Heavy-Duty Diesel Vehicle Modal Emission Model (HDDV-MEM) Volume I: Modal Emission Modeling Framework

Total Page:16

File Type:pdf, Size:1020Kb

Heavy-Duty Diesel Vehicle Modal Emission Model (HDDV-MEM) Volume I: Modal Emission Modeling Framework EPA-600/R-05/090a August 2005 Heavy-Duty Diesel Vehicle Modal Emission Model (HDDV-MEM) Volume I: Modal Emission Modeling Framework EPA-600/R-05/090a August 2005 Heavy-Duty Diesel Vehicle Modal Emission Model (HDDV-MEM) Volume I: Modal Emission Modeling Framework by Randall Guensler Seungju Yoon Chunxia Feng Hainan Li Jungwook Jun School of Civil and Environmental Engineering Georgia Institute of Technology Atlanta, GA Contract No: 4C-R022-NAEX EPA Project Officer: Sue Kimbrough U.S. Environmental Protection Agency National Risk Management Research Laboratory Air Pollution Prevention and Control Division Research Triangle Park, NC 27711 U.S. Environmental Protection Agency Office of Research and Development Washington, DC 20460 Abstract The research reported in this document outlines a proposed heavy-duty Diesel vehicle modal emission modeling framework (HDDV-MEMF) for heavy-duty diesel-powered trucks and buses. The heavy-duty vehicle modal modules being developed under this research effort, although different from the structure within the motor vehicle emissions simulator (MOVES) model, should be compatible with it. In the proposed HDDV-MEMF, emissions from heavy-duty vehicles are predicted as a function of hours of on-road operation at specific engine horsepower loads. Hence, the basic algorithms and matrix calculations in the new heavy-duty diesel vehicle modeling framework should be transferable to MOVES. The specific implementation approach employed by the research team to test the model in Atlanta is somewhat different from other approaches in that an existing geographic information system (GIS) based modeling tool is being adapted to the task. The new model implementation is similar in general structure to the previous modal emission rate model known as the Mobile Assessment System for Urban and Regional Evaluation (MEASURE) model. Sponsored by the U.S. Environmental Protection Agency, this exploratory framework is designed to be applied to a variety of policy assessments. The model can be used to evaluate policies aimed at reducing the emission rates from heavy-duty vehicles as well as policies designed to change the on-road operating characteristics to reduce emissions. ii Foreword The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nation’s land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA’s research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future. The National Risk Management Research Laboratory (NRMRL) is the Agency’s center for investigation of technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory’s research program is on methods and their cost-effectiveness for prevention and control of pollution to air, land, water, and subsurface resources; protection of water quality in public water systems; remediation of contaminated sites, sediments and ground water; prevention and control of indoor air pollution; and restoration of ecosystems. NRMRL collaborates with both public and private sector partners to foster technologies that reduce the cost of compliance and to anticipate emerging problems. NRMRL’s research provides solutions to environmental problems by: developing and promoting technologies that protect and improve the environment; advancing scientific and engineering information to support regulatory and policy decisions; and providing the technical support and information transfer to ensure implementation of environmental regulations and strategies at the national, state, and community levels. This publication has been produced as part of the Laboratory’s strategic long-term research plan. It is published and made available by EPA’s Office of Research and Development to assist the user community and to link researchers with their clients. Sally Gutierrez, Director National Risk Management Research Laboratory iii EPA Review Notice This report has been peer and administratively reviewed by the U.S. Environmental Protection Agency and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161. iv Table of Contents Section Page Abstract.................................................................ii Foreword............................................................... iii List of Figures.......................................................... viii List of Tables ........................................................... ix Acronyms ...............................................................x Acknowledgments ...................................................... xiii Executive Summary .......................................................1 Introduction .............................................................5 Modeling Parameters ......................................................7 Goals and Objectives ...................................................7 Pollutants Modeled.....................................................7 Approach.............................................................8 The Geographic Information System.........................................13 GIS Spatial Analysis Framework.........................................13 Infrastructure ........................................................14 