Soil Functions, Global Diversity, and Distribution an Introduction in the Context of Global Cropping Systems PLSCS/IARD 4140

Total Page:16

File Type:pdf, Size:1020Kb

Soil Functions, Global Diversity, and Distribution an Introduction in the Context of Global Cropping Systems PLSCS/IARD 4140 Soil functions, global diversity, and distribution An introduction in the context of global cropping systems PLSCS/IARD 4140 D G Rossiter NY State College of Agriculture & Life Sciences 31-August-2021 Outline Soil functions, global diversity, and 1 distribution Introduction D G Rossiter 2 Soil functions Introduction Soil functions 3 Soil diversity Soil diversity Soil 4 Soil distribution distribution Soil geographic 5 Soil geographic databases databases Drivers of 6 Drivers of change in soil properties change in soil properties Sustainability 7 Sustainability challenges challenges Conclusion 8 Conclusion Soil? { CALS Arts Quad Soil functions, global diversity, and distribution D G Rossiter Introduction Soil functions Soil diversity Soil distribution Soil geographic databases Drivers of change in soil properties Sustainability challenges Conclusion Table of Contents Soil functions, global diversity, and 1 distribution Introduction D G Rossiter 2 Soil functions Introduction Soil functions 3 Soil diversity Soil diversity Soil 4 Soil distribution distribution Soil geographic 5 Soil geographic databases databases Drivers of 6 Drivers of change in soil properties change in soil properties Sustainability 7 Sustainability challenges challenges Conclusion 8 Conclusion What do we mean by \soils"? Soil functions, global diversity, and distribution D G Rossiter The Earth's epidermis Introduction thickness not clearly defined, \soil" (≈ 2 m in most Soil functions studies) vs. \regolith" (all loose material above hard rock) typical zone of influence for crops 30 cm { 1.5 m Soil diversity Soil The interface between atmosphere, lithosphere, distribution biosphere, hydrosphere, anthrosphere Soil geographic databases Almost all the transformations and energy fluxes on Drivers of \solid" earth take place in soils change in soil properties Pedogenesis (soil formation) from these fluxes, hence Sustainability vertical differentiation within soil profiles challenges Conclusion Yangzhou, Jiangsu province PRC Soil functions, global diversity, and distribution D G Rossiter Introduction Soil functions Soil diversity Soil distribution Soil geographic databases Drivers of change in soil properties Sustainability challenges Conclusion _ÏlÞ_ý:ªG, hÞZëãÊ In prose . Soil functions, global diversity, and distribution \. the outer solid portions of the earth readily pass D G Rossiter into a loose and disintegrated condition. This layer, Introduction although superficial and insignificant in comparison to Soil functions the bulk of the earth, has performed and is still Soil diversity performing a marvelous function. \[containing] Soil reactions of almost unbelievable complexity. distribution \This debris of rock and plant residue, teeming with Soil geographic its microscopic life and ever restless in its endless databases efforts at equilibrium is the arable soil from which Drivers of 1 change in soil man must obtain his bread" properties Sustainability { Lyon, T. L., & Buckman, H. O. (1922). The nature and properties of soils; a challenges college text of edaphology., pp. 1{2 Conclusion 1note: \man, his" in their inclusive sense The Critical Zone and its fluxes Soil functions, global diversity, and distribution D G Rossiter Introduction Soil functions Soil diversity Soil distribution Soil geographic databases Drivers of change in soil properties Sustainability challenges Conclusion Source: https: //criticalzone.org/national/models/conceptual-models-1national/ Soils and humans Soil functions, global diversity, and distribution D G Rossiter Introduction Soil functions Humans have a large influence on soil functions and Soil diversity properties Soil distribution The soil is a finite resource and can be semi-permanently Soil lost (erosion) or (often irreversibly) degraded geographic databases (salinization, compaction . ) Drivers of change in soil properties Sustainability challenges Conclusion Soil functions, global diversity, and distribution D G Rossiter Introduction Soil functions Soil diversity Soil distribution