19 94Apjs. . .94. .749K the Astrophysical Journal Supplement

Total Page:16

File Type:pdf, Size:1020Kb

19 94Apjs. . .94. .749K the Astrophysical Journal Supplement The Astrophysical Journal Supplement Series, 94:749-788, 1994 October .749K © 1994. The American Astronomical Society. All rights reserved. Printed in U.S.A. .94. 94ApJS. THE LUMINOSITY FUNCTION AT THE END OF THE MAIN SEQUENCE: RESULTS OF A DEEP, LARGE-AREA, 19 CCD SURVEY FOR COOL DWARFS' J. Davy Kirkpatrick2 Steward Observatory, University of Arizona, Tucson, AZ 85721 John T. McGraw and Thomas R. Hess Institute for Astrophysics, University of New Mexico, Albuquerque, NM 87131 AND James Liebert and Donald W. McCarthy, Jr. Steward Observatory, University of Arizona, Tucson, AZ 85721 Received 1993 November 29; accepted 1994 March 24 ABSTRACT The luminosity function at the end of the main sequence is determined from F, R, and / data taken by the CCD/Transit Instrument, a dedicated telescope surveying an 825 wide strip of sky centered at 5 = +28°, thus sampling Galactic latitudes of +90° down to —35°. A selection of 133 objects chosen via R - 7and F — 7 colors has been observed spectroscopically at the 4.5 m Multiple Mirror Telescope to assess contributions by giants and subdwarfs and to verify that the reddest targets are objects of extremely late spectral class. Eighteen dwarfs of type M6 or later have been discovered, with the latest being of type M8.5. Data used for the determination of the luminosity function cover 27.3 deg2 down to a completeness limit of R = 19.0. This luminosity function, computed a F, 7, and bolometric magnitudes, shows an increase at the lowest luminosities, corresponding to spectral types later than M6—an effect suggested in earlier work by Reid & Gilmore and Leggett & Hawkins. When the luminosity function is segregated into north Galactic and south Galactic portions, it is found that the upturn at faint magnitudes exists only in the southern sample. In fact, no dwarfs with Mj > 12.0 are found within the limiting volume of the 19.4 deg2 northern sample, in stark contrast to the smaller 7.9 deg2 area at southerly latitudes where seven such dwarfs are found. This fact, combined with the fact that the Sun is located —10-40 pc north of the midplane, suggests that the latest dwarfs are part of a young population with a scale height much smaller than the 350 pc value generally adopted for other M dwarfs. These objects comprise a young population either because the lower metallicities prevalent at earlier epochs inhibited the formation of late M dwarfs or because the older counterparts of this population have cooled beyond current detection limits. The latter scenario would hold if these late-type M dwarfs are substellar. The luminosity function data together with an empirical derivation of the mass-luminosity relation (from Henry & McCarthy) are used to compute a mass function independent of theory. This mass function increases toward the end of the main sequence, but the observed density of M dwarfs is still insufficient to account for the missing mass. If the increases seen in the luminosity and mass functions are indicative of a large, unseen, substellar population, brown dwarfs may yet add significantly to the mass of the Galaxy. Subject headings: stars: low-mass, brown dwarfs — stars: luminosity function, mass function 1. INTRODUCTION 1.1. The Missing Mass A better knowledge of our own solar neighborhood is essen- Knowledge of the luminosity function for the least luminous tial to a deeper understanding of Galactic structure. Of stars, M stars is an important step in unraveling the mystery of the dwarfs are the most common, but few comprehensive studies missing mass. Using techniques pioneered by Oort (1932, of them have been completed, primarily because of their in- 1960), Bahcall ( 1987, and references therein) determined that trinsic faintness. Yet, it is this faintness which might provide half of the mass in the solar neighborhood must reside in the the answer to one of astronomy’s still unsolved puzzles—that form of unobserved matter. He showed that if these unseen of the Galactic missing mass. In addition, probing fainter and objects have masses below 0.1 A/©, the nearest one would be 1 fainter in search of these objects should ultimately reveal the pc away and would have a proper motion exceeding 1 " per presence of a suspected, though still unconfirmed, population annum. of substellar objects—the so-called brown dwarfs. Recent results, however, have begun to cast doubt upon the reality of this “missing mass.” Bienaymé, Robin, & Crézé 1 ( 1987 ) used a technique based on star counts to obtain a local Observations reported here were obtained with the Multiple Mirror mass density of 0.09-0.12 AT© pc-3, consistent with the ob- Telescope Observatory, a facility operated jointly by the Smithsonian In- _3 stitution and the University of Arizona. served value of 0.10-0.11 A7© pc ( Bahcall 1984). Kuijken & 2 