19 94ApJS. . .94. .749K the answertooneofastronomy’sstillunsolvedpuzzles—that trinsic faintness.Yet,itisthisfaintnesswhichmightprovide dwarfs arethemostcommon,butfewcomprehensivestudies tial toadeeperunderstandingofGalacticstructure.Ofstars, M THE LUMINOSITYFUNCTIONATENDOFMAINSEQUENCE:RESULTSADEEP,LARGE-AREA, presence ofasuspected,thoughstillunconfirmed,population of substellarobjects—theso-calledbrowndwarfs. fainter insearchoftheseobjectsshouldultimatelyreveal the of theGalacticmissingmass.Inaddition,probingfainter and of themhavebeencompleted,primarilybecausetheir in- Telescope Observatory,afacilityoperated jointlybytheSmithsonianIn- Texas, Austin,TX78712-1083. stitution andtheUniversityofArizona. © 1994.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedinU.S.A. The AstrophysicalJournalSupplementSeries,94:749-788,1994October 2 1 A betterknowledgeofourownsolarneighborhoodisessen- Presentaddress:McDonaldObservatory, RLM15.308,Universityof Observationsreportedherewere obtainedwiththeMultipleMirror 2 2 derivation ofthemass-luminosityrelation(fromHenry&McCarthy)areusedtocomputeamassfunction because theoldercounterpartsofthispopulationhavecooledbeyondcurrentdetectionlimits.Thelatterscenario the limitingvolumeof19.4degnorthernsample,instarkcontrasttosmaller7.9areaatsoutherly would holdiftheselate-typeMdwarfsaresubstellar.Theluminosityfunctiondatatogetherwithanempirical either becausethelowermetallicitiesprevalentatearlierepochsinhibitedformationoflateMdwarfsor latitudes wheresevensuchdwarfsarefound.Thisfact,combinedwiththefactthatSunislocated—10-40pc functioncover27.3degdowntoacompletenesslimitofR=19.0.Thisfunction, Subject headings::low-,browndwarfs—luminosityfunction,massfunction smaller thanthe350pcvaluegenerallyadoptedforotherMdwarfs.Theseobjectscompriseayoungpopulation north ofthemidplane,suggeststhatlatestdwarfsarepartayoungpopulationwithscaleheightmuch upturn atfaintmagnitudesexistsonlyinthesouthernsample.Infact,nodwarfswithMj>12.0arefoundwithin When theluminosityfunctionissegregatedintonorthGalacticandsouthportions,itfoundthat spectral typeslaterthanM6—aneffectsuggestedinearlierworkbyReid&GilmoreandLeggettHawkins. computed aF,7,andbolometricmagnitudes,showsanincreaseatthelowestluminosities,correspondingto has beenobservedspectroscopicallyatthe4.5mMultipleMirrorTelescopetoassesscontributionsbygiantsand sampling Galacticlatitudesof+90°downto—35°.Aselection133objectschosenviaR-7andF—7colors CCD/ Instrument,adedicatedtelescopesurveyingan825widestripofskycenteredat5=+28°,thus M6 orlaterhavebeendiscovered,withthelatestbeingoftypeM8.5.Datausedfordetermination subdwarfs andtoverifythatthereddesttargetsareobjectsofextremelylatespectralclass.Eighteendwarfstype the massofGalaxy. mass functionsareindicativeofalarge,unseen,substellarpopulation,browndwarfsmayyetaddsignificantlyto density ofMdwarfsisstillinsufficienttoaccountforthemissingmass.Ifincreasesseeninluminosityand independent oftheory.Thismassfunctionincreasestowardtheendmainsequence,butobserved The luminosityfunctionattheendofmainsequenceisdeterminedfromF,R,and/datatakenby © American Astronomical Society • Provided by theNASA Astrophysics Data System 1. INTRODUCTION Institute forAstrophysics,UniversityofNewMexico,Albuquerque,NM87131 Steward Observatory,UniversityofArizona,Tucson,AZ85721 Steward Observatory,UniversityofArizona,Tucson,AZ85721 James LiebertandDonaldW.McCarthy,Jr. Received 1993November29;accepted1994March24 CCD SURVEYFORCOOLDWARFS' John T.McGrawandThomasR.Hess 2 J. DavyKirkpatrick ABSTRACT AND 749 _3 -3 lactic pole(SGP),concluded thatthereisnomissingmassin Gilmore (1989a),usingdata onKdwarfsnearthesouthGa- reality ofthis“missingmass.” Bienaymé,Robin,&Crézé served valueof0.10-0.11A7© pc(Bahcall1984).Kuijken& mass densityof0.09-0.12AT© pc,consistentwiththeob- ( 1987)usedatechniquebased onstarcountstoobtainalocal pc awayandwouldhaveapropermotionexceeding1" per form ofunobservedmatter.Heshowedthatiftheseunseen half ofthemassinsolarneighborhoodmustreside the missing mass.UsingtechniquespioneeredbyOort(1932, annum. objects havemassesbelow0.1A/©,thenearestonewould be 1 stars isanimportantstepinunravelingthemysteryof the 1960), Bahcall(1987,andreferencestherein)determined that Knowledge oftheluminosityfunctionforleastluminous Recent results,however,havebeguntocastdoubtuponthe 1.1. TheMissingMass 19 94ApJS. . .94. .749K 6 jects basedonthelithiumdoublet at6708A.Destructionof greater thanthis. However,theinteriortemperature forbrown also beenaddressedbyother groups.Rebolo,Martin,&Ma- and latermaybesubstellar. interiors ofeventhelowest massstarshavetemperatures lithium occursattemperatures greaterthan~2X10K;the gazzù (1992)proposedaspectroscopic testforsubstellarob- and spectroscopicinformationofthesecondariesinfive low- & McCarthy(1994,hereafterPaperIV)togamerphotometric object. ThespectralsequencewasfurtherusedinKirkpatrick and possessesaspectrumunlikethatofanypreviouslyknown candidate isindeedcoolerthananyMdwarfyetdiscovered mass binarysystems,suggestingthatMdwarfstypedas M7 trum ofGD165BinKirkpatrick,Henry,&Liebert(1993a, hereafter PaperIII),establishingthefactthatthisbrowndwarf ture scaleinKirkpatricketal.