implications forsynchroneity of CretaceouslTertiary boundary euents by MichaelA. Payne,En<onProduction ResearchCo., Houston, TX, and DonaldL. Wolberg,Paleontologist, and Ailrian Hunf, ResearchAssistant, New Mexico Bureau of Mines and Mineral Resources,Socorro, NM The magneticpolarity stratigraphyof a The Raton Formation may be up to 610 m various proposed Cretaceous-Tertiary 30.5-m(100.l-fQ-long core from the Raton (2,001ft) thick (Ash and Tidwell, L976) and boundaries have proven inconclusive. This Basinin New Mexicohas been obtained. contains the Cretaceous-Tertiary (K-T) situation is unfortunate given the extant pa- The core includesthe palynologicallyde- boundary. Fossilsare poorly representedwith leomagnetic/paleontologic documentation terminedCretaceous-Tertiarv boundarv and the exception of paleobotanicmaterials. Leaf available. However, Orth provided accessto aniridium abundanceanomily. The bound- (100.1-ft) ary is shownto lie in a normalpolarity zone, floras are known from the Trinidad Sand- the 30.5-m Raton core, drilled by asverified by hand samplescollected from stone, the Vermejo Formation, and the Raton Los Alamos Laboratorv, with a demon- the basin,thus placingin gravedoubt the Formation (Brown, 1943).Brown (7943,1962) strated iridium anomaly-at the palynologic validity of a synchronousworldwide ex- consideredthe lower 15m (49ft) of the Raton CretaceourTertiary boundary. Addition- tinction event. Formation, containing the problematic plant ally, samples were taken from surface ex- f.ossl Paleoasterinquirenda Knowlton, to be posures near the town of Raton at the Introduction Cretaceousin age and the upper part Paleo- Cretaceous-Tertiary boundary. Fig. 3 is a cene. Tschudy (1973)located the palynolog- generalized representation of the 30.5-m The Raton Basinis a large sedimentary and ical Cretaceous-Tertiarv boundarv at 81 m (100.1-ft)core showing dominant lithologies structural basin in northeast New Mexico and (266 ft) and 88 m (289 it; above the base of and paleomagnetic sampling intervals. southeastColorado 10,000 km, (3,861 mir) in the Raton Formation on the basis of core area (Fig. 1). More than 3,700 m (12,138ft) samples.Tschudy (in Orth and others, 1981) Experimental procedure of sedimentary rocks of Late Cretaceous- reestablishedthe palynological Cretaceous- Eocene age are present in the Raton Basin Cylindrical plug samples were obtained at Tertiary boundary in a newly drilled core and Wood, 1956;Baltz, 1965).The approximately 30-cm intervals from the Los flohnson "within a L m interval between a coal bed Upper Cretaceousand Paleocenerock units, Alamos core (Fig. 3). The well-consolidated centered at a depth of 255.7 m and a car- in ascending order, are the Trinidad Sand- siltstones were cored and sliced wet to 2.5 bonaceous shale at 256.7 m." This palyno- stone, the Vermejo Formation, the Raton cm (1 inch) cylinders. The friable shaleswere Iogical boundary occurs at the same Formation, and the Poison Canyon Forma- sliceddry to fit inside 1.7 x 2 x 2 mm plas- stratigraphic position as an iridium abun- tion; these rock units record the iinal regres- tic containers. Three additional oriented dance anomaly with concentrations of up to sion of the Cretaceousepeiric seaway from sampleswere collected in Raton Park on the 5,000ppt, and it is the first record of an iri- the Westem Interior of North America. west side of Raton, New Mexico. These sam- dium anomaly in continental sediments. ples were between 15 cm below and 57 cm We found it apparent that 1) anomalously above the palynological Cretaceous-Tertiary high concentrations of Ir at the Cretaceous- boundary and iridium abundancezone. Three Tertiary boundary, when combined with specimenswere taken from each sample. Ex- magnetic polarities, might have a far-reach- treme care was taken to maintain vertical up ing value for stratigraphic correlation of geo- for all specimens. graphically widely separated rock units and that 2) the concentrationsmight provide use- ]F ful data for resolving shatigraphic argu- ffi ments regarding the stratigraphy of the San A.F ol @lcrop ol uprrmGl Alsoin this issue: r€loc€ous ond lorer ond m'ddre Juan Basin at or adjacent to the Cretaceous- p. Tertiary Uraniumindustry in NewMexico 45 boundary. Paleontologic/magneto- Bryozoanand crustaceanfrom stratigraphic data were interpreted to indi- p.52 cate that the FruitlandFormation