UC Berkeley UC Berkeley Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC Berkeley UC Berkeley Electronic Theses and Dissertations UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Spectro-Microscopic Studies of Microbial Selenium and Iron Reduction in a Metal Contaminated Aquifer Permalink https://escholarship.org/uc/item/19b6x0dr Author Fakra, Sirine Constance Publication Date 2015 Supplemental Material https://escholarship.org/uc/item/19b6x0dr#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Spectro-Microscopic Studies of Microbial Selenium and Iron Reduction in a Metal Contaminated Aquifer By Sirine Constance Fakra A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Earth and Planetary Science in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor Jillian F. Banfield, Chair Professor James Bishop Professor Céline Pallud Spring 2015 Spectro-Microscopic Studies of Microbial Selenium and Iron Reduction in a Metal Contaminated Aquifer © 2015 By Sirine Constance Fakra Abstract Spectro-microscopic studies of microbial selenium and iron reduction in a metal contaminated aquifer by Sirine C. Fakra Doctor of Philosophy in Earth and Planetary Science University of California, Berkeley Professor Jillian F. Banfield, Chair Redox-sensitive metal contaminants in subsurface environments can be reduced enzymatically or indirectly by microbial activity to convert them from soluble mobile (toxic) to comparatively insoluble, relatively immobile (less bioavailable) forms. The broad purpose of the research presented in this dissertation was to acquire a deep understanding of selenium and iron microbial reduction and immobilization in the subsurface and to characterize in detail the nature of the bioreduction products. To this end, biofilms formed during a biostimulation experiment in a metal-contaminated aquifer adjacent to the Colorado River in Colorado, USA were studied. Biofilms develop in a wide variety of natural settings and the aqueous chemical conditions within biofilms are strongly affected by the presence of extracellular polymers that potentially confer biofilm cells with a greater tolerance to heavy metals than planktonic cells. This thesis integrates field and laboratory experimental methods to provide 2D and 3D ultrastructural information, 2D chemical speciation and community membership via metagenomics methods. In addition, physiological information was obtained via characterization of an isolated bacterium and insights related to the product structure and stability were achieved by chemical synthesis-based studies. In this dissertation, an apparatus permitting correlative cryogenic spectro-microscopy was developed (Appendix I) and applied to determine in detail the cell-mineral relationships and the speciation of selenium in the biofilms (Chapter 1). The research involved integration of both cryogenic electron microscopy and X-ray absorption spectroscopy datasets on the same sample region to document the size, structure and distribution of bioreduction products. Because many of the microbial species in the mine tailings-contaminated aquifer are novel and difficult to cultivate in the laboratory, part of the research involved phylogenic analyses of the biofilm organisms via analysis of 16S rRNA genes. A novel betaproteobacterium of the genus Dechloromonas (Dechloromonas selenatis strain RGW, Chapter 2) was isolated from the Rifle site and shown to be capable of reducing selenate to red amorphous elemental Se0. This isolate was also capable of reducing toxic arsenate. Chapter 3 investigates further the stability of elemental selenium colloids at ambient pressure as a function of temperature and particle size. The last chapter (Chapter 4) focuses on the distribution and speciation of iron in the Rifle aquifer 1 during a biostimulation experiment. The combined results demonstrate the importance of both clays and cell-associated ferric iron oxyhydroxide aggregates for growth of planktonic iron- reducing bacteria. These insights provide fundamental information about organisms that mediate selenium, iron and arsenic biogeochemical transformations in the subsurface and the nature of the product phases. The data may help to identify substrate amendment regimes for sustained Se remediation. Following short-term acetate addition to the aquifer, selenium remained immobile for at least one year, suggesting the acetate amendment approach has significant potential for bioremediation of selenium, in addition to uranium and vanadium as previously studied. Although focused on selenium and iron bio-reduction, the instrumentation and approaches developed here are generally applicable for accurate determination of cell-mineral interactions and metal speciation and can be further extended to constrain aquifer-scale reactive transport models in a wide range of environments. 