(1993b,hereafterPaperII). The spectral sequencewasthenusedasacomparisontothespec- set oftheoreticalspectratodeterminetheMdwarftempera- addressed inKirkpatrick,Henry,&McCarthy(1991,hereafter Paper I).Thesespectrawereextendedto1.5/anandfitteda late-type starshasalreadybeenacquired;specifically,thesig- is alreadyinplace.Spectroscopyofacomprehensiveset nature ofK5toM9dwarfsbetween6300and9000Âwas distinguished byaparametermoreeasilymeasuredthanthe geneity intheBienayméetal.(1987)starcountsample,aswell mass. this mayintroduceunwantedsystematicerrors. be treated,accordingtoBahcalletal.(1992),withcaution,as One ofthegoalsistoseeifstarsandbrowndwarfscanbe searchers willbeabletocomparethetwogroupsofobjects. imply asubstantialfractionofmissingmatter.Theinhomo- vital todeterminingtheobservableparametersoflowest mass stars.Oncetheirsubstellarcounterpartsarefound,re- as inthecombinedKdwarfsampleofKuijken(1991),should concluded thatamorerobustanalysisofthesamedatawould the Kuijken&Gilmore(1989a,b)massdeterminationsand ate solarvicinity. absolute magnitudemaystilllieunrecognizedintheimmedi- white dwarfshasbeendemonstratedtobenegligible(Liebert, the contributiontolocalspacedensitybylow-luminosity Dahn, &Monet1988),Mdwarfsandbrownoffaint nosity degenerates,faintMdwarfs,orbrowndwarfs.Although well understood.Ina“one-experiment”run,theyfoundthat estimate inwhichthesystematicandrandomuncertaintiesare is missingmass,themostlikelypossibilitiesareverylowlumi- model havingnodarkmatterisinconsistentwiththedataatan used dataonKgiantsattheSGPtoproducealocalmass ing anearbysampleofKdwarfsinadditiontotheSGP Gilmore 1989b).Kuijken(1991)confirmedtheseresultsus- 86% confidencelevel.Theseauthorsgaveacriticalanalysisof sample. the solarvicinity,withsameresultbeingfoundwhena reanalysis ofdataonFdwarfsandKgiantsisused(Kuijken& 750 This spectroscopicdelineationofstarsandbrowndwarfshas Some ofthespectroscopicgroundworkforthisinvestigation Studies ofobjectsattheendmainsequencearealso Clearly, thelasthasnotbeenwrittenonthissubject.Ifthere In responsetotheseclaims,Bahcall,Flynn,&Gould(1992) 1.2. VeryLowMassStarsandBrownDwarfs © American Astronomical Society • Provided by theNASA Astrophysics Data System KIRKPATRICK ETAL. tion arepresentedin§6.Theresultssummarized § 7. nosity functionisgivenin§5.Implicationsforthemassfunc- § 4.Comparisontopreviouslypublishedversionsofthelumi- The derivationoftheCTIluminosityfiinctionisdetailed in be usedtoverifythatobjectsfallingintheintrinsicallyfaintest and mostcrucialbinsarelegitimateobjectsofextremetype. tion byobjectssuchasMgiantsandsubdwarfscan also can provideadequatestatisticsonthepercentageofcontamina- pling ofstarsfoundinthehigherluminositybins).These data targets foundinthelowestluminositybins(aswellasasam- nosity functionhasobtainedspectratocheckthemajorityof photometric determinationofthefaintendstellarlumi- luminosity functionforMdwarfsisproduced.Nootherrecent gether withphotometryofallstarsintheCTIdatabases,a cussed in§3. tude limitofthesurvey,andtoidentifypreviouslyunknown, ducted bytheCCD/Transit Instrument, otherwiseknownas spectroscopic targetsandthefollow-upobservationsaredis- accuracy oftheCTIphotometry,particularlynearmagni- luminosity functionistheresult ofanongoingsurveycon- very lateMdwarfsinthesolarneighborhood.Theselectionof also beentargetedspectroscopicallyinanattempttoassessthe § 2.SomeoftheobjectsdiscoveredinCTIdatabaseshave dwarfs andofanypossiblysubstellarobjects.TheCCD/Tran- utilizes two320 X512RCACCDsalignedwith columnsinthe sit Instrument(CTI)usedtoconductthissearchisdescribedin large areaofskytodeterminethespacedensitycoolest the CTI.TheCTIisaL8m,f/2.2 meridian-pointingtelescope located onKittPeak,Arizona. Ithasnomovingparts,but be fullyunderstoodandplacedincontextwithcurrentbrown covered andcanbestudied. dwarf theoryonlywhenotherextremelycoolobjectsaredis- example, thedifferencesbetweenMdwarfsandGD165Bwill objects withtypesofM8orlaterareknown(PaperIII).Asan of theselate-typeobjectscanbeidentified;lessthanadozen cooler dwarfsexhibitstrong,unidentifiedabsorptionfeatures objects. spectroscopic peculiaritieswerealsonotedamongthesefour possibly duetounrecognizedpolyatomicmolecules.Other from 1.5to2.4pm.Themostnotabledifferenceisthatthese from thespectraofanM7andM8dwarfoverregion spectra ofanM8.5andM9dwarfweremarkedlydifferent