Operating Environment ................................................14 Subfleet Characterization and Traffic Volumes.................................17 Vehicle Technology Groups .............................................17 Emitter Classifications .................................................19 On-Road Traffic Volumes ..............................................19 Emissions Rate Differences .............................................20 Transit Buses ........................................................21 Off-road Activity .....................................................21 Freight and Passenger Loads ...............................................23 Truck Loads .........................................................23 Transit Passenger Loads................................................25 On-Road Operating Characteristics ..........................................27 Engine Power Functions...................................................29 Accessory Power Loss .................................................31 Drive Train Power Loss................................................32 Mechanical Friction ...................................................32 Torque Converter Losses ...............................................32 Axle Bearing Friction..................................................33 Inertial Losses........................................................33 Driver Behavior ......................................................34 v Table of Contents (continued) Section Page Drive Train Power Loss Modeling Approach............................... 35 Drive Train Efficiency.............................................. 35 Rotational Moment of Inertia Losses................................... 35 Axle Horsepower Relationships ...................................... 36 System Monitors ..................................................... 36 Road Load Power Functions ............................................... 37 Rolling Resistance Force (FR) ........................................... 37 Gravitational Weight Force (FW) ......................................... 38 Aerodynamic Drag Force (FD)........................................... 39 Aerodynamic Lift Adjustment ........................................... 40 Curve Resistance Force (FC) ............................................ 40 Payload Inertial Resistance (FP) ......................................... 41 Available Tractive Force (FT) ........................................... 41 Emission Rate Functions.................................................. 43 Emitter Category ..................................................... 44 Commanded Fuel-Lean Operations....................................... 44 Correction Factors and Environmental Factors.............................. 45 Deterioration Rates ................................................ 45 Temperature...................................................... 46 Humidity ........................................................ 46 Altitude ......................................................... 46 Inventory Assembly and Model Output....................................... 49 Emission Matrix Calculations........................................... 49 Integration of Link-Based Emissions ..................................... 50 Case Study of Two MARTA Transit Bus Routes ............................... 53 References............................................................. 63 Bibliography ........................................................... 65 Appendix A Model Equation Parameters ..................................... 67 Appendix B Potential
Recommended publications
  • 1. What Is Uptis and What Advantages Does It Offer?
    Frequently Asked Questions 1. What is Uptis and what advantages does it offer? Uptis (acronym standing for “Unique Puncture-proof Tire System”) is an assembled airless wheel structure. Uptis has been made possible through Michelin’s mastery and expertise with tire mechanics and high-tech materials. It also represents an evolution of Michelin’s expertise in TWEEL technology. Uptis can be thought of as the first in a new generation of airless solutions. This technology for passenger vehicles offers a number of advantages: ▪ Car drivers feel safer and more secure on the road due to the reduced risk of flat tires and other air loss failures that result from punctures or road hazards. ▪ Fleet owners and professional vehicle drivers optimize their business productivity (no downtime from flats, near-zero levels of maintenance). ▪ Raw material use is reduced, which in turn reduces waste. 2. Why do car drivers feel more at ease with Uptis? Uptis is designed to be impervious to traditional tire failures due to air loss. It does not use compressed air. It therefore eliminates the need for regular inflation pressure maintenance. 3. What is the strategy behind Uptis? Uptis represents Michelin’s vision for the future of mobility. Michelin illustrated its vision of sustainable mobility through the Vision concept1, which the Group unveiled at the Movin’On World Summit on Sustainable Mobility in 2017. Uptis shows how Michelin is adhering to its roadmap for research and development, which comprises these four main pillars of innovation: Airless, Connected, 3D-printed and 100% Sustainable (i.e., renewable or bio-sourced materials).