Soil geographic databases Drivers of change in soil properties Sustainability challenges Conclusion Kourites (Koυρητ"&´ ), Crete (Kρητη´ ) (GR) Table of Contents Soil functions, global diversity, and 1 distribution Introduction D G Rossiter 2 Soil functions Introduction Soil functions 3 Soil diversity Soil diversity Soil 4 Soil distribution distribution Soil geographic 5 Soil geographic databases databases Drivers of 6 Drivers of change in soil properties change in soil properties Sustainability 7 Sustainability challenges challenges Conclusion 8 Conclusion Textbook { introduction to soils for crop ecology Soil functions, global diversity, and distribution Connor, D. J. (2011). Crop ecology: Productivity and management in agricultural D G Rossiter systems (2nd ed.). Cambridge University Press. ISBN 978-0-521-76127-7; Introduction Chapter 7 \Soil Resources" pp. 171-192 Soil functions Relevance for cropping systems? Soil diversity Soil chemistry Soil distribution Soil formation Soil geographic Soil types and uses databases Soil properties Drivers of change in soil properties Water and air components Sustainability Soil temperature relations challenges Conclusion Discuss these in terms of soil functions. Soil functions { concept Soil functions, global diversity, and distribution How the soil affects the atmosphere, lithosphere, D G Rossiter biosphere, hydrosphere, anthrosphere on{, off–site Introduction Soil functions An old idea, e.g. Blum, W. E. H., & Santelises, A. A. (1994). A Soil diversity concept of sustainability and resilience based on soil functions: The role of Soil ISSS in promoting sustainable land use. In D. J. Greenland & I. Szabolics distribution (Eds.), Soil resilience and sustainable land use (pp. 535``542). CAB Soil geographic International. databases Drivers of Increasingly recognized outside of soil science, e.g. change in soil Bouma, J. (2014). Soil science contributions towards Sustainable properties Sustainability Development Goals and their implementation: Linking soil functions with challenges ecosystem services. Journal of Soil Fertility and Soil Science, 177, 111``120. Conclusion https://doi.org/10.1002/jpln.201300646 Soils in the Sustainable Development Goals Soil functions, global diversity, and distribution D G Rossiter Introduction Soil functions Soil diversity Soil distribution Soil geographic databases Drivers of change in soil properties Sustainability challenges Conclusion Source: https: //www.un.org/sustainabledevelopment/sustainable-development-goals/ Soil functions, global Water purification diversity, and and soil contaminant Climate reduction regulation distribution Carbon fao.org/soils-2015 sequestration GHGs D G Rossiter Soil DDT CO CH NO functions Provision of food, CO fibre and fuel Introduction Nutrient Soils deliver cycling Soil functions ecosystem Soil diversity services C N P Ca Soil that enable S Zn K Habitat for distribution organisms life on Earth Cultural heritage Soil geographic databases UNSAFE Drivers of SAFE change in soil properties Sustainability Provision of Flood construction regulation challenges materials Conclusion with the support of Foundation for human Source of pharmaceuticals infrastructure and genetic resources Soil functions and the Sustainable Development The significance of soils and soil Goals science towards realization of the UN sustainable development goals A GRAPHICAL ABSTRACT Soil functions, 12 Achieve gender 2 Ensure inclusive and equality and Ensure global 7 equitable quality empower all availability and 1 9 diversity, and 10 education and promote women and girls sustainable 8 lifelong learning management of water 7 6 Ensure 11 9 opportunities for all and sanitation for all 5 5 Ensure distribution healthy lives 12 1 access to and promote 5 4 1 2 4 affordable, reliable, 1 well-being for 6 3 sustainable and modern 2 3 all at all ages HUMAN D G Rossiter End 4 energy for all 1 HEALTH 6 hunger, achieve 5 3 3 WATER 5 food security and 7 Flood SECURITY 2 improved nutrition and Provision of 7 Promote 2 mitigation 1 promote sustainable support for human 4 sustained, inclusive Provision of infrastructures and Introduction 1 agriculture and sustainable economic 2 2 raw materials animals growth, full and 4 FOOD 1 productive employment 2 SECURITY 3 HYDROLOGY Filtering of nutrients and decent work 