A High-Speed Differential Thermographic Camera
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Industrial Process Heater Using Thermography
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 02 | Feb-2018 www.irjet.net p-ISSN: 2395-0072 Analysis of Industrial Process Heater using Thermography Noble Jimmy1, Jojo Varghese2, jithin k joy3, Sebin Thomas4 1,2,3,4 Bachelor of Engineering, Department of Mechanical Engineering, Saintgits college of Engineering ----------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Infrared thermography, thermal imaging, and The inspection tool used for thermography is the Thermal thermal video are examples of thermal imaging science. Imager. These are sophisticated devices which measure the Thermal imaging cameras usually detect radiation in the long- natural emissions of infrared radiation from a heated object infrared range of the electromagnetic spectrum ( roughly and produce a thermal picture. Modern Thermal Imagers 9000-4000 nanometers or 9–14 µm) and produce images of are portable with easily operated controls. As physical that radiation, called thermograms. Since infrared radiation is contact with the system is not required, inspections can be emitted by all objects with a temperature above absolute zero made under full operational conditions resulting in no loss of according to the black body radiation law, thermography production or downtime. makes it possible to see one's environment with or without visible illumination. The amount of radiation emitted by an An oil refinery is a large, complex, and very specialized object increases with temperature; therefore, thermography industrial site. Its purpose is to transform crude oil from its allows one to see variations in temperature. When viewed unprocessed state into various chemical products and by- through a thermal imaging camera, warm objects stand out products. -
Downloads/Flir/Dokumentation/T810209-En-Us A4 .Pdf/ (Accessed on 15 June 2021)
sensors Article The Solution for the Thermographic Measurement of the Temperature of a Small Object Arkadiusz Hulewicz 1,* , Krzysztof Dziarski 2 and Grzegorz Dombek 2 1 Institute of Electrical Engineering and Electronics, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland 2 Institute of Electric Power Engineering, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland; [email protected] (K.D.); [email protected] (G.D.) * Correspondence: [email protected]; Tel.: +48-61-665-2546 Abstract: This article describes the measuring system and the influence of selected factors on the accuracy of thermographic temperature measurement using a macrolens. This method enables thermographic measurement of the temperature of a small object with an area of square millimeters as, e.g., electronic elements. Damage to electronic components is often preceded by a rise in temperature, and an effective way to diagnose such components is the use of a thermographic camera. The ability to diagnose a device under full load makes thermography a very practical method that allows us to assess the condition of the device during operation. The accuracy of such a measurement depends on the conditions in which it is carried out. The incorrect selection of at least one parameter compensating the influence of the factor occurring during the measurement may cause the indicated value to differ from the correct value. This paper presents the basic issues linked to thermographic measurements and highlights the sources of errors. A measuring stand which enables the assessment of the influence of selected factors on the accuracy of thermographic measurement of electronic elements with the use of a macrolens is presented. -
Trends in Performance Limits of the HOT Infrared Photodetectors
applied sciences Review Trends in Performance Limits of the HOT Infrared Photodetectors Antoni Rogalski 1, Piotr Martyniuk 1,*, Małgorzata Kopytko 1 and Weida Hu 2 1 Faculty of Advanced Technologies and Chemistry, Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland; [email protected] (A.R.); [email protected] (M.K.) 2 State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China; [email protected] * Correspondence: [email protected]; Tel.: +48-26-183-92-15 Abstract: The cryogenic cooling of infrared (IR) photon detectors optimized for the mid- (MWIR, 3–5 µm) and long wavelength (LWIR, 8–14 µm) range is required to reach high performance. This is a major obstacle for more extensive