    [Show full text]
  • UAW Ford Agreements Cvr 1Up.Indd 2 11/15/16 7:07 AM SKILLED TRADES AGREEMENTS and LETTERS of UNDERSTANDING
    SKILLED TRADES AGREEMENTS AND LETTERS OF UNDERSTANDING between UAW® and the FORD MOTOR COMPANY Agreements Dated November 5, 2015 133 MICHIGAN (Effective November 23, 2015) ♲ printed on recycled paper PRINTED IN U.S.A. 64353-UAW Ford Skilled Trades Cvr 1up.indd 1 10/26/16 8:24 AM National Ford Department Staff 2015 Negotiations Jimmy Settles Vice President and Director UAW Ford, Aerospace, Chaplaincy and Insurance Greg Drudi Roy Escandon Angelique Peterson- Don Godfrey Jeffrey Faber Mayberry Brett Fox Ford Motor Company and the UAW recognize Darryl Nolen Gregory Poet Kenneth Gafa their respective responsibilities under federal Bob Tiseo Reggie Ransom and state laws relating to fair employment Phil Argento Michael Gammella Lorenzo Robinson practices. Tracy Ausen Raenell Glenn Michael Robison Carol Bagdady R. Brian Goff Nick Rutovic The Company and the Union recognize the Matthew Barnett Ruth Golden Angelo Sacino Monica Bass moral principles involved in the area of civil Jane Granger Les Shaw David Berry rights and have reaffirmed in their Collective Andre Green Michael Shoemaker Carlo Bishop Bargaining Agreement their commitment not Joe Gucciardo Casandra Shortridge Shawn Campbell to discriminate because of race, religion, color, Dan Huddleston Larry Shrader Jerry Carson age, sex, sexual orientation, union activity, Michael Joseph Garry Sommerville Alfonzo Cash Thomas Kanitz national origin, or against any employee with Jeffrey Terry Tiffany Coger Brandon Keatts disabilities. Kevin Tolbert Gerard Coiffard Michael Kerr Vaughan Tolliver Sean
    [Show full text]
  • Lowering Fleet Operating Costs Through Fuel
    LOWERING FLEET OPERATING KEY TAKEAWAYS COSTS THROUGH FUEL EFFICIENT Taking rolling resistance, maintenance, TIRES AND RETREADS wheel position and tires, both new and WHAT YOU NEED TO KNOW TO RUN LEANER retread, into account allows companies to maximize fuel efficiency. Author: Josh Abell, PhD • Rolling resistance has a direct and significant correlation to the fuel A retreaded tire can be just as fuel efficient, economy of the vehicle. or even better, than a new tire. • Tires become more fuel efficient as they are worn due to lessened Rolling Resistance: Why it Matters rolling resistance. Rolling resistance is a measurement of the energy it takes to roll a tire on a surface. • Even among new and retread tires For truck tires, rolling resistance has a direct and significant correlation to the fuel claiming to be Smartway certified, economy of the vehicle. Whether you run a single truck or an entire fleet, tire rolling actual rolling resistance will vary. resistance is a crucial element that should be taken into account to minimize fuel costs. Since fuel costs are one of the biggest expenses in trucking operations, as tire rolling resistance decreases, your savings add up. Tire rolling resistance is measured in a lab using realistic and well-established test parameters relied upon by tire/vehicle manufacturers and government regulators. From this testing, original tires and retreaded tires can be quantified by a rolling resistance coefficient, known as “Crr.” The lower the Crr, the better. Studies have shown that a reduction in Crr can result in real-world fuel savings. For example, a 10% reduction in Crr for your truck tires can reduce your fuel consumption by 3%, and lead to savings of $1,000 or more per truck per year.1 © 2017 Bridgestone Americas Tire Operations, LLC.
    [Show full text]
  • Advertise in Ohio Asphalt
    The Journal of Ohio’s Asphalt Professionals Summer 2017 Issue 2 • V o l u m e 1 4 FPO'S COOLEST EXP ! OHIO RIDES ON US OPERATOR COMFORT & CONVENIENCE MAKE THE JOB EASIER EACH ROADTEC PAVER IS ERGONOMICALLY DESIGNED FOR BETTER VISIBILITY, REDUCED NOISE, AND COMFORT. The New Clearview FXS® fume extraction system provides greater visibility to the front of the paver hopper, to the opposite side, and down to the augers. Paver controls are mounted to the pivoting seat station, which hydraulically swings out past the side of the machine for excellent visibility. All functions are easily accessible, including feed system and flow gate controls. Noise levels cut in half and improved visibility allow the operator to stay in constant communication with the rest of their crew. LET ROADTEC MAKE YOUR JOB EASIER - VISIT ROADTEC.COM © 2015 ROADTEC. INC. ALL RIGHTS RESERVED 1.800.272.7100 +1.423.265.0600 Untitled-2 1 8/19/15 1:32 PM www.columbusequipment.com Ohio’s Dependable Dealer Columbus Equipment Company and Roadtec Partner to Optimize Uptime and Production Through “ Industry-Leading Support of Innovative, High-Quality, Dependable Road Building and Asphalt Paving Equipment. The biggest benefit of Roadtec equipment is uptime. We just don’t have the downtime we have had with other machines. “ Dean Breese; Vice President, Gerken Paving Inc. Serving You From Ten Statewide Locations COLUMBUS TOLEDO CINCINNATI RICHFIELD CADIZ (614) 443-6541 (419) 872-7101 (513) 771-3922 (330) 659-6681 (740) 942-8871 DAYTON MASSILLON ZANESVILLE PAINESVILLE PIKETON (937) 879-3154 (330) 833-2420 (740) 455-4036 (440) 352-0452 (740) 289-3757 www.columbusequipment.com Officers Chairman Cole Graham Shelly and Sands, Inc.