Cretaceous-Tertiary boundary, Redefinitionof Zuni ".nit*€ based on the highest occurrence of din6- p,56 saurs/ occurs within the normal polarity zone Sandstone CoyoteCreek State Park p, 60 correlative with anomaly 29 (Butler and others, p.62 1977;Lindsay and others, 1978;Lindsay and Service/News others, 1981). Thus, dinosaur extinction in Gomingsoon the San ]uan Basin occurred later than ma- rine foraminiferal extinctions at Gubbio, It- BacaFormation glyptosaurine lizard aly, where extinctions occurred high in the Cephalopodaptychifrom Los Moyos FIGLJREl-Location map of study area showing Limestone strucfural boundaries, distribution of Cretaceous reversed magnetozone betwden anomalies and Tertiary rocks, and sampling localities for Ra- 29 and 30 (Alvarez and others, 1977). Five-yearcumulative index to Nenr ton core (LA-YCI) and exposures(RH-L,3, 4; aftet To date, our efforts to locate an iridium Mexico Geology fohnson and others, 1966). anomaly in the San |uan Basin at or near Results The samples from the Raton Basin core were generally very weakly magnetized. NRMs"were typically on the-ordeiof a few '). times 10-'O ^' (10-oA m Demagneti- zation to 20 mT usually decreasedthis by a factor of 2 to 5. In addition, the median de- structive field (MDF) for these samples was relatively low. MDFs were typically less than 20 mT with many of them being lessthan 10 mT. This lowness usually indicates that the primary magnetic carrier is magnetite, as- sumed to be detrital . Fig. 2 is a plot of the inclination of the magnetically cleaned spec- imens as a function of core depth; the mean inclination for eachsample is also plotted. A certain degree of scatter in the paleomag- netic data is apparent. Therefore, a set of criteria was developed after the one men- tioned by Lerbekmo and others (1979). Be- cause the inclination to be expected for a = Cretaceous-Paleocenesample collected from - ^-^ the Raton Basin is about 60', and the incli- a 5fu nations measured for normal-polarity San o |uan Basin sampleswere on the order of 30'- 50" (Lindsay, Butler, and others, 1981),the I range of possible inclinations was divided into three segments: - 90" to - 30' (re- versed), -30o to +30'(indeterminate), and + 30'to * 90" (normal).A samplewas deemed to be of reversed (R) polarity if one or more of its specimenswere reversedand none were normal; or if two were reversed and one were normal; or if there were one specimenin each of the three segments.A samplewas deemed to be indeterminate (I) if all three specimens were indeterminate; or if two were indeter- minate and one were normal; or if two were . lnlensity > lO-4Am-l o tntensify < lo-4Am-l New A4exnco x Meon of three specimens GEOLOGY o Scioncoand Sorvico Volume 5, No. 3, August 1983 published quarterly by -9O-8O -60 -40 -?O O +20 +4O +60 .80 +90 New Mexico Bureau ofMines and Mineral Resources a division of New Mexico Institute of Mining & Technology Incl inotto n FIGURE 2-Inclination of magnetization for specimens from Raton Basin core as a function of core BOARD OF REGENTS depth. The palynological Cretaceous-Tertiary boundary and iridium abundance zone occurs at 839 Ex Officio a 1; Toney Anaya, Covenor of Ne|| Mexico (Orth and others, 1981).Solid dots represent samples with intensities Breater than L0 A m open Leonard DeLayo, Szperintendenl of Public Inslruction dots represent samples with intensities less than 10 a Am 1. The mean of three specimens yielding Appointed sample inclination is represented by an x. Judy Royd, Prcs., l9?7-1987, Ia Ctuces Willim G. Abbon, Secty/Ireas., 196l-1985, Hobbs Donald W Moris, 1983-1989, /-or Al@os Roben Ir€ Silchez, 1983-1989, Albuqwrque Steve Tores, 1967-1985, Socorro A few of the cylindrical samples were in- microprocessorwas used to make the mag- itially measured on a Schonstedt SSM-I netization measurements.Demagnetiza- New Mexico lnstitute of Mining & Technology Pr5idql . ...... LaurenceH.Lattman spinner magnetometer interfaced with a tions were performed using a Schonstedt New Mexico Bureau ofMines & Mineral Resources North Star microcomputer. The specimens GSD-5 tumbling specimenAF demagnetizer. Director . .. FrankE.Kottlowski Geor8,e S. Austitr were demagnetized in 5-mT (milliteslas- At least one specimen from each sample was Deputt Direclot Subscriptiod: lssued quarterly, February, May, August' measurementof magnetic intensity) steps