in theinfrared.Davidge&Boeshaar(1993)foundthat are moremassivethan0.06M. (1993) failedtodetectthedoublet,suggestingthatthesedwarfs dwarfs lessmassivethanabout0.06Mneverreachesthis six low-luminosityMdwarfsbyMagazzù,Martín,&Rebolo should occurinobjectsofthistype.Aspectroscopicstudy critical value.Asaresult,nosignificantdepletionoflithium 0 Q Using thiscomplementaryspectroscopicinformationto- The photometricdatabaseused inthedeterminationof In thispaper,aphotometricsearchisundertakenover Further researchcannotbecarriedoutuntilalargersample Spectroscopic studiesofthelatestMdwarfshavealsobegun 2. THECCD/TRANSITINSTRUMENT(CTI) 1.3. OutlineofthePaper Vol. 94 19 94ApJS. . .94. .749K 2 hms hms the strip,withAlbireo(ßCygni)fallingjustoutside. Cygnus andagaininGemini/Taurus),probesasfarsouth6« through theNorthGalacticPole,crossesplaneofGalaxytwice(in stellations areshownalongitscourse.Notethatthestripcrossesnearly —35°. NotealsothatPollux(¡3Geminorum)andScheat(ßPegasi)fallin grate” (TDI)modeattheapparentsiderealratetoforman east-west directionandoperatedina“time-delayinte- No. 2,1994 image ofthetransittingsky(McGraw,Cawson,&Keane full rangeofrightascension.Thetelescopeispointedatadecli- that thestrippassesnearlythroughNorthGalacticPole the courseofCTIstripthroughGalacticcoordinates.Note contained withintheTaurusMolecularCloud.Figure1shows central portionoftheComaBerenicesgalaxyclusterandareas nation of+28°,whereitcanmonitor,forexample,boththe (NGP), crossestheplaneofgalaxytwice,andprobesasfar south oftheplaneas£^-35°.Figure2ashowsatypicalfield the LTT(LunarTransitTelescope),isnowbeingdesignedfor shows afieldneartheGalacticplane.Inyear’stimeCTI near theNGP.ThiscanbecomparedtoFigure2b,which 1986). Thestripis825wide(northtosouth)andspansthe deployment ontheMoon’ssurface(McGraw1992). surveys about45deg.Asecondgenerationofthisinstrument, with the/filterandiscenteredat R. A.(1950)195430.Notetheplethoraofobjects.Bothframes are4'onasidewithnorthupandeasttotheleft. at R.A.(1950)125100.Notethe paucityofobjects,(b)(right)Atypical1minuteCTIexposureinthe GalacticplaneinCygnus.Thisframewasalsotaken Fig. 1.—PathoftheCTIsurveyinGalacticcoordinates.Familiarcon- Fig. 2.—(a)(left)\typical1minute CTIexposureinComaBerenicesneartheNorthGalacticPole.This framewastakenwiththe/filterandiscentered © American Astronomical Society •Provided bythe NASAAstrophysics Data System LUMINOSITY FUNCTIONATENDOFMAINSEQUENCE technique whichaveragesallspatialinstrumentalcorrections ute, anobjectwilltraverse512linesontheCCD,sampling into morestablelinearfunctions.Inthespaceofabout1min- results inaflatterflatfield.Biasacquisitionisdonesimilarly. only aflat-fieldlineneedstobemeasured,andthisaveraging flat fieldverticallyasittransitsthedetector.Insuchasystem, through aVfilterwhiletheotherobservesB,R,orI that theCTIwillremaininfocusregardlessoffilterchoice, depending upontheskybrightness.Becauseitisnecessaryto tometric standards;calibrationtoanexternalsystemisdis- Cousins BVRIsystem,witheachfilterhavingathicknessof3 CTI filtersystemisslightlydifferentfromtheJohnson/ maintain auniformopticalpathlengththroughthefiltersso a morecomprehensiveoverviewoftheCTI,readerisre- cussed in§4.1.ThenightlylimitingmagnitudeisF^21.For mm. CTIphotometryisbootstrappedtoaninternalsetofpho- and photometricparametersarecalculatedforeach.Thesepa- ferred toMcGrawetal.(1986). contains informationoneverydetection,sortedbyrightascen- contain thebestestimateforeachparameter.The“poollist” rameters becomepartofa“poollist”and“masterwhich bandpass thereisalsoa“historylist”whichmaintainslight been repeatedlydetectedonnightsofgoodseeing.Foreach sion. The“masterlist”isasubsetofthe“poolcontaining the CTIdatareductionprocesscanbefoundinCawson, example, veryfaintentriesareconsideredrealiftheyhave only thoseobjectshavingahighlikelihoodofbeingreal;for curve foreverydetectedobject.(Astep-by-stepdescriptionof McGraw, &Keane1986a.) photometry. Eachentryinthe“pool”and“master”listsgives, parameters determinedusingallavailable,reducednightsof among otherparameters,therightascensionanddeclination (for the1987.5equinox)ofobject,averagemagnitude Photometric precisionisenhancedbyutilizationoftheTDI One ofthetwoCCDsinfocalplanealwaysobserves The pixeldataaresearchedtofindeverydetectableobject, The datalistedforeachobjectarevariance-weightedmean 751 19 94ApJS. . .94. .749K h h h hm hm were performedon~2ofthe 24totalinthestrip.Unfortu- the “poolfist.”Co-additionsin Ren,/cn,andsometimesF^ to probedeeperthanthenightly limitingmagnitudesgivenin sive process,whichiswhyonly atotalof~2hasbeencom- nately, thisisanextremelytime-consuming andlabor-inten- cause ofthereddeningpresentoverthisarea. Molecular Cloudcomplex,wasexcludedfromthesearch be- ing 4000''2yr . giving theequinox1987.5coordinates(—1990).Col- signal-to-noise ratiosof—7or better.Forthe17objectshaving ratios areshowninFigure3 foreachofthespectrahaving Paper I(andrepeatedinthetitlesofFig.3).Thevaluesthese spectra weredeterminedusingcolorratiosalsodefined in integration. Column(9)listsnotesonselectedobjects,includ- umn (6)givesthespectraltypesdeterminedfromMMT tion oftheobject—acode,denotedbyhhmmss.s+ddmmss, MMT observationalongwiththelengthofspectroscopic spectra, andcolumns(7)(8)givetheUTdateof the object inequinox1950coordinates(againwithepoch umn (2)givestherightascensionanddeclinationof each right ascensioninTable1.Column(1)givestheCTIdesigna- to 9000Â.Intotal,133spectrawereobtained,wherespecial very redtargets.Theseobjectsarelistedinorderofincreasing emphasis wasplacedonacquiringspectraofthemajority the databaseshavebeenmeasurements,soonlylight tional comparisons.CTIlightcurvescanalsobeproducedto setup describedinPaperI,whichprovidescoveragefrom6300 nel ofthe4.5mMultipleMirrorTelescope(MMT)using curves atcancurrentlybeexamined.) check forpossiblevariability.(Mostofthedataenteredinto can becomparedtoPOSSprintsofthesamefieldcheck the single-nightdata. the “poollist,”veryfewextremelyredstarswerefoundthat gions wereexcludedfromthesearchdiscussedin§3.1.1(too Rcri improvestheRenlimitby—1.8mag.However,manyof visually forpropermotion.Thisvisualcheckisreliableonly 0015, Ol^012770251138 which extendsthelimitbyonly1magorless. the areashaveonly2or3nightsof/cndataand4Ren> field hasasufficientnumberofstellarimagestouseasposi- for propermotionsexceeding—0''2yr,andthenonlyifthe had notpreviouslybeendiscoveredduringinterrogationsof near theplane)andthatregionsprobemoredeeplythan 2254, and2336.Despitethefactsthatsomeofthesere- adding 9nightsat/cnenablesthesurveydatatoprobe—2.2 those atF^hadasmany27.Ithasbeenfoundthatco- general, thecoadditionsat/cnincludednomorethan9nights mag deeperthanasinglenight’sdata,andco-adding8nightsat that areashavingthemostarchiveddatacouldbeselected.In — 1990).Columns(3)-5giveinternalCTIphotometry. Col- of (high-quality)data,thoseatRenhadnomorethan8,and pleted. Smallregionsspanningonly~5inR.A.wereusedso 1803, I90019122027212206 1342, 1415150639ló^ m Spectral typeswereassignedusingtheleast-squaresminimi- The color-selectedtargetswereobservedwiththeRedChan- Once theredobjectshavebeenselected,theirfindercharts The R.A.centersforeachofthe5co-addedregionsare 3.1.3. OtherDataontheTargetObjects 3.2. SpectraofCTIObjects 19 94ApJS. . .94. .749K 001251.1+280535A 000455.2+280301 000139.94-275821 CTI Name 002142.1+280548 000928.8+280436 000537.5+275850 000351.34-280138 000055.2-f280432 021845.9+280047 015812.8+280439 012657.5+280202 012517.7+280101 012023.2+280321B 012023.2+280321A 011708.6+275850 005100.5+280430 004911.4+275952 004525.7+280437 004406.7+280336 004244.4+280140 003439.1+280309 002352.0+280605 001251.1+280535B 011826.7+280514 010332.0+280234 002603.4+275922 093631.3+280237 092539.9+280018 092423.0+280044 084106.0+280016 075013.2+280613 023210.0+280313 015825.4+280120 015705.9+280519 015625.5+280135 015607.7+280241 015338.5+280036 015115.8+280458 014716.6+280142 013743.0+280553: 012517.7+280247 012303.4+280449 092053.7+280101 091716.8+280531 090928.9+280324 090120.6+280439 081722.3+280138 075723.2+280533 072401.2+280238 065950.5+280228 035750.4+280105 131541.3+280227 124832.6+280502 124450.0+280024 120236.8+275947 120144.1+280527 115638.4+280000 113104.4+280200 112443.6+280426 111035.6+275951 065150.8+280311 064951.4+280442 034607.5+280109 034036.8+280248 032659.6+275912 032442.5+280400 112750.0+280406 105802.4+280251 105707.5+280223 105201.6+280448 103000.3+280432 102840.1+280330 031502.6+280315 100219.5+280036 © American Astronomical Society • 00:42:06. 00:21:54. 00:19:44. 00:10:54. 00:10:54. 00:03:41. 00:02:59. 00:01:55. 23:59:44. 23:59:00. RA (1950)Dec 00:40:44. 00:32:39. 00:24:05. 00:07:32. 09:34:20 09:23:27 09:22:10 09:15:03 09:07:15 08:38:50 07:55:04 07:47:54 07:21:40 06:57:29 03:55:32 03:38:19 03:22:26 01:53:59, 01:24:52. 01:23:12. 01:18:18. 01:18:18. 01:16:22. 01:15:04. 01:01:29. 00:48:59. 00:47:10. 00:43:25. 03:43:50 03:24:43 03:12:47 02:29:58. 02:16:35. 01:56:17 01:56:04. 01:54:57. 01:54:17, 01:51:30. 01:49:08. 01:45:09 01:37:37, 01:23:12. 