    [Show full text]
  • Vehicle and Trailer Tyre Replacement Policy Version
    Vehicle and Trailer Tyre Replacement Policy Version 4.1 Date: 1st March 2021 Review Date: 1st March 2022 Owner Name Ruth Silcock Job title Head of Fleet Supply & Demand Mobile 07894 461702 Business units covered This policy applies to all Royal Mail Group vehicles. RM Fleet Policy document – Vehicle and trailer tyre replacement policy Page 1 of 13 Contents 1. Scope 2. Introduction 3. Policy 4. Responsibilities 5. Consequences 6. Change control 7. Glossary 8. References 9. Summary of changes to previous policy Appendix 1 Tread Type Positioning Appendix 2 Example of Re-torque Stamp RM Fleet Policy document – Vehicle and trailer tyre replacement policy Page 2 of 13 1. Scope This policy covers all vehicles and trailers used within RM Group. 2. Introduction 2.1 Tyre condition It is important for drivers, managers and technical staff to understand the legal requirements for tyre condition. Several regulations govern tyre condition. Listed below is a basic outline of the principal points: • Tyres must be suitable* for the vehicle/trailer it is being fitted to and they must be inflated to the correct pressures as recommended by either the vehicle or tyre manufacturer . *Suitability = correct size, correct load specification, speed rating and direction if applicable • No tyre shall have a break in its fabric or cut deep enough to reach or penetrate the cords. No cords must be visible either on the treaded area or on the side wall. No cut must be longer than 25 mm or 10% of the tyre’s section width, whichever is the greater. • There must be no lumps, bulges or tears caused by separation of the tyre’s structure.
    [Show full text]
  • A New Heavy-Duty Vehicle Visual Classification and Activity Estimation Method for Regional Mobile Source Emissions Modeling
    A NEW HEAVY-DUTY VEHICLE VISUAL CLASSIFICATION AND ACTIVITY ESTIMATION METHOD FOR REGIONAL MOBILE SOURCE EMISSIONS MODELING A Thesis Presented to The Academic Faculty by Seungju Yoon In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Civil and Environmental Engineering Georgia Institute of Technology August 2005 A NEW HEAVY-DUTY VEHICLE VISUAL CLASSIFICATION AND ACTIVITY ESTIMATION METHOD FOR REGIONAL MOBILE SOURCE EMISSIONS MODELING Approved: Dr. Michael O. Rodgers, Advisor Dr. Randall L. Guensler Dr. Michael D. Meyer Dr. Michael P. Hunter Dr. Jennifer H. Ogle July 15, 2005 ACKNOWLEDGEMENTS Many people sacrificed time and energy allowing me to complete this thesis. Thanks to all of you. Most of all, my wife Juhyun and my son Taehyuan deserve much credit for encouragement and patience throughout this process. Two other people deserve special acknowledgment in helping me finish my degree and dissertation. Drs. Michael O. Rodgers and Randall L. Guensler have allowed and encouraged me to finish this research and guided me to see the bigger and important issues. To family, advisors, and fellow students, you all assisted in large and small ways for which I will always be indebted. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS............................................................................................... iii LIST OF TABLES........................................................................................................... viii LIST OF FIGURES .............................................................................................................x
    [Show full text]
  • MICHELIN® Smartway® Verified Retreads Michelin Supports the U.S
    MICHELIN® SmartWay® Verified Retreads Michelin supports the U.S. Environmental Protection Agency’s (EPA) SmartWay® strategy of including retread products with new tires to reduce the fuel consumption, and greenhouse gas emissions, of line-haul Class 8 trucks. Additionally, SmartWay verified MICHELIN® retreads are compliant with the California Air Resources Board (CARB) Greenhouse Gas regulation for low rolling resistance tires. MICHELIN® SmartWay® low-rolling resistance retreads reduce fleet operating costs by saving fuel and extending the life of the tire. SmartWay also aligns with Michelin’s core value of respect for the environment. More information about the SmartWay® program as well as verified low rolling resistance tires and retreads