fully stepwise demagnetized in 10 mT steps November; subscription price $6.00/yr. using a home-built alternating-field demag- to at least 40 mT. The natural remanent mag- Editoriol motter Contributions of possible material for netizer.The weaknessof the magnetization netization (NRM) and the magnetization re- consideration in future issues of NMC are welcome. Articles submitted fot publication should be in the ed- precluded demagnetizing beyond 15 mT or, maining after at least one demagnetization itor's hands a minimum of five (5) months before date in some cases,20 mT. Most of the measure- (usually 20 mT) were measured for each of of pub[cation (Februaty, May, August, or Novenber). Address inquiries to Marla D. Adkins-Heljeson, editor of ments and further demagnetizations of the the remaining specimens.Fisher statistics New Mexico Aeobgy, New Mexico Bureau of Mines & specimensinitially measured at New Mexico were then applied to the three specimens Mincral Resources. Socorro. NM 87801 Institute of MiningandTechnology were made from each sample to obtain sample mean di- Published os public domoin, therefore reproducible without at the PaleomagneticsLaboratory at the Uni- rections. Because declinations were arbi- perm ision. Sour@ credi I reques led. Cirulation: l,4N versity of Arizona. An ScT two-axis cry- trary, the declination for each specimen was Prirrer.
Recommended publications
  • Chapter SR a SUMMARY of TERTIARY COAL RESOURCES OF
    Chapter SR A SUMMARY OF TERTIARY COAL RESOURCES OF THE RATON BASIN, COLORADO AND NEW MEXICO By R.M. Flores and L.R. Bader in U.S. Geological Survey Professional Paper 1625-A Contents Introduction...........................................................................................................................SR-1 Stratigraphy...........................................................................................................................SR-2 Depositional Environments...............................................................................................SR-5 Description of Coal Zones.................................................................................................SR-7 Coal Quality..........................................................................................................................SR-9 Original Resources............................................................................................................SR-12 Production History............................................................................................................SR-13 Coal-bed Methane..............................................................................................................SR-15 Conclusions.........................................................................................................................SR-17 References...........................................................................................................................SR-19 Figures SR-1. Map showing the geology
    [Show full text]
  • The Relationship Between the Iridium Anomaly and Palynological Floral Events at Three Cretaceous-Tertiary Boundary Localities in Western Canada
    The relationship between the iridium anomaly and palynological floral events at three Cretaceous-Tertiary boundary localities in western Canada JOHN F. LERBEKMO University of Alberta, Department of Geology, Edmonton, Alberta T6G 2E3, Canada ARTHUR R. SWEET Geological Survey of Canada, 3303 33 Street N. W., Calgary, Alberta T2L 2E7, Canada ROBERT M. ST. LOUIS* University of Alberta, Department of Geology, Edmonton, Alberta T6G 2E3, Canada ABSTRACT Snead, 1969; a series of papers by Srivastava, culminating in Srivastava, 1970; Leffingwell, 1971; Tschudy, 1971; Sweet, 1978) concerning the Profiles illustrating the abundance of iridium and the changes in region from Colorado through Montana and into Saskatchewan and the relative abundances of major groups within the palynoflora are Alberta substantiated Stanley's work. Collectively, these papers demon- given for three localities from western Canada. The peak abundance strate that the flora coexisting with the dinosaurian Triceratops fauna (of of iridium ranges from 1.35 to 5.60 ppb and corresponds to the base of late Maastrichtian age; Jeletzky, 1960) is characterized by a diverse suite a coal and to a floral-extinction event at the three localities. Imme- of angiosperm pollen that generally dominates the over-all assemblage. diately above the iridium-peak anomaly, angiosperm pollen is con- The most visually conspicuous taxa in this flora belong to Aquilapollenites, spicuous in the assemblage, in contrast to the fern-spore spike Wodehouseia, and allied angiosperm genera, although they rarely exceed a described for sections in the mid-continental United States and at the few percent in relative abundance. Above beds carrying the Triceratops Morgan Creek locality in south-central Saskatchewan.