2 To my brother i TABLE OF CONTENTS ACKNOWLEDGEMENTS INTRODUCTION CHAPTER 1. Correlative cryogenic spectro-microscopy to investigate selenium bioreduction products. CHAPTER 2. Dechloromonas selenatis, a Betaproteobacterium from a contaminated aquifer that reduces selenate to amorphous selenium. CHAPTER 3. Size and temperature-dependent crystallization of elemental selenium. CHAPTER 4. Iron speciation analysis indicates the use of clays and iron oxyhydroxides by planktonic- and biofilm-associated Fe-reducing bacteria. APPENDIX I. Microprobe cryogenic apparatus for correlative spectro- microscopy. APPENDIX II. Supplemental materials for Chapter 1. ii ACKNOWLEDGEMENTS As a part-time employee and graduate student, there are many people who have helped me these past years and without whom this PhD would simply not have been possible. First, to my graduate advisor Jillian Banfield who believed in me more than I did. She has been an incredible mentor. Her stimulating ideas and her vision are truly inspiring. To Howard Padmore who has made this whole journey possible, I am deeply and forever grateful. Both Jillian and Howard have supported me in more ways than I can count. I would like to thank my committee members, Jim Bishop and Céline Pallud, for taking the time to learn about my research and provide insightful feedback. I am indebted to the Advanced Light Source’s director Roger Falcone and the Berkeley Lab Learning Institute for financing me and for supporting a program where full time employees can earn a doctorate degree. I am very grateful to members of the Banfield’s group in particular Birgit Luef for teaching me the art of cryo-plunging samples and cryogenic electron microscopy, and who helped me a great deal with cryo-TEM data. I want to thank Sean Mullin, Cindy Castelle and Laura Hug who taught me the basics of microbiology and have greatly helped me with phylogenetic trees, Ken Williams for introducing me to the Rifle site and answering my tons of questions patiently. I would like to acknowledge Denise Schines for providing me with confocal data. Thanks to Roseann Csencsits, Kelly Wrighton, Luis Comolli, Kim Handley and Tyler Arbour for stimulating discussions over the years, as well as Margie Winn for administrative support. A big thanks to my Berkeley Lab colleagues, Matthew A. Marcus and Tony Warwick who always encouraged me and have been great mentors over the years; Tolek Tyliszczak, Mary K. Gilles and David K. Shuh who have always supported me; Jeff Kortright, Tony Young, Andrew Westphal and Anna Butterworth who lent me some important pieces of equipment at crucial times. A large thank you to Paul Baker and his team at Instec Inc. for help with the microprobe cryo-stage. Last, to my parents, who have always encouraged and supported me the best way they could. To my beautiful and smart brother, you are always on my mind, this one is for you. Finally to my husband, I love you so very much. I would not have made it without your unconditional love and support. iii Introduction 1.1 Introduction and motivation One of the most active current research in environmental science focuses on the bioremediation of contaminated environments. Centuries of anthropogenic activities have led to the accumulation of metal and metalloid contaminants into the environment, posing a direct threat to ecosystems and human health. By contrast to organic contaminants, heavy metals are not biodegradable and remain in the environment1. Their toxicity mostly depend on their forms, with the general rule that the more soluble they are, the more toxic2. Selenium, present in trace amounts in rock-forming minerals is a major environmental contaminant, present in the porphyry copper deposits of the western United States and around the world3. Globally, the largest fluxes in the Se cycle are from land into the marine system along aquatic pathways. Natural trace Se contamination occurs mostly through geochemical processes, such as erosion of soils and weathering of rocks (e.g. black shales)4, 5. However, the anthropogenic release is by far the major contributor to the Se cycle, releasing up to 88,000 tons of Se per year5. Oil refining, combustion of fossil fuels, drainage from mines, and agriculture represent the primary sources of contamination6. The biogeochemical cycling of selenium7, is still not well defined but is predominantly governed by microorganisms which play a crucial role in oxidation, reduction, methylation, and volatilization. Se oxyanions (selenate and selenite) which iv dominate in aqueous systems can be reduced by microbes (enzymatically, or indirectly) to comparatively insoluble, immobile and non-toxic forms (e.g.