Present address: McDonald Observatory, RLM 15.308, University of Gilmore ( 1989a), using data on K dwarfs near the south Ga- Texas, Austin, TX 78712-1083. lactic pole (SGP), concluded that there is no missing mass in 749 © American Astronomical Society • Provided by the NASA Astrophysics Data System .749K 750 KIRKPATRICK ET AL. Vol. 94 the solar vicinity, with the same result being found when a .94. dwarfs less massive than about 0.06 MQ never reaches this . reanalysis of data on F dwarfs and K giants is used (Kuijken & critical value. As a result, no significant depletion of lithium Gilmore 1989b). Kuijken ( 1991 ) confirmed these results us- should occur in objects of this type. A spectroscopic study of ing a nearby sample of K dwarfs in addition to the SGP six low-luminosity M dwarfs by Magazzù, Martín, & Rebolo 94ApJS. sample. (1993) failed to detect the doublet, suggesting that these dwarfs 19 In response to these claims, Bahcall, Flynn, & Gould ( 1992 ) are more massive than 0.06 M0. used data on K giants at the SGP to produce a local mass Spectroscopic studies of the latest M dwarfs have also begun estimate in which the systematic and random uncertainties are in the infrared. Davidge & Boeshaar (1993) found that the well understood. In a “one-experiment” run, they found that a spectra of an M8.5 and an M9 dwarf were markedly different model having no dark matter is inconsistent with the data at an from the spectra of an M7 and an M8 dwarf over the region 86% confidence level. These authors gave a critical analysis of from 1.5 to 2.4 pm. The most notable difference is that these the Kuijken & Gilmore ( 1989a, b) mass determinations and cooler dwarfs exhibit strong, unidentified absorption features concluded that a more robust analysis of the same data would possibly due to unrecognized polyatomic molecules. Other imply a substantial fraction of missing matter. The inhomo- spectroscopic peculiarities were also noted among these four geneity in the Bienaymé et al. ( 1987 ) star count sample, as well objects. as in the combined K dwarf sample of Kuijken (1991), should Further research cannot be carried out until a larger sample be treated, according to Bahcall et al. (1992), with caution, as of these late-type objects can be identified; less than a dozen this may introduce unwanted systematic errors. objects with types of M8 or later are known (Paper III). As an Clearly, the last has not been written on this subject. If there example, the differences between M dwarfs and GD 165 B will is missing mass, the most likely possibilities are very low lumi- be fully understood and placed in context with current brown nosity degenerates, faint M dwarfs, or brown dwarfs. Although dwarf theory only when other extremely cool objects are dis- the contribution to the local space density by low-luminosity covered and can be studied. white dwarfs has been demonstrated to be negligible (Liebert, Dahn, & Monet 1988), M dwarfs and brown dwarfs of faint absolute magnitude may still lie unrecognized in the immedi- 1.3. Outline of the Paper ate solar vicinity. In this paper, a photometric search is undertaken over a large area of sky to determine the space density of the coolest 1.2. Very Low Mass Stars and Brown Dwarfs dwarfs and of any possibly substellar objects. The CCD/Tran- sit Instrument ( CTI ) used to conduct this search is described in Studies of objects at the end of the main sequence are also § 2. Some of the objects discovered in the CTI databases have vital to determining the observable parameters of the lowest also been targeted spectroscopically in an attempt to assess the mass stars. Once their substellar counterparts are found, re- accuracy of the CTI photometry, particularly near the magni- searchers will be able to compare the two groups of objects. tude limit of the survey, and to identify previously unknown, One of the goals is to see if stars and brown dwarfs can be very late M dwarfs in the solar neighborhood. The selection of distinguished by a parameter more easily measured than the spectroscopic targets and the follow-up observations are dis- mass. cussed in § 3. Some of the spectroscopic groundwork for this investigation Using this complementary spectroscopic information to- is already in place. Spectroscopy of a comprehensive set of gether with photometry of all stars in the CTI databases, a late-type stars has already been acquired; specifically, the sig- luminosity function for M dwarfs is produced. No other recent nature of K5 to M9 dwarfs between 6300 and 9000 Â was photometric determination of the faint end of the stellar lumi- addressed in Kirkpatrick, Henry, & McCarthy (1991, hereafter nosity function has obtained spectra to check the majority of Paper I). These spectra were extended to 1.5 /an and fitted to a targets found in the lowest luminosity bins (as well as a sam- set of theoretical spectra to determine the M dwarf tempera- pling of stars found in the higher luminosity bins).