01:20:58, 13:13:54 12:46:42 09:18:41 08:59:06 08:15:04 06:49:29 06:47:29 12:42:59 12:00:41 11:59:48 11:29:05 11:54:42 11:25:50 11:22:44 11:08:34 10:55:59 10:55:04 10:49:58 10:27:54 10:26:34 10:00:11 .7 +27:49:33 .4 +27:50:30 .0 +27:54:28: .6 +28:14:19 .9 +28:17:18 .9+28:17:59 .4 +27:54:57 .7 +28:12:19 .6 +28:14:25 .1+28:16:48 .5 +28:12:05 .1 +28:11:57 .4 +28:05:38 .1 +27:54:11 .7 +27:55:35 .5 +27:56:06 .5 +27:50:23 .9+27:51:06 .9 +27:49:20 .8 +27:53:05 .9+27:51:34 .9+27:51:34 .6 +27:53:25 .7 +27:46:59 .6+27:50:30 .5 +27:52:16 ,6 +27:47:37 .3 +27:52:19 .4 +27:51:18 .3 +27:49:21 .9 +27:50:45 .2+27:46:55 .1 +27:53:37 ,4+27:53:19 .4 +27:53:04 .4 +27:53:04 .5 +27:52:05 .2+27:46:18 .5 +27:50:29 ,7 +27:49:06 .0 +27:52:00 .8 +28:16:30 .8 +28:14:26 .4 +28:16:46 .6 +28:16:05 .3 +28:15:02 .0+28:11:29 .2 +28:12:44 .8 +28:10:03 .8 +28:10:27 .2 +28:10:36 .9 +28:14:59 .4 +28:13:31 .2 +28:08:19 .9 +28:08:39 .9 +28:07:04 .4 +28:05:56 .9 +28:07:21 ,4 +28:12:35 .3 +27:54:40 5 +27:45:49 4 +27:53:19 4 +27:50:37 6 +27:50:27 6+27:51:42 2 +27:53:52 5 +27:53:43 8 +27:54:22 6 +28:12:32 8+28:14:54 5+28:11:38 5+27:51:24 1 +27:50:25 +28:12:42 Rcti (R-1)CTI(V-I)ctiSp.TypeDateObs.(UT)Int.(s)Note 19.61 19.00 17.47 18.39 14.17 18.47 18.51 18.50 14.91 14.49 14.78 14.22 18.50 18.97 18.98 18.99 16.97 19.96 15.67 15.95 15.96 17.00 15.87 18.33 17.30 15.32 19.30 15.83 17.90 16.98 15.83 15.43 15.37 14.91 18.27 14.04 17.57 15.35 16.92 18.57 18.27 18.95 14.29 14.69 19.30 11.12 14.46 17.69 18.33 15.05 18.5: 19.35 16.39 13.28 0.26+0.01 17.93 19.00 15.37 18.47 15.45 18.55 18.32 19.12 0.75 +0.01 0.51 +0.01 2.35 +0.17 2.17 +0.41 0.26 +0.01 0.88 +0.01 0.78 +0.01 0.84 +0.01 0.57 +0.01 0.17 +0.07 0.55 +0.01 0.50 +0.01 0.97 +0.22 0.75 +0.01 0.74 +0.12: 0.59 +0.01 1.82 +0.27 0.55 +0.02 0.20 +0.01 0.99 +0.01 2.30 +0.24 0.35 +0.04 1.42 +0.09 1.52+0.11 1.68 +0.07 1.78 +0.14 1.74 +0.26 1.83 +0.40 1.41 +0.08 1.25 +0.06 1.34 +0.02 1.12 +0.03 1.06+0.03 1.19 +0.02 1.86 +0.08 1.29 +0.07 1.21 +0.01 1.53 +0.03 1.77 +0.12 1.56 +0.11 1.04 +0.05 1.17 +0.02 1.47 +0.09 1.19 +0.04 1.94 +0.16 1.18 +0.02 1.42 +0.07 1.03 +0.02 1.99 +0.08 1.51 +0.09 1.60 +0.14 1.80 +0.24 1.59 +0.14 1.65 +0.07 1.18 +0.14 1.85 +0.21 1.00 +0.01 1.75 +0.01 1.83 +0.12 1.95 +0.21 CTI ObjectsObservedSpectroscopically 4.08 ±0.06 2.00 +0.01 2.85 +0.01 2.67 +0.01 2.01 +0.01 3.18 +0.05 3.17 +0.04 4.08 +0.01 4.99 +0.6: 3.88: 3.06 +0.09: 2.75 +0.03 2.56 +0.01 2.86 +0.01 3.29 +0.07 3.17 +0.04 2.84 +0.01 3.21 +0.05 2.01 +0.01 2.93 +0.01 3.50 +0.02 4.05 +0.54 2.19 +0.18 3.58 +0.12 2.45 +0.01 3.52 +0.14 2.28 +0.01 2.37 +0.01 3.89 +0.08 2.57 +0.01 3.76 +0.19 2.42 +0.16 3.56 +0.13 3.23 +0.05 2.28 +0.01 3.28 +0.07 3.24 +0.07 2.21 +0.01 2.58 +1.02 2.39 +0.18 3.51 +0.05 2.79 +0.14 3.01 +0.05 0.82 +0.19 2.98 +0.18 3.04 +0.19 3.29 +0.17 3.26 +0.06 3.19 +0.02 2.81 +0.02 2.89 +0.84 3.37 +0.08 3.61 +0.04 3.03 +0.09 3.18 +0.10 2.96 +0.16 3.03 +0.05 2.68 +0.03 1.40 +0.06 1.91 +0.01 1.59 +0.01 1.50 +0.01 1.75 +0.03 1.51 +0.01 1.94 +0.01 1.99 +0.01 Provided bythe NASA Astrophysics Data System TABLE 1 sdMO M4.5 V M4 V M5.5 V M2.5 V M6: V M4 V K7 V M5.5 V M6 V M3.5 V M4.5 V M4 V K7 V M4 V M3.5: V M3.5 V Ml.5 V Ml V M6 V M4.5 V M5.5 V M7 V M5.5 V M3: V M2.5 V M3 V M5 V M5.5 V M3 V M3 V M6.5 V M3 V Ml.5 V M6 V M3.5 V M5.5 V M5.5 V M5.5 V M4 V M4.5 V M4.5 V M5.5 V M5.5 V M5 V M4.5 V M4.5 V M4 V M3.5 V M6 V M3: V M4 V M6 V M3.5 V M4 V M4.5 V Ml.5 V M6 V M5.5 V < K5V M6 V M4.5 V M8.5 V MOV MOV M6 V M7 III Ml.5 V K7 V M4.5 V M6 V M6.5 V M3.5 V M3.5 V 1991 Jun22 1990 May04 1991 Mar14 1990 Jan21 1991 Mar14 1991 Mar14 1991 Mar14 1990 Jan20 1990 May04 1990 Jan20 1990 Jan20 1990 May04 1991 May07 1991 Mar14 1990 Jan21 1991 Mar14 1990 Jan20 1991 Mar14 1990 Jan21 1990 Jan20 1990 May04 1990 Nov22 1990 Jan20 1990 Jan21 1990 Jan20 1990 Nov22 1990 Nov22 1990 Nov22 1990 Sep13 1990 Nov22 1991 Jun24 1989 Jul14 1990 May04 1991 Mar14 1990 Nov22 1990 Jan21 1990 Jan21 1990 Jan21 1990 Jan21 1990 Jan20 1990 Nov22 1991 Oct17 1991 Oct17 1991 Oct17 1991 Oct17 1989 Jul13 1989 Jul14 1990 Nov23 1990 Jan22 1989 Jul13 1990 Nov23 1990 Sep13 1990 Nov23 1990 Jan22 1989 Jul13 1990 Nov23 1990 Nov23 1990 Nov22 1990 Sep13 1989 Jul13 1990 Nov23 1989 Jul13 1990 Nov23 1990 Nov23 1990 Nov23 1990 Nov23 1990 Sep13 1989 Jul14 1990 Nov23 1990 Nov22 1990 Sep13 1990 Nov23 1990 Jan22 1989 Jul10 900 360 4200 2700 2100 300 2700 2100 3000 2700 2100 3900 300 600 600 2700 390 900 300 3900 1200 1500 1170 1800 3900 2700 3660 2700 2700 600 600 3900 3900 2700 600 600 2700 600 3900 2700 3900 2700 2700 2700 2700 300 300 2100 2361 1200 1200 1200 1170 1500 3900 900 3900 3900 2700 2700 2700 2400 300 1500 1500 1200 1500 1500 1500 1200 1800 1200 1500 1500 1 1 -1 1 = -1 -1 ,,1 -1 H ~O^'yrtowardSE. fi ~O^'yrtowardW? // ~O^'yrtowardN??Icti=17.92 fi ~0.2"yrtowardSE? Close doublewithfollowingstar. Icti 16.90 Icti =17.89 Icti =18.06 Icti =17.38 Icti =17.44 H ~P'yrtowardWSW? Not foundonPOSS-E.(Large/i?Toofaint?) Close doublewithprecedingstar. Large fi?NotfoundonPOSS-Eprint. LP 322-1178(seeTable5). Not foundonPOSS-E.Icti=17.43 Icti =17-57 /i ~OA^yrtowardE?Notcolor-selected. Icti ~17.5 Close doublewithprecedingstar. Close doublewithfollowingstar. Not foundonPOSS-E.Icti=16.67 LP 301-16(seeTable5). /i ~2yr"towardWNW?? H ~l.S'^rtowardN?? Not foundonPOSS-E.