Recommended publications
  • Identical Bacterial Populations Colonize Premature Infant Gut, Skin, and Oral Microbiomes And
    Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates Matthew R. Olm1, Christopher T. Brown1, Brandon Brooks1, Brian Firek2, Robyn Baker3, David Burstein4, Karina Soenjoyo1, Brian C. Thomas4, Michael Morowitz2 and Jillian F. Banfield4,5,6* 1Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. 2Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. 3Division of Newborn Medicine, Children’s Hospital of Pittsburgh and Magee-Womens Hospital of UPMC, Pittsburgh, United States 4Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. 5Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA. 6Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. *Corresponding author Running title Metagenomics of infant skin, mouth, and gut Keywords Microbiome, metagenomics, growth rates, premature infants, strains Corresponding author contact info Jillian Banfield Department of Environmental Science, Policy, & Management UC Berkeley 130 Mulford Hall #3114 Berkeley, CA 94720 [email protected] (510) 643-2155 1 Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized the skin, mouth and gut of two hospitalized premature infants during the first month of life.
    [Show full text]
  • Genome-Reconstruction for Eukaryotes from Complex Natural Microbial Communities
    Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Genome-reconstruction for eukaryotes from complex natural microbial communities ,$ Patrick T. West1, Alexander J. Probst2 , Igor V. Grigoriev1,5, Brian C. Thomas2, Jillian F. Banfield2,3,4* 1Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. 2Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. 3Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA. 4Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 5US Department of Energy Joint Genome Institute, Walnut Creek, California, USA. * Corresponding Author $present address: Group for Aquatic Microbial Ecology, Biofilm Center, Department of Chemistry, University of Duisburg-Essen, Essen, Germany Running title Metagenomic Reconstruction of Eukaryotic Genomes Keywords metagenomics, eukaryotes, genome, gene prediction Corresponding author contact info Jillian Banfield Department of Environmental Science, Policy, & Management UC Berkeley 130 Mulford Hall #3114 Berkeley, CA 94720 [email protected] (510) 643-2155 1 Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Microbial eukaryotes are integral components of natural microbial communities and their inclusion is critical for many ecosystem studies yet the majority of published metagenome analyses ignore eukaryotes. In order to include eukaryotes in environmental studies we propose a method to recover eukaryotic genomes from complex metagenomic samples. A key step for genome recovery is separation of eukaryotic and prokaryotic fragments. We developed a k-mer- based strategy, EukRep, for eukaryotic sequence identification and applied it to environmental samples to show that it enables genome recovery, genome completeness evaluation and prediction of metabolic potential.
    [Show full text]
  • Michel Foucault Ronald C Kessler Graham Colditz Sigmund Freud
    ANK RESEARCHER ORGANIZATION H INDEX CITATIONS 1 Michel Foucault Collège de France 296 1026230 2 Ronald C Kessler Harvard University 289 392494 3 Graham Colditz Washington University in St Louis 288 316548 4 Sigmund Freud University of Vienna 284 552109 Brigham and Women's Hospital 5 284 332728 JoAnn E Manson Harvard Medical School 6 Shizuo Akira Osaka University 276 362588 Centre de Sociologie Européenne; 7 274 771039 Pierre Bourdieu Collège de France Massachusetts Institute of Technology 8 273 308874 Robert Langer MIT 9 Eric Lander Broad Institute Harvard MIT 272 454569 10 Bert Vogelstein Johns Hopkins University 270 410260 Brigham and Women's Hospital 11 267 363862 Eugene Braunwald Harvard Medical School Ecole Polytechnique Fédérale de 12 264 364838 Michael Graetzel Lausanne 13 Frank B Hu Harvard University 256 307111 14 Yi Hwa Liu Yale University 255 332019 15 M A Caligiuri City of Hope National Medical Center 253 345173 16 Gordon Guyatt McMaster University 252 284725 17 Salim Yusuf McMaster University 250 357419 18 Michael Karin University of California San Diego 250 273000 Yale University; Howard Hughes 19 244 221895 Richard A Flavell Medical Institute 20 T W Robbins University of Cambridge 239 180615 21 Zhong Lin Wang Georgia Institute of Technology 238 234085 22 Martín Heidegger Universität Freiburg 234 335652 23 Paul M Ridker Harvard Medical School 234 318801 24 Daniel Levy National Institutes of Health NIH 232 286694 25 Guido Kroemer INSERM 231 240372 26 Steven A Rosenberg National Institutes of Health NIH 231 224154 Max Planck