    [Show full text]
  • Geological Survey Research 1961 Synopsis of Geologic and Hydrologic Results
    Geological Survey Research 1961 Synopsis of Geologic and Hydrologic Results GEOLOGICAL SURVEY PROFESSIONAL PAPER 424-A Geological Survey Research 1961 THOMAS B. NOLAN, Director GEOLOGICAL SURVEY PROFESSIONAL PAPER 424 A synopsis ofgeologic and hydrologic results, accompanied by short papers in the geologic and hydrologic sciences. Published separately as chapters A, B, C, and D UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1961 FOEEWOED The Geological Survey is engaged in many different kinds of investigations in the fields of geology and hydrology. These investigations may be grouped into several broad, inter­ related categories as follows: (a) Economic geology, including engineering geology (b) Eegional geologic mapping, including detailed mapping and stratigraphic studies (c) Eesource and topical studies (d) Ground-water studies (e) Surface-water studies (f) Quality-of-water studies (g) Field and laboratory research on geologic and hydrologic processes and principles. The Geological Survey also carries on investigations in its fields of competence for other Fed­ eral agencies that do not have the required specialized staffs or scientific facilities. Nearly all the Geological Survey's activities yield new data and principles of value in the development or application of the geologic and hydrologic sciences. The purpose of this report, which consists of 4 chapters, is to present as promptly as possible findings that have come to the fore during the fiscal year 1961 the 12 months ending June 30, 1961. The present volume, chapter A, is a synopsis of the highlights of recent findings of scientific and economic interest. Some of these findings have been published or placed on open file during the year; some are presented in chapters B, C, and D ; still others have not been pub­ lished previously.
    [Show full text]
  • The Serendipitous Discovery of an Extraterrestrial Iridium Anomaly at the Cretaceous-Palaeogene Boundary in Gubbio and the Rise of a Far-Reaching Theory
    TO L O N O G E I L C A A P I ' T A A T L E I I A Bollettino della Società Paleontologica Italiana, 58 (1), 2019, 77-83. Modena C N O A S S. P. I. The serendipitous discovery of an extraterrestrial iridium anomaly at the Cretaceous-Palaeogene boundary in Gubbio and the rise of a far-reaching theory Alessandro Montanari & Rodolfo Coccioni A. Montanari, Osservatorio Geologico di Coldigioco, Contrada Coldigioco, I-62021 Apiro, Italy; [email protected] R. Coccioni, Dipartimento di Scienze Pure ed Applicate, Università degli Studi di Urbino Carlo Bo, Piazza della Repubblica 13, I-61029 Urbino, Italy; [email protected] KEY WORDS - Alvarez Hypothesis, mass extinctions, paradigm shift, Italy. ABSTRACT - It is not so frequent that in a scientific investigation using a deductive approach, an unforeseen result leads to a new hypothesis, which grows stronger through the same deductive approach of investigation, and eventually becomes a theory leading to a paradigm shift. The theory that a catastrophic impact of an extraterrestrial object, a comet or an asteroid, on the Earth caused a global mass extinction at the end of the Cretaceous Period strongly challenged the Lyellian paradigm of gradualism/uniformitarianism. In the 1980s, a nonconformist theory sprouted from the serendipitous discovery of an iridium anomaly in an inconspicuous clay layer marking the Cretaceous-Palaeogene boundary in the pelagic succession of Gubbio and opened the way to forty years of heated debates and thousands of scientific publications in the most disparate fields of Earth and planetary sciences. With this paper, our intention is to recount the scientific background, which led to the formulation of this theory.