4 Soil functions 5 and contaminants for all 3 Storing, 2 End poverty in all 1 AGRONOMY 2 filtering its forms everywhere 5 and transforming 8 4 Provision of food, 2 Soil diversity 1 5 Biomass nutrients, substances 3 6 1 wood and fibre production, and water Build resilient 1 Biodiversity including agriculture CLIMATOLOGY Carbon storage infrastructure, promote pool, such as 9 1 and forestry and greenhouse inclusive and sustainable habitats, species Soil gases regulation industrialization and Sustainable and genes Ecosytem Soil SOIL foster innovation Development distribution Services Functions SCIENCE Goals Physical and cultural 2 3 Archive of environment for humans Detoxification geological and and human activities 7 and the recycling Reduce inequality Soil 7 archaeological of wastes 10 within and among Acting as Source of heritage countries geographic Strengthen the 17 Cultural carbon pool raw material 4 means of implementation and 2 12 identity 4 revitalize the global partnership 5 11 5 databases for sustainable 6 8 Make cities and human settlements development Regulation of pests and 4 inclusive, safe, resilient Heritage ECOLOGY disease populations 9 and sustainable 11 values 12 11 9 Drivers of Promote
Recommended publications
  • Soil Contamination and Human Health: a Major Challenge For
    Soil contamination and human health : A major challenge for global soil security Florence Carre, Julien Caudeville, Roseline Bonnard, Valérie Bert, Pierre Boucard, Martine Ramel To cite this version: Florence Carre, Julien Caudeville, Roseline Bonnard, Valérie Bert, Pierre Boucard, et al.. Soil con- tamination and human health : A major challenge for global soil security. Global Soil Security Sympo- sium, May 2015, College Station, United States. pp.275-295, 10.1007/978-3-319-43394-3_25. ineris- 01864711 HAL Id: ineris-01864711 https://hal-ineris.archives-ouvertes.fr/ineris-01864711 Submitted on 30 Aug 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Human Health as another major challenge of Global Soil Security Florence Carré, Julien Caudeville, Roseline Bonnard, Valérie Bert, Pierre Boucard, Martine Ramel Abstract This chapter aimed to demonstrate, by several illustrated examples, that Human Health should be considered as another major challenge of global soil security by emphasizing the fact that (a) soil contamination is a worldwide issue, estimations can be done based on local contamination but the extent and content of diffuse contamination is largely unknown; (b) although soil is able to store, filter and reduce contamination, it can also transform and make accessible soil contaminants and their metabolites, contributing then to human health impacts.
    [Show full text]
  • Evolution of Loess-Derived Soil Along a Topo-Climatic Sequence in The
    European Journal of Soil Science, May 2017, 68, 270–280 doi: 10.1111/ejss.12425 Evolution of loess-derived soil along a climatic toposequence in the Qilian Mountains, NE Tibetan Plateau F. Yanga,c ,L.M.Huangb,c,D.G.Rossitera,d,F.Yanga,c,R.M.Yanga,c & G. L. Zhanga,c aState Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NO. 71 East Beijing Road, Xuanwu District, Nanjing 210008, China, bKey Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11(A), Datun Road, Chaoyang District, Beijing 100101, China, cUniversity of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China, and dSchool of Integrative Plant Sciences, Section of Soil and Crop Sciences, Cornell University, Ithaca NY 14853, USA Summary Holocene loess has been recognized as the primary source of the silty topsoil in the northeast Qinghai-Tibetan Plateau. The processes through which these uniform loess sediments develop into diverse types of soil remain unclear. In this research, we examined 23 loess-derived soil samples from the Qilian Mountains with varying amounts of pedogenic modification. Soil particle-size distribution and non-calcareous mineralogy were changed only slightly because of the weak intensity of chemical weathering. Accumulation of soil organic carbon (SOC) and leaching of carbonate were both identified as predominant pedogenic responses to soil forming processes. Principal component analysis and structural analysis revealed the strong correlations between soil carbon (SOC and carbonate) and several soil properties related to soil functions.