    [Show full text]
  • Genome-Resolved Metagenomics Reveals Site-Specific Diversity of Episymbiotic CPR Bacteria and DPANN Archaea in Groundwater Ecosystems
    ARTICLES https://doi.org/10.1038/s41564-020-00840-5 Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems Christine He 1, Ray Keren 2, Michael L. Whittaker3,4, Ibrahim F. Farag 1, Jennifer A. Doudna 1,5,6,7,8, Jamie H. D. Cate 1,5,6,7 and Jillian F. Banfield 1,4,9 ✉ Candidate phyla radiation (CPR) bacteria and DPANN archaea are unisolated, small-celled symbionts that are often detected in groundwater. The effects of groundwater geochemistry on the abundance, distribution, taxonomic diversity and host associa- tion of CPR bacteria and DPANN archaea has not been studied. Here, we performed genome-resolved metagenomic analysis of one agricultural and seven pristine groundwater microbial communities and recovered 746 CPR and DPANN genomes in total. The pristine sites, which serve as local sources of drinking water, contained up to 31% CPR bacteria and 4% DPANN archaea. We observed little species-level overlap of metagenome-assembled genomes (MAGs) across the groundwater sites, indicating that CPR and DPANN communities may be differentiated according to physicochemical conditions and host populations. Cryogenic transmission electron microscopy imaging and genomic analyses enabled us to identify CPR and DPANN lineages that reproduc- ibly attach to host cells and showed that the growth of CPR bacteria seems to be stimulated by attachment to host-cell surfaces. Our analysis reveals site-specific diversity of CPR bacteria and DPANN archaea that coexist with diverse hosts in groundwater aquifers. Given that CPR and DPANN organisms have been identified in human microbiomes and their presence is correlated with diseases such as periodontitis, our findings are relevant to considerations of drinking water quality and human health.
    [Show full text]
  • Laboratory Directed Research and Development Program FY 2002
    LBNL/PUB -54 8 5 Laboratory Directed Research and Development Program FY 2002 March 2003 Disclaimer This document wlls prepared as an account or work sponsored by the United Stales Government. While this document is believed ta contain correct inrormution, neither the United Stntes Government nor any agcncy thereof, nor The Regents orthe University of California, nor any of their employees, makes any wmnty, express or implied. or assumes any legal linbility or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclased, or represents that its use would not infringc privately awned rights. Reference herein to any specific commcrcial product, process, or service by its tradc name, trademark, manufacturer, or otherwise, does not necessnrily constitute or imply its endoaemcnt, recommendation, or favoring by the United States Government or any ogency thereof, ar The Regcnls of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of ihe United Siates Gwernment or any agency thercol or The Regents of the University of Caliktmia nnd shall not be used lor advertising or product endorsement purposes. Ernest Orlnndo hwrence Berkeley National Laboratory is an equal opportunity employer. Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2002 Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, California 94720 Off ice of Science USDepartment
    [Show full text]
  • Downloaded Under Project PRJNA273161 [13] Expressed As Mean ± Standard Error of Mean (SEM)
    Tian et al. Microbiome (2020) 8:51 https://doi.org/10.1186/s40168-020-00825-w RESEARCH Open Access Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity Renmao Tian1, Daliang Ning1, Zhili He1, Ping Zhang1, Sarah J. Spencer2, Shuhong Gao1, Weiling Shi1, Linwei Wu1, Ya Zhang1, Yunfeng Yang3, Benjamin G. Adams4, Andrea M. Rocha5, Brittny L. Detienne4, Kenneth A. Lowe5, Dominique C. Joyner4, Dawn M. Klingeman5, Adam P. Arkin6,7, Matthew W. Fields8, Terry C. Hazen4,5, David A. Stahl9, Eric J. Alm2 and Jizhong Zhou1,3,10* Abstract Background: The newly defined superphylum Patescibacteria such as Parcubacteria (OD1) and Microgenomates (OP11) has been found to be prevalent in groundwater, sediment, lake, and other aquifer environments. Recently increasing attention has been paid to this diverse superphylum including > 20 candidate phyla (a large part of the candidate phylum radiation, CPR) because it refreshed our view of the tree of life. However, adaptive traits contributing to its prevalence