    [Show full text]
  • Sedimentation, Pedogenesis, and Paleoclimate Conditions in the Paleocene San Juan Basin, New Mexico, U.S.A
    University of New Mexico UNM Digital Repository Earth and Planetary Sciences ETDs Electronic Theses and Dissertations 7-1-2016 Sedimentation, pedogenesis, and paleoclimate conditions in the Paleocene San Juan Basin, New Mexico, U.S.A. Kevin Hobbs Follow this and additional works at: https://digitalrepository.unm.edu/eps_etds Recommended Citation Hobbs, Kevin. "Sedimentation, pedogenesis, and paleoclimate conditions in the Paleocene San Juan Basin, New Mexico, U.S.A.." (2016). https://digitalrepository.unm.edu/eps_etds/104 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Earth and Planetary Sciences ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Kevin Michael Hobbs Candidate Earth and Planetary Sciences Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Peter Fawcett, Chairperson Dr. Leslie McFadden Dr. Gary Weissmann Dr. Thomas Williamson i SEDIMENTATION, PEDOGENESIS, AND PALEOCLIMATE CONDITIONS IN THE PALEOCENE SAN JUAN BASIN, NEW MEXICO, U.S.A. by KEVIN MICHAEL HOBBS B.S., Geology, The University of the South, 2006 M.S., Geological Sciences, The University of Idaho, 2010 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Earth and Planetary Sciences The University of New Mexico Albuquerque, New Mexico July 2016 ii ACKNOWLEDMENTS I thank the following persons for professional help in the form of discussions, critique of ideas, or suggestions during the research and writing of this dissertation: From the Earth and Planetary Sciences Department: Viorel Atudorei, Adrian Brearley, Ben Burnett, Jeff Carritt, Laura Crossey, Magdalena Donahue, Maya Elrick, John Geissmann, Nick George, Karl Karlstrom, Bekah Levine, Grant Meyer, Corrinne Myers, Lyman Persico, Jane Selverstone, Zach Sharp, Mike Spilde.
    [Show full text]
  • The Historical Record in the Scaglia Limestone at Gubbio: Magnetic Reversals and the Cretaceous-Tertiary Mass Extinction
    Sedimentology (2009) 56, 137Ð148 doi: 10.1111/j.1365-3091.2008.01010.x The historical record in the Scaglia limestone at Gubbio: magnetic reversals and the Cretaceous-Tertiary mass extinction WALTER ALVAREZ Department of Earth and Planetary Science, University of California, Berkeley, CA 94720-4767, USA (E-mail: [email protected]) ABSTRACT The Scaglia limestone in the Umbria-Marche Apennines, well-exposed in the Gubbio area, offered an unusual opportunity to stratigraphers. It is a deep- water limestone carrying an unparalleled historical record of the Late Cretaceous and Palaeogene, undisturbed by erosional gaps. The Scaglia is a pelagic sediment largely composed of calcareous plankton (calcareous nannofossils and planktonic foraminifera), the best available tool for dating and long-distance correlation. In the 1970s it was recognized that these pelagic limestones carry a record of the reversals of the magnetic field. Abundant planktonic foraminifera made it possible to date the reversals from 80 to 50 Ma, and subsequent studies of related pelagic limestones allowed the micropalaeontological calibration of more than 100 Myr of geomagnetic polarity stratigraphy, from ca 137 to ca 23 Ma. Some parts of the section also contain datable volcanic ash layers, allowing numerical age calibration of the reversal and micropalaeontological time scales. The reversal sequence determined from the Italian pelagic limestones was used to date the marine magnetic anomaly sequence, thus putting ages on the reconstructed maps of continental positions since the breakup of Pangaea. The Gubbio Scaglia also contains an apparently continuous record across the CretaceousÐTertiary boundary, which was thought in the 1970s to be marked everywhere in the world by a hiatus.