use of IR technology. Focal plane arrays (FPAs) based on thermal detectors are presently used in staring thermal imagers operating at room temperature. However, their performance is modest; thermal detectors exhibit slow response, and the multispectral detection is difficult to reach. Initial efforts to develop high operating temperature (HOT) photodetectors were focused on HgCdTe photoconductors and photoelectromagnetic detectors. The technological efforts have been lately directed on advanced heterojunction photovoltaic HgCdTe detectors. This paper presents the several approaches to increase the photon-detectors room-temperature performance. Various kinds of materials are considered: HgCdTe, type-II AIIIBV superlattices, two-dimensional materials and colloidal quantum dots. Keywords: HOT IR detectors; HgCdTe; P-i-N; BLIP condition; 2D material photodetectors; colloidal quantum dot photodetectors Citation: Rogalski, A.; Martyniuk, P.; Kopytko, M.; Hu, W. -
Infrared Thermography — a New Approach for In-Line Density Measurement of Ribbons Produced from Roll Compaction
PTEC-12294; No of Pages 8 Powder Technology xxx (2017) xxx–xxx Contents lists available at ScienceDirect Powder Technology journal homepage: www.elsevier.com/locate/powtec Infrared thermography — A new approach for in-line density measurement of ribbons produced from roll compaction Raphael Wiedey, Peter Kleinebudde ⁎ Heinrich Heine University Düsseldorf, Germany article info abstract Article history: The ribbon relative density is one of the key quality attributes during roll compaction/dry granulation, as it pri- Received 2 November 2016 marily determines the granule porosity and granule size distribution. In this study, a new approach to measure Received in revised form 18 January 2017 the ribbon relative density in-line was investigated. A thermographic camera was used to record freshly pro- Accepted 21 January 2017 duced ribbons as they left the gap. In a first step a principal correlation of the measured ribbon temperature Available online xxxx and the ribbon density was proven. Furthermore, the cooling rate after compaction was identified as an addition- Keywords: al characteristic that can be used to determine the ribbon density. Interestingly the thermographic images also Roll compaction revealed temperature distributions within the ribbon that could be matched with density distributions measured Ribbon density by X-ray micro-computed tomography. In the following, additional characteristics that are equally important for In-line measurement the practical application as an in-line measuring tool were further investigated. The technique showed short Density distribution reaction times to changes in the process and in a long term experiment no temperature drift over time could X-ray μCT be detected. This study demonstrated the applicability of a thermographic camera as an in-line analytical tool Thermography for the determination of ribbon relative density. -
Qirt-2019-008
10.21611/qirt.2019.008 Thermography of Asteroid Ryugu by Hayabusa2 by T. Okada* and Hayabusa2 TIR Team* * Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, 252-5210 Japan, [email protected] Abstract Thermography of the C-type Near Earth Asteroid 162173 Ryugu has revealed the thermophysical properties of the surface of the primitive solar system small body. Thermal Infrared Imager TIR is a remote sensing instrument onboard Hayabusa2, the Japanese second asteroid sample return mission. TIR is based on two-dimensional uncooled micro- bolometer array with 328 x 248 effective pixels, 16.7° x 12.7° field of view, and a single band of 8 to 12 μm wavelength range. New results of global, local and close-up thermal images of the asteroid are briefly reported. 1. Introduction Global, local and close-up thermal images of the C-type Near-Earth asteroid 162173 Ryugu were taken by the Thermal Infrared Imager TIR [1] on Hayabusa2 to investigate its thermophysical properties. TIR is a two-dimensional thermographic camera developed to study the nature of Ryugu and its origin and evolution. The instrument is also used for safe landing for sample collection regarding the assessment for the surface thermal environment and the hazardous boulder abundance. Demonstration to utilize thermographic camera in planetary missions is another purpose. Outlines of the TIR observations during the asteroid rendezvous phase are briefly described. 2. Hayabusa2 and the target asteroid Ryugu Hayabusa2 [2] is an asteroid mission to explore the C-type asteroid, after the Hayabusa mission [3] which visited and returned sample from S-type near-earth asteroid 25143 Itokawa. -