(Largefi?Toofaint?) Variable. IctiandpossiblyRctisaturated. 19 94ApJS. . .94. .749K -1 1 proper motionsinexcessof ~0''2 yr.Theseareallmid-to lie closetothePOSS-Eplatelimit, leavingtheidentificationof late-M dwarfs.Severalofthese aresufficientlyfaintthatthey has shownthatanumberof objectslistedinTable1have /)cri and(R-fromK7 throughM8.5. objects, demonstratingthemonotonieincreaseofboth( V— Table 1.FigureAbshowsthespectraltypesofeachthese CTI 141111.3+280141,confirmingourby-eyeestimatesof/u~Qf'2 yr". 234957.0+280136 233828.2+275817 223752.5+275918 233201.1+275943 232425.5+275949 230047.6+280216 224056.1+280052 202928.1+280151 202738.5+280227 225508.6+280234 225431.2+280046 225024.0+275956 202636.9+275934 754 191326.8+275930 191258.9+280353 192853.3+280415 192121.7+280100 191216.9+280228 190917.7+280305 190016.9+280541 190006.8+280452 180408.2+280352 180516.3+280448 180456.3+280049 180350.6+280133 185818.3+275940 185818.3+280045 180305.0+280256 162920.5+280239 180257.2+280456 180216.8+280457 162356.1+275942 154231.3+280401 153948.1+280322 CTI Name 180142.2+275924 174729.0+280322 171818.0+280512 170958.5+275905 160557.4+280437 153945.1+280233 180120.1+280410 162342.9+280305 161340.2+280024 161340.2+280011 153915.6+280445 153915.5+280214 153729.8+280454 150546.8+280117 150225.7+280231 141329.8+280131 141237.7+280557 133827.9+280633 135752.6+275957 135347.7+280419^ 134402.7+280521 133857.8+280437 131631.6+280541 141111.3+280141^ 141034.2+280158 A comparisonoftheCTIfinder chartstothePOSS-Eprints f AlsodiscoveredaspropermotionobjectsbyLuyten(1979;seeTable 5),whoobtainedß=(X'lSOyr © American Astronomical Society • Provided by theNASA Astrophysics Data System 23:48:03 23:36:35., 23:30:09.' 23:22:34. 22:58:59, 22:53:20.; 22:39:09. 22:36:06.' 22:52:43 22:48:36. 20:27:54. 20:26:04. 20:25:03. 19:27:22. 19:19:51. 19:11:56. 19:11:29. 19:10:47. 19:07:47. 18:58:37. 18:56:48. 18:56:48. 18:03:47. 18:58:47. 18:03:27. 18:01:36. 18:01:28. 18:00:48. 18:02:39. 18:02:22. 17:08:29. 16:27:49. 18:00:13. 17:59:51 17:46:00. 17:16:49. 16:22:25. 16:22:12 16:12:08 16:12:08 16:04:25 15:40:58 15:38:14 15:38:11 15:35:56 15:37:42 15:37:42 15:04:10 15:00:49 14:11:49 14:10:57. RA (1950)Dec 14:09:30. 14:08:53. 13:56:10 13:52:05 13:42:19 13:37:13 13:36:43 13:14:45 .0 +27:49:05 .5 +27:45:49 .2 +27:47:17 .0 +28:08:14 .6 +28:10:38 .7 +28:10:36 .7 +28:09:47 .8 +28:05:50 .2 +28:12:00 .0 +28:09:29 .8 +28:09:57 .5 +28:11:19 ,8 +27:57:38 .8 +27:56:33 .7 +28:04:33 .7 +28:00:35 .6 +28:03:41 .0 +28:01:23 .4 +28:02:48 .7 +28:04:49 .3 +28:04:52 .6 +27:59:21 .5 +28:04:08 .4 +28:04:05 .0 +28:07:30 .2 +28:01:50 .9 +28:07:31 .2 +28:04:50 .3 +28:12:14 .2 +28:12:00 .0+28:16:28 .4 +28:12:14 .3 +28:12:32 .7 +28:16:01 .1+28:16:38 .7+28:17:58 .0 +28:17:32 .4 +28:10:53 .1 +28:15:21 2 +27:50:10 8 +27:50:33 5 +27:48:46 8 +27:48:00 9 +27:49:06 6 +27:47:35 4 +27:56:41 4 +27:47:27 0 +27:54:17 6 +27:54:58 0 +27:52:07 8 +27:59:33 8 +27:55:36 0 +28:00:00 4 +28:02:28 0 +27:58:37 9 +27:59:24 3 +28:01:39 1 +28:11:07 +28:06:03 20.02 20.17 9.99 18.62 15.18 16.62 19.85 18.22 19.50 19.45 15.64 15.32 14.08 11.56 19.79 19.61 13.07 12.71 14.80 11.20 19.53 20.24 20.15 14.50 18.75 15.75 18.79 15.93 18.92 19.01 15.38 18.50 18.52 19.78 15.46 16.55 14.70 17.02 19.09 19.51 18.31 15.46 19.87 18.74 15.38 15.45 Rcti (R-I)cti(VSp.TypeDateObs.(UT)Int.(s)Note 17.84 16.39 19.57 17.35 18.96 15.93 0.77 +0.27 2.21 +0.42 0.98 +0.28 0.98 +0.48 0.45 +0.03 0.48 +0.03 2.28 +0.06: 2.49 +0.73 0.69 +0.01 2.21 +0.57 0.09 +0.01 0.77 +0.01 1.87 +0.33 1.14 +0.03 0.80 +0.27 0.33 +0.01 0.82 ±0.40 0.73 +0.02 0.73 +0.22 0.79 +0.03 1.94 +0.38 1.82 +0.37 1.46 +0.01 0.85 +0.27 1.08 +0.01 0.62 +0.02 2.21 +0.41 0.94 +0.07 0.54 +0.01 2.14 +0.80 0.80 +0.03 0.85 +0.68 1.48 +0.01 1.56 +0.38 0.61 +0.01 0.83 +0.14 0.75 +0.01 1.57 +0.17 1.58 +0.03 1.29 +0.14 1.19 +0.05 1.77 +0.41 1.55 +0.28 1.57 +0.12 0.65 ±0.02 1.65 +0.91 1.58 +0.82 1.33 +0.03 1.43 +0.08 1.60 +0.06 1.81 +0.43 KIRKPATRICK ETAL. 2.28 +0.25 2.91 +0.25 2.09 +0.43 2.86 +0.02 3.56 +0.01: 3.75 +0.01 2.84 +0.01 2.93 +0.34 3.78 +0.01 2.20 +0.01 1.82 +0.03 1.89 +0.03 2.28 +0.01 0.67 +0.07 2.46 +0.21 2.45 +0.13 2.25 +0.01 2.30 +0.02 2.28 +0.01 1.36 +0.01 3.57 +0.10 3.65 +0.01 2.63 +0.02 2.98 +0.06 3.02 +0.45 2.17 +0.01 2.85 +0.02 2.42 +0.15 3.44 +0.04 2.09 +0.01 3.12 +0.01 3.47 +0.02 1.72 +0.01 1.99 +0.15 2.36 +0.01 3.51 +0.03 1.99 +0.01 3.23 +0.14 1.95 +0.31 2.14 +0.02 1.63 +0.29 TABLE 1—Continued sdMO: M5 V M2.5: V M6 V M5.5 V M4 V Ml V Ml V M5 V M4 V M3 V M4 V M4 V M4 III MO V M4.5 V M7 III K7 III M2.5 V M3 III M4.5 V M4 V M6 III M5.5 III M3 V MOV M3 V M2.5 V M2: V M3 V M6.5 V M4 V M5 V M5.5 V M4 V M3 V M2.5 V M4 V M4.5: V M5.5 V M3 V M5.5 V M2 V Ml.5 V M6.5 V M4: V M4.5 V M5.5 V M2.5 V M3 V