are still not well known. Results: Here, we investigated the genomic features and metabolic pathways of Patescibacteria in groundwater through genome-resolved metagenomics analysis of > 600 Gbp sequence data. We observed that, while the members of Patescibacteria have reduced genomes (~ 1 Mbp) exclusively, functions essential to growth and reproduction such as genetic information processing were retained. Surprisingly, they have sharply reduced redundant and nonessential functions, including specific metabolic activities and stress response systems. The Patescibacteria have ultra-small cells and simplified membrane structures, including flagellar assembly, transporters, and two-component systems. Despite the lack of CRISPR viral defense, the bacteria may evade predation through deletion of common membrane phage receptors and other alternative strategies, which may explain the low representation of prophage proteins in their genomes and lack of CRISPR.
    [Show full text]
  • Metagenomic Analysis of CRISPR-Mediated Host-Virus Interactions in Microbial Communities
    Metagenomic Analysis of CRISPR-Mediated Host-Virus Interactions in Microbial Communities By Christine Ling Sun A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jillian Banfield, Chair Professor Steven Brenner Professor Jennifer Doudna Professor Steven Lindow Spring 2013 Abstract Metagenomic Analysis of CRISPR-Mediated Host-Virus Interactions in Microbial Communities by Christine Ling Sun Doctor of Philosophy in Microbiology University of California, Berkeley Professor Jillian F. Banfield, Chair Viruses of Bacteria (bacteriophages) and Archaea have the ability to significantly alter the structure and function of microbial communities. Thus, it is critical to obtain a greater understanding of the dynamic interaction between microbial hosts and their associated viral populations. The CRISPR-Cas system in Bacteria and Archaea serves as a method to connect viruses to their hosts and provides insight into virus-host interactions. A clustered regularly interspaced short palindromic repeat (CRISPR) locus and CRISPR-associated (Cas) proteins function together in the CRISPR-Cas adaptive immune system. Transcripts of the spacers that separate the repeats in the CRISPR locus confer immunity through sequence identity with targeted viral, plasmid, or other foreign DNA. The CRISPR locus can be interpreted as a historical timeline of virus exposure as spacers are incorporated in a unidirectional manner at the leader end of the CRISPR locus. Metagenomic approaches were employed to simultaneously analyze CRISPR loci in microbial hosts and sequences of their associated viruses to examine: 1) the viral response to CRISPR spacer diversification in a closed model system, 2) the retention of older spacers without co- existing targets through time, 3) the information about population histories revealed from the CRISPR locus, and 4) the factors impacting phage and viral diversity in a model natural system.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Metagenomic Analysis of CRISPR-Mediated Host-Virus Interactions in Microbial Communities Permalink https://escholarship.org/uc/item/5n12m3d3 Author Sun, Christine Publication Date 2013 Supplemental Material https://escholarship.org/uc/item/5n12m3d3#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Metagenomic Analysis of CRISPR-Mediated Host-Virus Interactions in Microbial Communities By Christine Ling Sun A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jillian Banfield, Chair Professor Steven Brenner Professor Jennifer Doudna Professor Steven Lindow Spring 2013 Abstract Metagenomic Analysis of CRISPR-Mediated Host-Virus Interactions in Microbial Communities by Christine Ling Sun Doctor of Philosophy in Microbiology University of California, Berkeley Professor Jillian F. Banfield, Chair Viruses of Bacteria (bacteriophages) and Archaea have the ability to significantly alter the structure and function of microbial communities. Thus, it is critical to obtain a greater understanding of the dynamic interaction between microbial hosts and their associated viral populations. The CRISPR-Cas system in Bacteria and Archaea serves as a method to connect viruses to their hosts and provides insight into virus-host interactions. A clustered regularly interspaced short palindromic repeat (CRISPR) locus and CRISPR-associated (Cas) proteins function together in the CRISPR-Cas adaptive immune system. Transcripts of the spacers that separate the repeats in the CRISPR locus confer immunity through sequence identity with targeted viral, plasmid, or other foreign DNA.