Infrared Thermal Imaging
Infrared Thermal Imaging Amit Sharma* Nidhi Jindal** Abstract Infrared Thermography (IRT) is being used in an ever more broad number of application fields and for many different purposes; indeed, any process, which is temperature dependent, may benefit from the use of an infrared device. All living objects in the world emit infrared energy in the form of heat which is known as its heat signature. Infrared thermal imaging is a method to improving visibility of objects by detecting the objects infrared radiation and creating a new gray scale image based on that information in a dark environment using the infrared radiations. Keywords: Infrared radiation, thermography camera, medical, armed forces, breast cancer. Introduction the depth of gray indicates variations between the two Infrared thermal imaging technology is one new objects. Some thermal cameras help users identify an method using night vision technologies. Thermal object to add colors to images at different imaging works without any ambient light in temperatures. environments. In general, a hotter object emits more Advantages radiation. Infrared thermographic camera can operate as long as 14,000 nm in wavelengths. 1. It has a capability of finding high temperature components. A thermal camera is also known as a thermal imager, www.IndianJournals.com 2. It is used to observe the areas which cannot be Members Copy, Not for Commercial Sale infrared camera or thermal imaging camera. It is a heat accessed by other methods. Downloaded From IP - 115.254.44.5 on dated 24-Apr-2019 sensor that capable of detecting minor differences in temperature. The Thermal camera can collects the 3. -
Application of Thermal Imaging in Electrical Equipment Examination
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Application of thermal imaging in electrical equipment examination C. Szafron Wroclaw University of Technology 50-370 Wroclaw, Poland Abstract- The paper states about applying thermal imaging measurement methods to electrical equipment diagnostics. Modern infrared mapping techniques allow to take fast and non- exhausting measurements of devices that are not easy accessible or where measurements are dangerous to humans. Thermography has found it’s principal use in power engineering in diagnostics of electrical apparatus and equipment, mainly transformers and insulators. Figure 2. Electromagnetic spectrum I. BASIC IDEA OF THERMAL IMAGING Thermography, also called thermal imaging, is a type of The amount of radiation emitted by an object increases with infrared imaging. Infrared radiation is electromagnetic temperature, therefore thermography allows one to see radiation of a wavelength longer than visible light wavelenght, variations in temperature. When viewed by thermographic but shorter than that microwaves. It's name means "below red", camera, warm objects stand out well against cooler because of red being the color of visible light with the longest backgrounds; humans and other warm blooded animals become wavelength. Infrared radiation has wavelengths between about easily visible against the environment, day or night. 750 nm and 1 mm, spanning five orders of magnitude. Thermographic cameras detect radiation in the infrared range of the electromagnetic spectrum (roughly 900–14.000 II. THERMOGRAPHIC CAMERAS nanometers or 0.9–14 µm) and produce images of that A thermographic camera, sometimes called a FLIR (Forward radiation [2]. Wien's displacement law is a law of physics that Looking InfraRed), or an infrared camera less specifically, is a states that there is an inverse relationship between the device that forms an image using infrared radiation, similar to a wavelength of the peak of the emission of a black body and its common camera that forms an image using visible light. -
Role of Thermography in the Diagnosis of Chronic Sinusitis