    [Show full text]
  • Soil As a Huge Laboratory for Microorganisms
    Research Article Agri Res & Tech: Open Access J Volume 22 Issue 4 - September 2019 Copyright © All rights are reserved by Mishra BB DOI: 10.19080/ARTOAJ.2019.22.556205 Soil as a Huge Laboratory for Microorganisms Sachidanand B1, Mitra NG1, Vinod Kumar1, Richa Roy2 and Mishra BB3* 1Department of Soil Science and Agricultural Chemistry, Jawaharlal Nehru Krishi Vishwa Vidyalaya, India 2Department of Biotechnology, TNB College, India 3Haramaya University, Ethiopia Submission: June 24, 2019; Published: September 17, 2019 *Corresponding author: Mishra BB, Haramaya University, Ethiopia Abstract Biodiversity consisting of living organisms both plants and animals, constitute an important component of soil. Soil organisms are important elements for preserved ecosystem biodiversity and services thus assess functional and structural biodiversity in arable soils is interest. One of the main threats to soil biodiversity occurred by soil environmental impacts and agricultural management. This review focuses on interactions relating how soil ecology (soil physical, chemical and biological properties) and soil management regime affect the microbial diversity in soil. We propose that the fact that in some situations the soil is the key factor determining soil microbial diversity is related to the complexity of the microbial interactions in soil, including interactions between microorganisms (MOs) and soil. A conceptual framework, based on the relative strengths of the shaping forces exerted by soil versus the ecological behavior of MOs, is proposed. Plant-bacterial interactions in the rhizosphere are the determinants of plant health and soil fertility. Symbiotic nitrogen (N2)-fixing bacteria include the cyanobacteria of the genera Rhizobium, Free-livingBradyrhizobium, soil bacteria Azorhizobium, play a vital Allorhizobium, role in plant Sinorhizobium growth, usually and referred Mesorhizobium.
    [Show full text]
  • A Systemic Approach for Modeling Soil Functions
    SOIL, 4, 83–92, 2018 https://doi.org/10.5194/soil-4-83-2018 © Author(s) 2018. This work is distributed under SOIL the Creative Commons Attribution 4.0 License. A systemic approach for modeling soil functions Hans-Jörg Vogel1,5, Stephan Bartke1, Katrin Daedlow2, Katharina Helming2, Ingrid Kögel-Knabner3, Birgit Lang4, Eva Rabot1, David Russell4, Bastian Stößel1, Ulrich Weller1, Martin Wiesmeier3, and Ute Wollschläger1 1Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany 2Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany 3TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Straße 2, 85354 Freising, Germany 4Senckenberg Museum of Natural History, Sonnenplan 7, 02826 Görlitz, Germany 5Martin-Luther-University Halle-Wittenberg, Institute of Soil Science and Plant Nutrition, Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany Correspondence: Hans-Jörg Vogel ([email protected]) Received: 13 September 2017 – Discussion started: 4 October 2017 Revised: 2 February 2018 – Accepted: 14 February 2018 – Published: 15 March 2018 Abstract. The central importance of soil for the functioning of terrestrial systems is increasingly recognized. Critically relevant for water quality, climate control, nutrient cycling and biodiversity, soil provides more func- tions than just the basis for agricultural production. Nowadays, soil is increasingly under pressure as a limited resource for the production of food, energy and raw materials. This has led to an increasing demand for concepts assessing soil functions so that they can be adequately considered in decision-making aimed at sustainable soil management. The various soil science disciplines have progressively developed highly sophisticated methods to explore the multitude of physical, chemical and biological processes in soil.
    [Show full text]
  • Progressive and Regressive Soil Evolution Phases in the Anthropocene
    Progressive and regressive soil evolution phases in the Anthropocene Manon Bajard, Jérôme Poulenard, Pierre Sabatier, Anne-Lise Develle, Charline Giguet- Covex, Jeremy Jacob, Christian Crouzet, Fernand David, Cécile Pignol, Fabien Arnaud Highlights • Lake sediment archives are used to reconstruct past soil evolution. • Erosion is quantified and the sediment geochemistry is compared to current soils. • We observed phases of greater erosion rates than soil formation rates. • These negative soil balance phases are defined as regressive pedogenesis phases. • During the Middle Ages, the erosion of increasingly deep horizons rejuvenated pedogenesis. Abstract Soils have a substantial role in the environment because they provide several ecosystem services such as food supply or carbon storage. Agricultural practices can modify soil properties and soil evolution processes, hence threatening these services. These modifications are poorly studied, and the resilience/adaptation times of soils to disruptions are unknown. Here, we study the evolution of pedogenetic processes and soil evolution phases (progressive or regressive) in response to human-induced erosion from a 4000-year lake sediment sequence (Lake La Thuile, French Alps). Erosion in this small lake catchment in the montane area is quantified from the terrigenous sediments that were trapped in the lake and compared to the soil formation rate. To access this quantification, soil processes evolution are deciphered from soil and sediment geochemistry comparison. Over the last 4000 years, first impacts on soils are recorded at approximately 1600 yr cal. BP, with the erosion of surface horizons exceeding 10 t·km− 2·yr− 1. Increasingly deep horizons were eroded with erosion accentuation during the Higher Middle Ages (1400–850 yr cal.