    [Show full text]
  • Itai Sharon – Curriculum Vitae
    Itai Sharon – Curriculum Vitae Email: [email protected] RESEARCH AND ACADEMIC EXPERIENCE Principle Investigator, MIGAL – Galilee Research Institute, 08/2015 – present Research focuses on the development of computational and other tools for microbial ecology Senior Lecturer (Assistant Professor), Tel-Hai College, 10/2015 – present Teaches basic and advanced courses at the Computer Science Department Postdoctoral Researcher, University of California, Berkeley, 2010 – 2015 Research focus: dynamics and structure of microbial communities across different environments Advisor: Prof. Jillian Banfield Short postdoc, Technion, Israel Institute of Technology, 04 – 08/2010 Research focus: analysis of next generation sequencing Affiliation: Laboratory of Dr. Itai Yanai Algorithm developer, NDS Technologies, Haifa, Israel, 1998 – 2007 Developed algorithms and software for image analysis and understanding EDUCATION PhD, Technion – Israel Institute of Technology, Computer Science, 2010 Dissertation title: Computational methods for metagenomic analysis Advisors: Prof. Oded Béjà and Prof. Ron Pinter MSc, Technion – Israel Institute of Technology, Computer Science, 2005 Research focus: similarity detection for low complexity and remotely related proteins Advisors: Dr. Golan Yona and Assoc. Prof. Ran El-Yaniv BSc, Technion – Israel Institute of Technology, Computer Science, 1998 GPA: 89.6 REFEREED PUBLICATIONS 1. Suez, J., Zmora, N., Zilberman-Schapira, G., Mor, U., Dori-Bachash, M., Bashiardes, S., Zur, M., Regev-Lehavi, D., Ben-Zeev Brik, R., Federici, S., Horn, M., Cohen, Y., Moor, A.E., Zeevi, D., Korem, T., Kotler, E., Harmelin, A., Itzkovitz, S., Maharshak, N., Shibolet, O., Pevsner- Fischer, M., Shapiro, H., Sharon, I., Halpern, Z., Segal, S. and Elinav, E. (2018). Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT.
    [Show full text]
  • CURRICULUM VITAE Christopher S. Miller Campus Address Department
    CURRICULUM VITAE Christopher S. Miller Campus Address Department of Integrative Biology Campus Box 171 PO Box 173364 Denver, CO 80217-3364 Phone: 303-315-7665 [email protected] Education 2008 PhD University of California, Molecular Biology Los Angeles Dissertation: “Computational Inference of Protein Structure and Function from Microbial Genomes and Metagenomes” 2002 BA University of Colorado, Molecular, Cellular, and Developmental Biology Boulder minor: Computer Science Professional Experience 2012 – present Assistant Professor – University of Colorado Denver Department of Integrative Biology Computational Bioscience Program 2009 – 2012 Postdoctoral Researcher – University of California, Berkeley Department of Earth and Planetary Science: laboratory of Dr. Jillian Banfield. 2003 – 2008 Graduate Student Researcher– University of California, Los Angeles Molecular Biology Institute: laboratory of Dr. David Eisenberg. Peer Reviewed Publications (* Miller lab member) 2018 Narrowe, A.B.* †, Spang, A. †, Caceres, E.F., Baker, B.J., Miller, C.S. ^#, Ettema, T.J.G.#, 2018. Complex evolutionary history of Elongation Factor 2 and diphthamide biosynthesis in Archaea and parabasalids. Genome Biology and Evolution, in press. (†, # equal contributions; ^ Corresponding author). Advance Article available at https://academic.oup.com/gbe/advance-article/doi/10.1093/gbe/evy154/5060531 2017 Angle, J.C., Morin, T.H., Solden, L.M., Narrowe, A.B.*, Smith, G.J., Borton, M.A., Rey- Sanchez, C., Daly, R.A., Mirfenderesgi, G., Hoyt, D.W., Riley, W.J., Miller, C.S., Bohrer, G. & Wrighton, K.C., 2017. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nature Communications, 8(1), p.1567. 1 2017 Narrowe, A.B.*, Angle, J.C., Daly, R.A., Stefanik, K.C., Wrighton, K.C.