    [Show full text]
  • On the Path of Discovery: the Controversy and Science Behind Chicxulub Crater
    ON THE PATH OF DISCOVERY: THE CONTROVERSY AND SCIENCE BEHIND CHICXULUB CRATER A MODE TO FURTHER UNDERSTANDING THE NATURE OF SCIENCE IN GEOLOGY WYATT PETRYSHEN CONTENTS 1 Preface . 3 1. On The Path Of Discovery Act Ⅰ: A Mysterious Ash . 5 Act Ⅱ: An Unchanged Earth. 11 Act Ⅲ: A Smoking Gun. 15 Act Ⅳ: A Union of Evidence. 22 Act Ⅴ: The Epilogue . 29 2. Activity: Finding A Crater . 32 Map 1 . 33 3. Further Readings A Strange Angle . 34 Neutron Activation Analysis . 37 Teaching Notes . 39 4. Acknowledgements . 40 5. Bibliography . 41 PREFACE The below passages are a collection of narratives intended to further the understanding of the nature of science in geology. The main body On the Path of Discovery, brings the reader through a self guided tour of scientists conducting real-world research. Open ended reflection questions occur throughout the 2 narrative to facilitate active discussions and to help develop an understanding in the nature of science. An activity is included to simulate the real-world research tasks conducted for the original scientific discovery. The section Further Readings has been put in place to expand on some of the scientific topics discussed in the case study. The Further Readings are written in a different tone then On the Path of Discovery; their main purpose is to clarify scientific topics. Acknowledgments and a detailed bibliography have also been included in this collection. “I think it's much more interesting to live not knowing than to have answers which might be wrong. I have approximate answers and possible beliefs and different degrees of uncertainty about different things, but I am not absolutely sure of anything and there are many things I don't know anything about,… I don't have to know an answer.
    [Show full text]
  • Co-Raton-Mesa-Nm.Pdf
    D-5 I I I~ ..--- ~..,.....----~__O~~--- I I I UNITED STATES DEPARTMENT OF THE INTERIOR NATIONAL SE I I I I II I Cover painting "FISHERS PEAK" by Arthur Roy Mitchell, commissioned for the Denver Post's Collection of Western Art, reproduced through the courtesy of Palmer Hoyt, Editor. I I.1 I I SYNOPSIS NOT FOR FU~LIC l{ELEASJ Raton Mesa near Trinidad, Colorado, about 200 miles south of Denver, I is the highest, most scenic, impressive and accessible of a scattered group of lava-capped mesas straddling the eastern half of the Colorado- I New Mexico boundary. It and its highest part, Fishers Peak, are well I known landmarks dating back to the days of the Santa Fe Trail which~ traverses Raton Pass on its southwest flank, today crossed by an interstate high- I way. Three distinct, easily recognized vegetative zones, mostly forest, lay on its slopes; the Mesa top is a high mountain grassland. I Ancient lava flows covered portions of this region, the Raton I section of the Great Plains physiographic province, millions of years ago when the surface was much higher. These flows protected the mesas from subsequent erosion which has carried away the surrounding territory, • leaving Fishers Peak today towering 4,000 feet above the City of Trinidad. I Lavas at Capulin Mountain, a National Monument located nearby in New I Mexico, though at a lower elevation, are thought to be much more recent. Raton Pass was a strategic point on the Mountain Branch of the I Santa Fe Trail during the Mexican and Civil Wars, and to travelers past and present a clima~~ gateway to the southwest.