CTI 000455.2+280301 M6 V CTI 004244.4+280140 M6 V

Fig. 21.—Spectra and finder charts of all dwarfs in Table 1 with spectral types of M6 or later 19 94ApJS. . .94. .749K © American Astronomical Society •Provided bythe NASAAstrophysics Data System 776

Fig. 21—Continued 19 94ApJS. . .94. .749K © American Astronomical Society •Provided bythe NASAAstrophysics Data System 00 LO > CM CO LO LO CM 00 O CM O CM O I— O O I— O CD CD CNI 00 O CD + CM î> + I I ♦ 777 K) CMT-O Yxn (j) UP9ZJ|DUUJ0|S| O O O O) O O CO O oo LO LO O O I\ O O CD LO O O O _0) O Q> c: O» >

Fig. 21—Continued or OT © American Astronomical Society •Provided bythe NASAAstrophysics Data System CTI 015607.7+280241 M6.5 V CTI 015625.5+280135 M6 V 778 Yxn (j) IJP9ZI|DlJUJON

Fig. 21—Continued 03 03 © American Astronomical Society •Provided bythe NASAAstrophysics Data System

CTI 023210.0+280313 M6 V CTI 034036.8+280248 M6 V 779 xn Od) UPÔZÎIDLÜJOM m O O) O O O 00 O O O 00 O O m O o r» O O O co m O _0 0) c cr> O >

Fig. 21—Continued r" © American Astronomical Society •Provided bythe NASAAstrophysics Data System CTI 091716.8+280531 M6 Y CTI 092539.9+280018 M6.5 V 780

Fig. 21—Continued 03 03 03 03 h) a © American Astronomical Society •Provided bythe NASAAstrophysics Data System

CTI 115638.4+280000 M7 V CTI 120144.1+280527

Fig. 21—Continued 19 94ApJS. . .94. .749K © American Astronomical Society •Provided bythe NASAAstrophysics Data System 782 Yxn (j) ldpazjiDUJJON O Oí o O 03 m o o 00 ¡s ^ I O 0) O ® o o o (O LO o o -M _c c en £

Fig. 21.—Continued 19 94ApJS. . .94. .749K © American Astronomical Society •Provided bythe NASAAstrophysics Data System CD > ro CM ro ro CM CT) O O CM |\ LO + I ' ■e O -r-_ I— O) O)s= ? ° OJ o o ; m 3 I HISHH r .aá *i:,;» ■3*, 0) ' i’"*«i- 783 CNJ Q CD m o in o CM o> ro m Ö O CD CNJ QC + O 0) ^ I -+-* -C cn c

Fig. 21—Continued 19 94ApJS. . .94. .749K © American Astronomical Society •Provided bythe NASAAstrophysics Data System 784

Fig. 22—Spectra, finder charts, and light curves of those giants listed in Table 1. 19 94ApJS. . .94. .749K © American Astronomical Society •Provided bythe NASAAstrophysics Data System

Fig. 22—Continued 19 94ApJS. . .94. .749K © American Astronomical Society •Provided bythe NASAAstrophysics Data System xn Cd) UP»z!|dujjonapniiußDLU‘“a