    [Show full text]
  • Starr Thesis
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Disentangling the rhizosphere community through stable isotope informed genome-resolved metagenomics and assembled metatranscriptomes Permalink https://escholarship.org/uc/item/5b86d75z Author Starr, Evan P Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Disentangling the rhizosphere community through stable isotope informed genome-resolved metagenomics and assembled metatranscriptomes By Evan P. Starr A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jillian F. Banfield, Co-Chair Professor Mary K. Firestone, Co-Chair Professor Britt Koskella Summer 2019 Abstract Disentangling the holistic rhizosphere community through stable isotope informed genome- resolved metagenomics and assembled metatranscriptomes By Evan P Starr Doctor of Philosophy in Microbiology University of California, Berkeley Professor Jillian Banfield, Co-Chair Professor Mary Firestone, Co-Chair The functioning, health, and productivity of soil is intimately tied to the complex network of interactions in the rhizosphere. Because of this, the rhizosphere has been rigorously studied for over a century, but due to technical limitations many aspects of soil biology have been overlooked. In order to better understand rhizosphere functioning, my work has focused on the less explored organisms and interactions in microbial communities, this includes unculturable bacteria along with viruses and eukaryotes. Only by considering soil biology more holistically can we better understand the functioning of this enigmatic yet critical ecosystem. Knowledge about these interactions could direct how we think about plant-microbe relationships, soil carbon stabilization and the roles of understudied organisms in biogeochemical cycling.
    [Show full text]
  • Novel Applications of Machine Learning and Statistics for Genome-Resolved Metagenomic Data
    Novel Applications of Machine Learning and Statistics for Genome-resolved Metagenomic Data by Sumayah F Rahman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology and the Designated Emphasis in Computational and Genomic Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jillian Banfield, Chair Professor Rodrigo Almeida Professor Lexin Li Spring 2019 Abstract Novel Applications of Machine Learning and Statistics for Genome-resolved Metagenomic Data by Sumayah F Rahman Doctor of Philosophy in Microbiology Designated Emphasis in Computational and Genomic Biology University of California, Berkeley Professor Jillian Banfield, Chair By sequencing environmental DNA and reconstructing microbial genomes, we can obtain insight into the previously hidden microbial world. This approach, known as genome-resolved metagenomics, has been utilized to study microorganisms in a variety of environments. Small sample sizes were common in genome-resolved metagenomics studies of the past, and thus few statistical methods of analysis were applied to the data resulting from these small-n studies. Instead, the analyses were focused on other aspects that did not require statistical methods, such as the identification of metabolic pathways possessed by the genomes and the phylogenetic relationships between organisms. However, in recent years, decreased sequencing costs and greater availability of computational resources have enabled scientists to sequence and process hundreds of samples for a single study. This dissertation demonstrates the application of several statistical and machine learning methods for the interpretation and strategic analysis of data from high-throughput genome-resolved metagenomic studies. Through the combination of new methods with previously existing methods, this work illustrates potential benefits that quantitative methods of analysis can offer to the field of genome-resolved metagenomics.
    [Show full text]