    [Show full text]
  • Ascent of Dinosaurs Linked to an Iridium Anomaly at the Triassic-Jurassic Boundary
    R EPORTS sion, the network ties become less correlated 11. R. Breiger, Social Forces 53, 181 (1974). 17. P. Killworth, H. Bernard, Soc. Networks 1, 159 (1978). as H increases. In the limit of large H, the 12. B. Bolloba«s, Random Graphs (Academic Press, New 18. B. Manneville, The Biology of Business: Decoding the York, 1985). Natural Laws of the Enterprise (Jossey-Bass, San Fran- network becomes essentially a random graph 13. M. Newman, D. Watts, Phys. Rev. E 60, 7332 (1999). cisco, 1999), chap. 5. (regardless of ␣) and the search algorithm 14. J. Kleinberg, Proc. 32nd ACM Symposium on Theory of 19. We thank J. Kleinberg for beneficial discussions. This becomes a random walk. An effective decen- Computing (Association for Computing Machinery, work was funded in part by the National Science New York, 2000). Foundation (grants SES-00-94162 and DMS- tralized search therefore requires a balance 0109086), the Intel Corporation, and the Columbia 15. H. C. White, Social Forces 49, 259 (1970). University Office of Strategic Initiatives. (albeit a highly forgiving one) of categorical 16. H. Bernard, P. Killworth, M. Evans, C. McCarty, G. flexibility and constraint. Shelly, Ethnology 27, 155 (1988). 23 January 2002; accepted 3 April 2002 Finally, by introducing parameter choices that are consistent with Milgram’s experiment (N ϭ 108, p ϭ 0.25) (1), as well as with subsequent empirical findings (z ϭ 300, H ϭ 2) Ascent of Dinosaurs Linked to (17, 16), we can compare the distribution of chain lengths in our model with that of Travers an Iridium Anomaly at the and Milgram (1) for plausible values of ␣ and b.
    [Show full text]
  • Italic Page Numbers Indicate Major References]
    Index [Italic page numbers indicate major references] Abbott Formation, 411 379 Bear River Formation, 163 Abo Formation, 281, 282, 286, 302 seismicity, 22 Bear Springs Formation, 315 Absaroka Mountains, 111 Appalachian Orogen, 5, 9, 13, 28 Bearpaw cyclothem, 80 Absaroka sequence, 37, 44, 50, 186, Appalachian Plateau, 9, 427 Bearpaw Mountains, 111 191,233,251, 275, 377, 378, Appalachian Province, 28 Beartooth Mountains, 201, 203 383, 409 Appalachian Ridge, 427 Beartooth shelf, 92, 94 Absaroka thrust fault, 158, 159 Appalachian Shelf, 32 Beartooth uplift, 92, 110, 114 Acadian orogen, 403, 452 Appalachian Trough, 460 Beaver Creek thrust fault, 157 Adaville Formation, 164 Appalachian Valley, 427 Beaver Island, 366 Adirondack Mountains, 6, 433 Araby Formation, 435 Beaverhead Group, 101, 104 Admire Group, 325 Arapahoe Formation, 189 Bedford Shale, 376 Agate Creek fault, 123, 182 Arapien Shale, 71, 73, 74 Beekmantown Group, 440, 445 Alabama, 36, 427,471 Arbuckle anticline, 327, 329, 331 Belden Shale, 57, 123, 127 Alacran Mountain Formation, 283 Arbuckle Group, 186, 269 Bell Canyon Formation, 287 Alamosa Formation, 169, 170 Arbuckle Mountains, 309, 310, 312, Bell Creek oil field, Montana, 81 Alaska Bench Limestone, 93 328 Bell Ranch Formation, 72, 73 Alberta shelf, 92, 94 Arbuckle Uplift, 11, 37, 318, 324 Bell Shale, 375 Albion-Scioio oil field, Michigan, Archean rocks, 5, 49, 225 Belle Fourche River, 207 373 Archeolithoporella, 283 Belt Island complex, 97, 98 Albuquerque Basin, 111, 165, 167, Ardmore Basin, 11, 37, 307, 308, Belt Supergroup, 28, 53 168, 169 309, 317, 318, 326, 347 Bend Arch, 262, 275, 277, 290, 346, Algonquin Arch, 361 Arikaree Formation, 165, 190 347 Alibates Bed, 326 Arizona, 19, 43, 44, S3, 67.