Open Access Original Article DOI: 10.7759/cureus.2298 Role of Thermography in the Diagnosis of Chronic Sinusitis Raja Kalaiarasi 1 , Chellappa Vijayakumar 2 , Ramalingam Archana 3 , Ramakrishnan Venkataramanan 4 , Ranganathan Chidambaram 5 , Sadhanandham Shrinuvasan 5 , Ravi Prabhu 6 1. Otorhinolaryngology, Sri Lakshmi Narayana Institute of Medical Science, Puducherry, India 2. Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India. 3. Preventive Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India. 4. Otolaryngology, Sri Lakshmi Narayana Institute of Medical Science, Puducherry, India 5. Radiology, Sri Lakshmi Narayana Institute of Medical Science, Puducherry, India 6. General Surgery, Sri Lakshmi Narayana Institute of Medical Science, Puducherry, India Corresponding author: Raja Kalaiarasi, [email protected] Abstract Introduction Thermography is a form of radiography that images the skin surface temperature. Thermograms are pictorial representations of thermal maps of the entire body’s outer surface. Thermography was applied as an attempt to evaluate its usefulness in the diagnosis of chronic sinusitis (CS). Hence, this study was done to determine the diagnostic value of thermography for patients suffering from CS. Methodology Patients attending the Department of Otorhinolaryngology and Head and Neck Surgery over a two years' duration with symptoms suggestive of CS were included in this diagnostic evaluation study. X-ray paranasal sinuses (PNS) and nose, thermography of head and neck, and computed tomography (CT) of PNS and nose (axial and coronal sections) were performed on them. The thermograms and X-ray sinuses obtained were compared with the computed tomography of PNS findings. Results The study population consisted of 167 patients (75 males and 92 females) and the mean age of the study population was 38.6 years. -
Close Range 3D Thermography: Face Temperature and Presents the Results in Form of Thermal Images
Infrared thermography enables the non-contact measurement of an object’s sur- Close range 3D thermography: face temperature and presents the results in form of thermal images. The analysis of these images provides valuable information about an object’s thermal state. How- real-time reconstruction of ever, the fidelity of the thermal images strongly depends on the pose of the thermo- high fidelity 3D thermograms graphic camera with respect to the surface. 3D thermography offers the possibility to overcome this and other limitations that affect conventional 2D thermography but most 3D thermographic systems developed so far generate 3D thermograms Antonio Rafael Ordóñez Müller from a single perspective or from few noncontiguous points of view and do not operate in real time. As a result, the 3D thermograms they generate do not offer much advantage over conventional thermal images. However, recent technological advances have unlocked the possibility of implementing affordable handheld 3D thermal imaging systems that can be easily maneuvered around an object and that can generate high-fidelity 3D thermograms in real time. This thesis explores vari- ous aspects involved in the real-time generation of high-fidelity 3D thermograms at close range using a handheld 3D thermal imaging system, presents the results of scanning an operating industrial furnace and discusses the problems associated with the generation of 3D thermograms of large objects with complex geometries. Close range 3D thermography: real-time reconstruction of high fidelity 3D thermograms reconstruction real-time 3D thermography: Close range 07 Schriftenreihe Mess- und Regelungstechnik der Universität Kassel ISBN 978-3-7376-0624-0 Band Univ.-Prof. -
Failure Analysis of Thin Film Solar Modules Using Lock-In Thermography
Failure Analysis of Thin Film Solar Modules using Energie & Umwelt Energie Lock-in Thermography Energy & Environment Energy Max Henrik Siegloch 258 Failure Analysis of Thin Film Solar Modules using LIT of Thin Film Analysis Failure Member of the Helmholtz Association Member of the Max Henrik Siegloch Energie & Umwelt / Energie & Umwelt / Energy & Environment Energy & Environment Band/ Volume 258 Band/ Volume 258 ISBN 978-3-95806-047-0 ISBN 978-3-95806-047-0 Failure Analysis of Thin Film Solar Modules using Lock-in Thermography Von der Fakultät für Elektrotechnik und Informationstechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Diplom-Ingenieur Max Henrik Siegloch aus Stuttgart Berichter: Universitätsprofessor Dr. Uwe Rau Universitätsprofessor Dr. Joachim Knoch Tag der mündlichen Prüfung: 16.12.2014 Forschungszentrum Jülich GmbH Institute of Energy and Climate Research IEK-5 Photovoltaics Failure Analysis of Thin Film Solar Modules using Lock-in Thermography Max Henrik Siegloch Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment Band / Volume 258 ISSN 1866-1793 ISBN 978-3-95806-047-0 Bibliographic information published by the Deutsche Nationalbibliothek. The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. Publisher and Forschungszentrum Jülich GmbH Distributor: Zentralbibliothek 52425 Jülich Tel: +49 2461 61-5368 Fax: +49 2461 61-6103 Email: [email protected] www.fz-juelich.de/zb Cover Design: Grafische Medien, Forschungszentrum Jülich GmbH Printer: Grafische Medien, Forschungszentrum Jülich GmbH Copyright: Forschungszentrum Jülich 2015 Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment, Band / Volume 258 D 82 (Diss. -