    [Show full text]
  • IMPROVING AGRICULTURAL RESILIENCE to CLIMATE CHANGE THROUGH SOIL MANAGEMENT Peningkatan Ketahanan Pertanian Terhadap Perubahan Iklim Melalui Pengelolaan Tanah
    ImprovingJ. Litbang agricultural Pert. Vol. resilience 32 No. to2 Juniclimate 2013: change ....-.... .... (Fahmuddin Agus et al.) 147 IMPROVING AGRICULTURAL RESILIENCE TO CLIMATE CHANGE THROUGH SOIL MANAGEMENT Peningkatan Ketahanan Pertanian terhadap Perubahan Iklim melalui Pengelolaan Tanah Fahmuddin Agus, Husnain, and Rahmah Dewi Yustika Indonesian Soil Research Institute Jalan Tentara Pelajar No. 12, Bogor 16114, Indonesia Phone. (0251) 8336757, Fax. (0251) 8321608 E-mail: [email protected]; [email protected] Diterima: 29 Maret 2015; Direvisi: 7 Oktober 2015; Disetujui: 21 Oktober 2015 ABSTRACT musim hujan dan musim kemarau yang sulit diduga, dan penurunan atau kenaikan jumlah curah hujan merupakan kondisi yang tidak menguntungkan yang dapat memengaruhi pertumbuhan dan Climate change affects soil properties and hence crop growth. produksi tanaman. Beberapa pendekatan, baik secara tunggal atau Several soil management practices potentially reduce vulnerability kombinasi dari dua atau lebih tindakan, bisa dipilih untuk to unfavorable climate conditions. This paper reviews how climate beradaptasi dengan perubahan iklim. Ini termasuk olah tanah change affects soil properties and how should soil management be konservasi, konservasi tanah vegetatif dan mekanis, penggunaan tailored to increase adaptation capacity to extreme climatic mulsa, pemanenan air, pengelolaan hara, ameliorasi tanah, dan conditions. The main symptoms of climate change such as the manajemen biologi tanah. Pengelolaan bahan organik tanah sangat increase in the global atmospheric temperature, unpredictable sentral dalam praktik pengelolaan tanah karena bahan organik onset of the wet and dry seasons and excessive or substantial tanah berperan penting dalam meningkatkan kapasitas tanah decrease in rainfall are unfavorable conditions that affect crop memegang air, meningkatkan kapasitas infiltrasi dan perkolasi growth and production.
    [Show full text]
  • Improving Soil and Soil Functions
    IMPROVING SOIL AND SOIL FUNCTIONS BAMPA FRANCESCA AND CREAMER RACHEL (WUR) AGRIRESEARCH CONFERENCE, INNOVATING FOR THE FUTURE OF FARMING AND RURAL COMMUNITIES BRUXELLES, 3RD MAY 2018 This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 635201. SOILS ARE A FINITE RESOURCE compaction loss of biodiversity salinisation loss of organic matter flooding contamination landslides erosion sealing ...FROM THREATS TO FUNCTIONS 2 www.landmark2020.eu email [email protected] twitter @Landmark2020 02/05/2018 DEMANDS ON OUR LAND How do we increase our productivity? I want to grow my milk output by 50% DEMANDS ON OUR LAND 3 www.landmark2020.eu email [email protected] twitter @Landmark2020 02/05/2018 DEMANDS ON OUR LAND We need better water regulation by our land… 4 www.landmark2020.eu email [email protected] twitter @Landmark2020 02/05/2018 DDEMANDSEMANDS ONONOUROURLANDLAND We need to protect our We need to sequester carbon resources carbon 5 www.landmark2020.eu email [email protected] twitter @Landmark2020 02/05/2018 DEMANDS ON OUR LAND We need to find a home for our waste… 6 www.landmark2020.eu email [email protected] twitter @Landmark2020 02/05/2018 DEMANDS ON OUR LAND Soil biodiversity is the driver of many processes in soils Protect the home of biodiversity Lijbert Brussaard WHAT CAN OUR LAND SUPPLY? Water Provision Primary and purification Production Carbon sequestration Nutrient Cycling Habitat for biodiversity All soils / land perform all functions …but different parts of the land(scape) are better at delivering different functions Schulte et al., 2014 More info - interactive glossary http://landmark2020.eu/landmark-glossary/ 8 www.landmark2020.eu email [email protected] twitter @Landmark2020 02/05/2018 LAND MANAGEMENT: ASSESSMENT, RESEARCH, KNOWLEDGE BASE Objective: to quantify the supply of soil functions across the EU as determined by soil properties, land use and soil management practices.