can be found at epa.gov/smartway. SmartWay® Verified DRIVE POSITION RETREADS MICHELIN® MICHELIN® MICHELIN® MICHELIN® X ONE® LINE ENERGY D X® LINE ENERGY D X ONE® XDA-HT® X® MULTI ENERGY D Pre-Mold Retread Pre-Mold Retread Pre-Mold Retread Pre-Mold Retread • No compromise fuel efficiency(1) • No compromise fuel efficiency(2) • Aggressive lug-type tread design • Guaranteed 25% longer tread life*, ® and mileage delivered by the Dual and wear resistance with Dual • Increased traction with exceptional SmartWay fuel Energy Compound Tread, with a Compound Tread Technology, efficiency(1) due to Dual Energy precisely balanced Fuel and Mileage delivering a top Mileage layer over • Increased tread wear Compound tread technology layer on top of a cool running Fuel a cool running Fuel and Durability • Optimized
    [Show full text]
  • Revised Plans for Conditions 3,4 and 5
    Car Parking 1:200 WILKINSON WAY 9 10 12 KEEP CLEAR New crossing points to be 1,200 formed including dropped 800 kerbs and blister type tactile paving. Existing tarmac paving made good as 19 necessary. Existing Yellow Zigzag line & 800 School wording to this side of KEEP CLEAR the Road overall length from 1,200 School gate around into Chapel Close = 52m. 18 20 Refer to Photograph below. 17 Existing Yellow Zigzag line & 21 1 School wording to this side of the Road overall length from School gate around into Foster Close = 45m. Refer to Photograph below. 12no. existing car parking 22 space to be retained. Spaces to receive new thermoplastic white lining Planting area to end of revised central island c/w 14no. new car parking new tree to replace existing spaces to be created to central island area delineated with new thermoplastic white lining 3 New thermoplastic white lining indicating one-way FOSTER CLOSE flow of traffic, (clockwise) New HB2 type kerbs to be provided to form planter area Line of 10No. existing car parking spaces within central island to be removed and layout amended thus 4 Planting area to end of 2no. limited time parking revised central island c/w spaces to be allowed for new tree to replace existing pick up/drop off etc. Existing Disabled Parking provision retained with 2no. oversize bays c/w pole Existing block paving New HB2 type kerbs to mounted signage and surface, where broken out, be provided to form thermoplastic white to be replaced with new planter area 15 disabled symbol to centre of tarmacadam highway bay construction to match existing build up adjacent 14 16 New thermoplastic white lining indicating one-way flow of traffic, (clockwise) 5 12 View towards School Entrance from Wilkinson Way 3No.
    [Show full text]
  • Registration Manual Issued by Nebraska Game and Parks
    Rhonda Lahm, Julie Maaske, Director Deputy Director NEBRASKA COUNTY TREASURER’S MANUAL R E G I S T R A T I O N Provided by Nebraska Department of Motor Vehicles Driver and Vehicle Records Division 301 Centennial Mall South P.O. Box 94789 Lincoln, NE 68509-4789 www.dmv.nebraska.gov Help Desk (402) 471-3918 Toll Free (800) 972-6299 Fax Number (402) 471-8694 Betty Johnson, Administrator Deb Sabata Program Manager Cindy Incontro, Sandy Wood, Business Applications Support Administrative Assistant Technician Supervisor TABLE OF CONTENTS Chapter 1 - Definitions Definitions............................................................................................................ 1-1 Chapter 2 - Registrations Motor Vehicles Exempt from Registration .......................................................... 2-1 Registration - Vehicle .......................................................................................... 2-2 Registration - Boat ............................................................................................... 2-4 Proof of Financial Responsibility ........................................................................ 2-5 Nebraska Insurance Database .............................................................................. 2-9 Registration Renewal ......................................................................................... 2-11 Registration Procedure – Owner Retains Salvage ............................................. 2-13 Passenger...........................................................................................................