Flir) Technology As an Effective Pce/Tce Screening Tool for Vapor Intrusion Sampling
September 2018 | www.epa.gov/research A REPORT ON USING FORWARD LOOKING INFRARED RADIATION (FLIR) TECHNOLOGY AS AN EFFECTIVE PCE/TCE SCREENING TOOL FOR VAPOR INTRUSION SAMPLING photo U.S. EPA Office of Research and Development National Risk Management Research Laboratory Land and Materials Management Division Remediation and Technology Evaluation Branch and U.S. EPA Region 6 Superfund Division i This page intentionally left blank. ii September 2018 A Report on Using Forward Looking Infrared Radiation (FLIR) Technology as an Effective PCE/TCE Screening Tool for Vapor Intrusion Sampling Land and Materials Management Division National Risk Management Research Laboratory Cincinnati, OH, 45268 and Superfund Division U.S. EPA Region 6 Dallas, TX, 75202 iii Authors Primary Authors David Eppler US Environmental Protection Agency Superfund Division 1445 Ross Ave. Dallas, TX 75202 David Ferguson US Environmental Protection Agency Land and Materials Management Division National Risk Management Research Laboratory 26 W. Martin Luther King Dr. Cincinnati, OH 45268 Michael Torres US Environmental Protection Agency Superfund Division 1445 Ross Ave. Dallas, TX 75202 Daniel Young US Environmental Protection Agency Land and Materials Management Division National Risk Management Research Laboratory 26 W. Martin Luther King Dr. Cincinnati, OH 45268 Raghuraman Venkatapathy Pegasus Technical Services, Inc. 46 E. Hollister Street Cincinnati, OH 45219 iv Notice/Disclaimer Statement This report is a review of available methods for using Forward Looking Infrared Radiation (FLIR) technology as an effective PCE/TCE screening tool for vapor intrusion sampling. The inclusion of or affirmative statements regarding any method, data, or model included in this review does not imply endorsement by the U.S. -
High Speed Infrared Cameras Enable Demanding Thermal Imaging Applications
Electrophysics Resource Center Scientific Imaging White Paper High Speed Infrared Cameras Enable Demanding Thermal Imaging Applications Written by Josh White [email protected] www.electrophysics.com/infrared-cameras High Speed Infrared Cameras Enable Demanding Electrophysics Resource Center: Thermal Imaging Applications Scientific Imaging High Speed Infrared Cameras Enable Demanding Thermal Imaging Applications Introduction Recent developments in cooled mercury cadmium telluride (MCT or HgCdTe) infrared detector technology have made possible the development of high performance infrared cameras for use in a wide variety of demanding thermal imaging applications. These infrared Contents: cameras are now available with spectral sensitivity in the short- wave, mid-wave and long-wave spectral bands or alternatively in Introduction two bands. In addition, a variety of camera resolutions are available 1. Infrared Spectral Sensitivity Bands as a result of mid-size and large-size detector arrays and various 2. Image Resolution and Field-of-View pixel sizes. Also, camera features now include high frame rate 2.1 Detector arrays and pixel sizes imaging, adjustable exposure time and event triggering enabling 2.2 Infrared lens characteristics the capture of temporal thermal events. Sophisticated processing 3. High Speed Camera Features algorithms are available that result in an expanded dynamic range 3.1 Short exposure times to avoid saturation and optimize sensitivity. These infrared cameras 3.2 High frame rates can be calibrated so that the output digital values correspond to 3.3 Dynamic range expansion object temperatures. Non-uniformity correction algorithms are 3.4 Event triggering 3.5 Calibration: Non-uniformity included that are independent of exposure time. These performance correction and radiometry capabilities and camera features enable a wide range of thermal 4.