    [Show full text]
  • Soil Resilience and Sustainability of Semi-Arid and Humid Tropical Soils of India: a Commentary*
    Agropedology 2016, 26 (01), 1-9 Soil Resilience and Sustainability of Semi-Arid and Humid Tropical Soils of India: A Commentary* M. Velayutham1* and D.K. Pal2 1Former Director, Indian Council of Agricultural Research-National Bureau of Soil Survey and Land Use Planning (NBSS&LUP), Nagpur, India; and Former Executive Director, M.S. Swaminathan Research Foundation, Chennai, India. 2Former Head, Division of Soil Resource Studies, NBSS&LUP, Nagpur, India and Visiting Scientist, ICRISAT, Hyderabad, India. Introduction Historic non - resilient soil situation leading to abandoning of the site, due to man-made soil degradation has Soil is a dynamic and living natural resource, which been recorded as in the collapse of Harappan civilization of supports to produce goods and services of value to humans the Indo-Gangetic Plains. In present times we are witnessing but not necessarily with perpetual ability against the it in the shifting cultivation areas of North - East India, by the degradative processes. It is well known that soil formation is rapidity with which old sites are abandoned and new sites are a slow process, and a substantial amount of soil can form only chosen for cultivation. over a geologic timescale. Soil misuse and extreme climatic conditions can damage self-regulating capacity and give way A wealth of soil information has been developed by to regressive pedogenesis (Pal et al. 2013), and thus might the NARS, state government departments and ISRO. Pal lead to the soil to regress from higher to lower usefulness and et al. (2000), Bhattacharyya et al. (2013) have given a or drastically diminished productivity.
    [Show full text]
  • Soil Organic Carbon Storage As a Key Function of Soils
    Geoderma 333 (2019) 149–162 Contents lists available at ScienceDirect Geoderma journal homepage: www.elsevier.com/locate/geoderma Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales T ⁎ Martin Wiesmeiera,b, , Livia Urbanskia, Eleanor Hobleya, Birgit Langc, Margit von Lützowa, Erika Marin-Spiottad, Bas van Wesemaele, Eva Rabotf, Mareike Ließf, Noelia Garcia-Francoa, Ute Wollschlägerf, Hans-Jörg Vogelf, Ingrid Kögel-Knabnera,g a Chair of Soil Sciences, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany b Bavarian State Research Center for Agriculture, Institute for Organic Farming, Soil and Resource Management, Freising, Germany c Senckenberg Museum of Natural History Görlitz, Görlitz, Germany d Department of Geography, University of Wisconsin-Madison, 550 North Park Street, Madison, WI 53706, USA e Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium f Helmholtz Centre for Environmental Research - UFZ, Halle, Germany g Institute for Advanced Study, Technical University of Munich, Garching, Germany ARTICLE INFO ABSTRACT Handling Editor: Junhong Bai The capacity of soils to store organic carbon represents a key function of soils that is not only decisive for climate ff ff Keywords: regulation but also a ects other soil functions. Recent e orts to assess the impact of land management on soil Clay mineralogy functionality proposed that an indicator- or proxy-based approach is a promising alternative to quantify soil Specific surface area functions compared to time- and cost-intensive measurements, particularly when larger regions are targeted. The Metal oxides objective of this review is to identify measurable biotic or abiotic properties that control soil organic carbon Microorganisms (SOC) storage at different spatial scales and could serve as indicators for an efficient quantification of SOC.