    [Show full text]
  • Triflex Preco Line 300
    Product overview Marking system Triflex Preco Line 300 Triflex Preco Line 300 is a thin layer cold spray or roller applied, fast curing, marking system which offers a number of benefits when compared to traditional chlorinated rubber based solutions. The simple to apply 1 component solution is fully compatible with a wide range of substrates including direct application to asphalt and concrete and can be applied to many existing marking materials. The system is used extensively on car parks and roads and is widely used on airports due to its thin layer application. System highlights Application areas Toluene and xylene free Triflex Preco Line 300 is a toluene and xylene free solution, making it more Car park markings environmentally friendly and safer to apply than many other spray applied Road markings marking products, including the majority of chlorinated rubber markings. Industrial floor markings Warehouse markings Maximum colour and design possibilities Create a design to meet your safety and aesthetic requirements with a wide Compatible substrates range of standard colours and options for bespoke colours - refer to Triflex Preco Line 300 Colour card. The colour range is significantly wider than the traditional white and yellow offered by other materials. • Asphalt including Hot Rolled Asphalt (HRA) and Stone Mastic Asphalt Versatility and compatibility (SMA) Triflex Preco Line 300 is fully compatible with a wide range of substrates and • Tarmac / Tarmacadam / Macadam often requires no primer. • Fresh asphalt including HRA and SRA • Fresh Tarmac / Tarmacadam / Macadam Totally cold applied • Concrete There is no risk from hot works during installation as all Triflex materials are • Existing markings applied in a totally cold liquid form, curing to create a tough, durable solution • Pavers / brick paviours that lasts.
    [Show full text]
  • Environmental Comparison of Michelin Tweel™ and Pneumatic Tire Using Life Cycle Analysis
    ENVIRONMENTAL COMPARISON OF MICHELIN TWEEL™ AND PNEUMATIC TIRE USING LIFE CYCLE ANALYSIS A Thesis Presented to The Academic Faculty by Austin Cobert In Partial Fulfillment of the Requirements for the Degree Master’s of Science in the School of Mechanical Engineering Georgia Institute of Technology December 2009 Environmental Comparison of Michelin Tweel™ and Pneumatic Tire Using Life Cycle Analysis Approved By: Dr. Bert Bras, Advisor Mechanical Engineering Georgia Institute of Technology Dr. Jonathan Colton Mechanical Engineering Georgia Institute of Technology Dr. John Muzzy Chemical and Biological Engineering Georgia Institute of Technology Date Approved: July 21, 2009 i Table of Contents LIST OF TABLES .................................................................................................................................................. IV LIST OF FIGURES ................................................................................................................................................ VI CHAPTER 1. INTRODUCTION .............................................................................................................................. 1 1.1 BACKGROUND AND MOTIVATION ................................................................................................................... 1 1.2 THE PROBLEM ............................................................................................................................................ 2 1.2.1 Michelin’s Tweel™ ................................................................................................................................
    [Show full text]
  • Rolling Resistance During Cornering - Impact of Lateral Forces for Heavy- Duty Vehicles
    DEGREE PROJECT IN MASTER;S PROGRAMME, APPLIED AND COMPUTATIONAL MATHEMATICS 120 CREDITS, SECOND CYCLE STOCKHOLM, SWEDEN 2015 Rolling resistance during cornering - impact of lateral forces for heavy- duty vehicles HELENA OLOFSON KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES Rolling resistance during cornering - impact of lateral forces for heavy-duty vehicles HELENA OLOFSON Master’s Thesis in Optimization and Systems Theory (30 ECTS credits) Master's Programme, Applied and Computational Mathematics (120 credits) Royal Institute of Technology year 2015 Supervisor at Scania AB: Anders Jensen Supervisor at KTH was Xiaoming Hu Examiner was Xiaoming Hu TRITA-MAT-E 2015:82 ISRN-KTH/MAT/E--15/82--SE Royal Institute of Technology SCI School of Engineering Sciences KTH SCI SE-100 44 Stockholm, Sweden URL: www.kth.se/sci iii Abstract We consider first the single-track bicycle model and state relations between the tires’ lateral forces and the turning radius. From the tire model, a relation between the lateral forces and slip angles is obtained. The extra rolling resis- tance forces from cornering are by linear approximation obtained as a function of the slip angles. The bicycle model is validated against the Magic-formula tire model from Adams. The bicycle model is then applied on an optimization problem, where the optimal velocity for a track for some given test cases is determined such that the energy loss is as small as possible. Results are presented for how much fuel it is possible to save by driving with optimal velocity compared to fixed average velocity. The optimization problem is applied to a specific laden truck.
    [Show full text]