    [Show full text]
  • K/T Mass Extinction
    Death from Outer Space, Did an Asteroid Impact Wipe out the Dinosaurs? The asteroid Gaspra - 7x7x12 miles A Gallery of Asteroids Was it really an asteroid? We must have multiple working hypotheses! Dinosaurs forgot to board the Ark K/T Boundary 66 MY Age of Dinosaurs Geologic Time Scale K-T extinction record Wyoming The K/T impact clay layer, T Gubbio, Italy. Iridium anomaly first found here. K = Cretaceous K T = Tertiary Iridium anomaly in the K/T rocks at Gubbio, Italy, 20 cm in parts per billion (PPB). K/T 0 boundary 10 cm PPB 0 10 The K/T boundary in New Mexico is marked by the white claystone just above the head of the hammer. Claire Belcher, Geology Department, University of London The white claystone layer marks the K/T boundary The K/T boundary in Spain Known distribution of sites with K/T Iridium anomaly Map of major impact sites in North America The Berringer Crater in Arizona, 50,000 years old. 4000 ft across -- formed by 100 ft meteorite. Why craters are so much larger than the objects that make them. Like shooting a bullet into a soft target. The Manicougan Crater in Quebec,late Triassic in age -- 100 km diameter Gosses Bluff, Australia. Crater age is 142 Ma, but no mass extinction. A 4 km wide asteroid hit America at the end of the Eocene, 35 m.y. ago the Chicxulub Crater Late Cretaceous Paleogeography Gravity anomaly map of Yucatan area 3D representation of gravity anomaly Another representation of the gravity anomaly on the Yucatan Penninsula: the Chicxulub Crater Tektites from the asteroid impact – melted rock Enlargement of a tektite from the Atlantic sea floor Tektites from the K/T boundary in New Jersey Map showing distribution of tektites by size.
    [Show full text]
  • Asteroids and Dinosaurs: Unexpected Twists and an Unfinished Story
    1 Asteroids and dinosaurs: Unexpected twists and an unfinished story Plate tectonics might seem like a routine topic from a 7th grade textbook, but in the 1970s, plate tectonics was cutting-edge science. The theory had only gained widespread acceptance over the previous ten years and subsequently attracted scads of scientists looking to open up new intellectual frontiers. Walter Alvarez was one of them, but his research into plate tectonics was destined to be sidelined. An intriguing observation would eventually lead him, his collaborators, and the rest of science on an intellectual journey across geology, chemistry, paleontology, and atmospheric science—to- Fig. 1. At left, Luis and Walter Alvarez stand by the rock layers near Gubbio, Italy, where unusually high traces of wards solving one of the great mysteries in Earth’s his- iridium were found at the Cretaceous-Tertiary boundary. Was tory: What happened to the dinosaurs (Fig. 1)? this evidence that of an ancient supernova or an ancient asteroid impact? And what, if anything did it have to do with This case study highlights these aspects of the nature the dinosaur extinction? of science: • Science can test hypotheses about events that happened long ago. • Scientific ideas are tested with multiple lines of evidence. • Science relies on communication within a diverse scientific community. • The process of science is non-linear, unpredictable, and ongoing. • Science often investigates problems that require collaboration from those in many different disciplines. From plate tectonics to paleontology One of the key pieces of evidence supporting plate tec- tonic theory was the discovery that rocks on the sea- floor record ancient reversals of the Earth’s magnetic field: as rocks are formed where plates are moving away from one another, they record the current direction of the Earth’s magnetic field, which flip-flops irregularly over very long periods of time (Fig.
    [Show full text]