    [Show full text]
  • A Review on the Interactive Exploration of Soil Health and How to Improve It to Boost Crop Production
    International Journal of Innovative Agriculture & Biology Research 7(1):39-46, Jan.-Mar., 2019 © SEAHI PUBLICATIONS, 2019 www.seahipaj.org ISSN: 2354- 2934 A Review on the Interactive Exploration of Soil Health and How to Improve It to Boost Crop Production Mohammed D. Toungos (Ph.D.) Department Of Crop Science , Adamawa State University Mubi, Adamawa State, Nigeria Corresponding Author Email: [email protected]; [email protected] ABSTRACT Soil health is becoming so important these days as a result of more and more, producers are understanding that healthy soils are more productive and lead to healthier crops. This led to more about sustainable production practices that can help build healthy soil that can sustain the production of healthier crops to the populace. These can be achieved by exploring the on-farm benefits of using cover crops, crop rotation, manure amendments, composting and more on the complex web of life below the surface of the soil in order to improve them. Soil management encompasses a number of strategies used by farmers and ranchers to protect soil resources, one of their most valuable assets. By practicing soil conservation, including appropriate soil preparation methods, they reduce soil erosion and increase soil stabilization. Soil health is a state of a soil meeting its range of ecosystem functions as appropriate to its environment. Soil health testing is an assessment of this status. Soil health depends on soil biodiversity (with a robust soil biota), and it can be improved via soil conditioning. The underlying principle in the use of the term ―soil health‖ is that soil is not just an inert, lifeless growing medium, which modern farming tends to represent, rather it is a living, dynamic and ever-so-subtly changing whole environment.
    [Show full text]
  • Soil Health Principles for Organic Production Systems
    SOIL HEALTH PRINCIPLES FOR ORGANIC PRODUCTION SYSTEMS OUR APPROACH UNDERSTANDING SOIL HEALTH Iroquois Valley takes a systems-based approach to soil health, recognizing Iroquois Valley works with organic that soil health principles work together to maintain and improve soil and transitioning farmers because of function, and aims for continuous improvement over time. We work their commitment to the environment with a diverse set of farms, from grains production to agroforestry, and and human health. The USDA Organic our soil health principles were developed to be adapted to each. Standard requires that a certified operation must work to maintain or Iroquois Valley’s operations strive to improve soil health through seven improve natural resources, including principles: soil. Iroquois Valley’s farmers use natural processes and materials to manage their operations closer to how a natural system would. Our farmers use the shared intent of greater Eliminating soil health captured in both the Integrating livestock chemical Organic Standard and the Soil Health disturbance Principles for Organic Production to guide their management decisions. Iroquois Valley’s certified organic Keeping Appropriate farmer partners know that soil is a continuous use of living roots tillage living system that is integral to their SOIL operation. They use the knowledge HEALTH gained from one season to inform management decisions for the next, cumulatively leading to greater soil Maximizing Appropriate health over time. Our farmers see soil plant biological health as a continuous improvement diversity disturbance process and part of an overall system of management, not as a checklist Providing and of practices. The exact portfolio of maintaining practices implemented will vary from soil cover farm to farm as do soil types and the natural resources vary from place to place.
    [Show full text]
  • Guides for Educators (May 2014) Soil Organic Matter (SOM)
    Soil organic matter (SOM) is necessary for all soil functions, and it is the most important indicator of soil health. It is the organic component of soil. It consists of varying proportions of small plant residue (fresh), small living soil organisms, decomposing (active) organic matter, and stable organic matter (humus) in varying stages (fig. 1). SOM is a mineralizable source of nutrients for crops. It increases the availability of most nutrients, buffers the effects of high acidity, increases the available water capacity and moisture retention of the soil, helps to minimize compaction and surface crusting, increases water infiltration, provides food for micro-organisms that facilitate the availability of nutrients, holds soil aggregates together, decomposes pesticides, and acts as a carbon sink. The content of SOM can be estimated in the field and/or in a lab. The results can be used to estimate the amount of mineralized nitrogen, phosphorus, and sulfur available for crop production, which is needed to determine the appropriate application of fertilizers. As SOM increases, the buffering capacity of the soil also increases. Thus, the amount of surface-applied herbicides needed to effectively control weeds increases, the potential for herbicide carryover for future crops decreases, and the amount of lime needed to raise pH increases. Figure 1.—Major components of soil organic matter (Source: Soil Food Web; USDA, NRCS). Page 1 Guides for Educators (May 2014) Soil Health – Organic Matter USDA-NRCS Inherent Factors Affecting Soil Organic Matter Inherent factors affecting soil organic matter Both the top growth and roots of grass include climate and soil texture and clay vegetation dies continually each growing mineralogy.
    [Show full text]