Fig. 22—Continued 19 94ApJS. . .94. .749K .1987,inDarkMattertheUniverse,ed.byJ.Kormendy& G. R. Conte, S.D.,&deBoor,C.1980, ElementaryNumericalAnalysis(San Combes, F.1991,ARA&A,29,195 Bessell, M.S.1991,AJ,101,662 Bahcall, J.N.,Flynn,C,&Gould,A.1992,ApJ,389,234 Bahcall, J.N.1984,ApJ,276,169 .1986b,inSPIEProc.627,ed.D.L.Crawford(Bellingham, WA: Cawson, M.G.M.,McGraw,J.T.,&Keane,1986a,inSPIE Proc. Burrows, A.,Hubbard,W.B.,Saumon,D.,&Lunine,J.I.1993,ApJ, 406, Brand, J.,&Blitz,L.1993,A&A,275,67 Bienaymé, O.,Robin,A.C,&Crézé,M.1987,A&A,180,94 Burstein, D.,&Heiles,C.1982,AJ,87,1165 Davidge, T.J.,&Boeshaar,P.C. 1993, ApJ,403,L47 Dahn, C.C,Liebert,J.,&Harrington, R.S.1986,AJ,91,621 Knapp (Boston:Reidel),17 Francisco: McGraw-Hill),297-99 627, ed.D.L.Crawford(Bellingham,WA:SPIE),70 SPIE), 79 158 © American Astronomical Society •Provided bythe NASAAstrophysics Data System CTI 192853.3+280415M4III LUMINOSITY FUNCTIONATENDOFMAINSEQUENCE Ñ Fig. 22—Continued REFERENCES Wavelength (Â) Date (yr) Gilmore, G.,&Reid,N.1983,MNRAS,202,1025 Gliese, W.,&Jahreiss,H.1991,CatalogofNearbyStars(3ded.[prelimi- Elvius, T.1965,inGalacticStructure,StarsandStellarSystems, vol. 5 Grabelsky, D.A.,Cohen,R.S.,Bronfman,L.,&Thaddeus,P.1987, ApJ, .1993,AJ,106,773 Hawkins, M.R.S.,&Bessell,S.1988,MNRAS,234,177 Johnson, H.L.1965,ApJ,141,923 Henry, T.J.1991,Ph.D.thesis,Univ.Arizona Hoffleit, D.,&Jaschek,C.1982, BrightStarCatalogue,(4thed.;New Henry, T.J.,Kirkpatrick,J.D.,&Simons,D.A.1994,AJ,inpress Henry, T.J.,&McCarthy,D.W.,Jr.1990,ApJ,350,334 Kazarovets, E.V.,&Samus,N. 1990,Inf.Bull.Var.Stars,3530,1 Kazarovets, E.V.,&Samus,N.N., &Goranskij,V.P.1993,Inf.Bull.Var. (Chicago: Univ.ChicagoPress),41 Catalogs, vol.1(Greenbelt,Md.:NASA/GSFC) nary]) onAstronomicalDataCenterCD-ROMSelected 315, 122 Haven: YaleUniv.Obs.) Stars, 3840,1 I filter CTI finderchart Dec =+27:59:33 RA =19:27:22.8 1990 Jun20(UT) 1950 coordinates: 787 19 94ApJS. . .94. .749K .1989b,MNRAS,239,651 .1985,GeneralCatalogueofVariableStars(Moscow:Publishing Lutz, T.E.,&Kelker,D.H.1973,PASP,85,573 Leggett, S.K.,&Hawkins,M.R.1988,MNRAS,234,1065 Luyten, W.J.1979,NLTTCatalogue,vol.2(Minneapolis:Univ.Minne- Liebert, J.,Dahn,C.C,&Monet,D.G.1988,ApJ,332,891 Leinert, C.,Haas,M.,Allard,F.,Wehrse,R.,McCarthy,D.W.,Jr., Leggett, S.K.1992,ApJS,82,351 Lang, K.R.1980,AstrophysicalFormulae:ACompendiumforthePhysi- Kuijken, K.,&Gilmore,G.1989a,MNRAS,239,605 Kuijken, K.1991,ApJ,372,125 Kirkpatrick, J.D.,&McCarthy,D.W.,Jr.1994,AJ,107,333(PaperIV) Kirkpatrick, J.D.,Kelly,D.M.,Rieke,G.H.,Liebert,J.,Allard,F.,& Kirkpatrick, J.D.,Henry,T.J.,&McCarthy,D.W.,Jr.1991,ApJS,77, Kirkpatrick, J.D.,Henry,T.J.,&Liebert,1993a,ApJ,406,701(Paper Kholopov, P.N.,Samus,N.Kazarovets,E.V.,&Perova,B.1985, Kholopov, P.N.,Samus,N.Kazarovets,E.V.,&Kireeva,1987, Kholopov, P.N.,Samus,N.Kazarovets,E.V.,Frolov,M.S.,&Kir- Kroupa, P.,Tout,C.A.,&Gilmore,G.1993,MNRAS,262,545 Kholopov, P.N.,ed.1982,NewCatalogueofSuspectedVariableStars 788 Jahreiss, H.,&Perrier,C.1990,A&A,236,399 sota Press) cist andAstrophysicist(2ded.;NewYork:Springer),500 Wehrse, R.1993b,ApJ,402,643(PaperII) 417 (PaperI) III) eeva, N.1989,Inf.Bull.Var.Stars,3323,1 Inf. Bull.Var.Stars,2681,1 Inf. Bull.Var.Stars,3058,1 House Nauka) (Moscow: PublishingHouseNauka) © American Astronomical Society • Provided by theNASA Astrophysics Data System KIRKPATRICK ETAL. .1960,Bull.Astron.Inst.Netherlands,15,45 Tinney, C.G.1993,ApJ,414,279 .1993,ApJ,404,723 Tinney, C.G.,Reid,I.N.,&Mould,J.R.1993,ApJ,414,254 Stothers, R.,&Frogel,J.A.1974,AJ,79,456 Stobie, R.S.,Ishida,K.,&Peacock,J.A.1989,MNRAS,238,709 Sanders, D.B.,Solomon,P.M.,&Scoville,N.Z.1984,ApJ,276,182 Salpeter, E.1955,ApJ,121,161 .1981b,GalacticAstronomy:StructureandKinematics(2ded.; Stobie, R.S.,&Ishida,K.1987,AJ,93,624 Reid, N.,&Gilmore,G.1982,MNRAS,201,73 Rebolo, R.,Martín,E.L.,&Magazzù,A.1992,ApJ,389,L83 Oort, J.H.1932,Bull.Astron.Inst.Netherlands,6,249 Nelson, L.A.,Rappaport,S.&Joss,P.C.1986,ApJ,311,226 Reid, N.1991,AJ,102,1428 Monet, D.G.,Dahn,C.C,Vrba,F.J.,Harris,H.Pier,J.R.,Lugin- van derKruit,P.C.1989,inSAAS-FeeAdv.Course19:TheMilkyWayas Miller, G.E.,&Scalo,J.M.1979,ApJS,41,513 Mihalas, D.,&Binney,J.1981a,GalacticAstronomy:StructureandKine- McGraw, J.T.,Cawson,M.G.M.,&Keane,1986,inSPIEProc. Yamagata, T.,&Yoshii,Y.1992,AJ,103,117 McGraw, J.T.1992,inRoboticTelescopesthe1990s,ed.A.V.Filip- Magazzù, A.,Martin,E.L.,&Rebolo,R.1993,ApJ,404,L17 buhl, C.B.,&Abies,H.D.1992,AJ,103,638 San Francisco:W.H.Freeman),396 a ,ed.G.Gilmore,I.King,&P.vanderKruit(MillValley,CA: matics (2ded.;SanFrancisco:W.H.Freeman),252 627, ed.D.L.Crawford(Bellingham,WA:SPIE),60 Univ. ScienceBooks),331 penko (ASPConf.Series34),305