Recommended publications
  • The Solar Neighborhood VI: New Southern Stars Identified by Optical
    To appear in the April 2002 issue of the Astronomical Journal The Solar Neighborhood VI: New Southern Nearby Stars Identified by Optical Spectroscopy Todd J. Henry1 Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 Lucianne M. Walkowicz Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 Todd C. Barto1 Lockheed Martin Aeronautics Company, Boulder, CO 80306 and David A. Golimowski Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 ABSTRACT Broadband optical spectra are presented for 34 known and candidate nearby stars in the southern sky. Spectral types are determined using a new method that compares the entire spectrum with spectra of more than 100 standard stars. We estimate distances to 13 candidate nearby stars using our spectra and new or published photometry. Six of these stars are probably within 25 pc, and two are likely to be within the RECONS horizon of 10 pc. arXiv:astro-ph/0112496v1 20 Dec 2001 Subject headings: stars: distances — stars: low mass, brown dwarfs — white dwarfs — surveys 1. Introduction The nearest stars have received renewed scrutiny because of their importance to fundamental astrophysics (e.g., stellar atmospheres, the mass content of the Galaxy) and because of their poten- tial for harboring planetary systems and life (e.g., the NASA Origins and Astrobiology initiatives). 1Visiting Astronomer, Cerro Tololo Inter-American Observatory. CTIO is operated by AURA, Inc. under contract to the National Science Foundation. – 2 – The smallest stars, the M dwarfs, account for at least 70% of all stars in the solar neighborhood and make up nearly half of the Galaxy’s total stellar mass (Henry et al.
    [Show full text]
  • Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water
    University of Groningen Kapteyn Astronomical Institute Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water September 5, 2018 Author: N.O. Oberg Supervisor: Prof. Dr. F.F.S. van der Tak Abstract Context: Spectroscopic characterization of exoplanetary atmospheres is a field still in its in- fancy. The detection of molecular spectral features in the atmosphere of several hot-Jupiters and hot-Neptunes has led to the preliminary identification of atmospheric H2O. The Atacama Large Millimiter/Submillimeter Array is particularly well suited in the search for extraterrestrial water, considering its wavelength coverage, sensitivity, resolving power and spectral resolution. Aims: Our aim is to determine the detectability of various spectroscopic signatures of H2O in the (sub)millimeter by a range of current and future observatories and the suitability of (sub)millimeter astronomy for the detection and characterization of exoplanets. Methods: We have created an atmospheric modeling framework based on the HAPI radiative transfer code. We have generated planetary spectra in the (sub)millimeter regime, covering a wide variety of possible exoplanet properties and atmospheric compositions. We have set limits on the detectability of these spectral features and of the planets themselves with emphasis on ALMA. We estimate the capabilities required to study exoplanet atmospheres directly in the (sub)millimeter by using a custom sensitivity calculator. Results: Even trace abundances of atmospheric water vapor can cause high-contrast spectral ab- sorption features in (sub)millimeter transmission spectra of exoplanets, however stellar (sub) millime- ter brightness is insufficient for transit spectroscopy with modern instruments. Excess stellar (sub) millimeter emission due to activity is unlikely to significantly enhance the detectability of planets in transit except in select pre-main-sequence stars.
    [Show full text]
  • Open Batalha-Dissertation.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science A SYNERGISTIC APPROACH TO INTERPRETING PLANETARY ATMOSPHERES A Dissertation in Astronomy and Astrophysics by Natasha E. Batalha © 2017 Natasha E. Batalha Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2017 The dissertation of Natasha E. Batalha was reviewed and approved∗ by the following: Steinn Sigurdsson Professor of Astronomy and Astrophysics Dissertation Co-Advisor, Co-Chair of Committee James Kasting Professor of Geosciences Dissertation Co-Advisor, Co-Chair of Committee Jason Wright Professor of Astronomy and Astrophysics Eric Ford Professor of Astronomy and Astrophysics Chris Forest Professor of Meteorology Avi Mandell NASA Goddard Space Flight Center, Research Scientist Special Signatory Michael Eracleous Professor of Astronomy and Astrophysics Graduate Program Chair ∗Signatures are on file in the Graduate School. ii Abstract We will soon have the technological capability to measure the atmospheric compo- sition of temperate Earth-sized planets orbiting nearby stars. Interpreting these atmospheric signals poses a new challenge to planetary science. In contrast to jovian-like atmospheres, whose bulk compositions consist of hydrogen and helium, terrestrial planet atmospheres are likely comprised of high mean molecular weight secondary atmospheres, which have gone through a high degree of evolution. For example, present-day Mars has a frozen surface with a thin tenuous atmosphere, but 4 billion years ago it may have been warmed by a thick greenhouse atmosphere. Several processes contribute to a planet’s atmospheric evolution: stellar evolution, geological processes, atmospheric escape, biology, etc. Each of these individual processes affects the planetary system as a whole and therefore they all must be considered in the modeling of terrestrial planets.
    [Show full text]
  • RECONS Discoveries Within 10 Parsecs
    The Astronomical Journal, 155:265 (23pp), 2018 June https://doi.org/10.3847/1538-3881/aac262 © 2018. The American Astronomical Society. All rights reserved. The Solar Neighborhood XLIV: RECONS Discoveries within 10 parsecs Todd J. Henry1,8, Wei-Chun Jao2,8 , Jennifer G. Winters3,8 , Sergio B. Dieterich4,8, Charlie T. Finch5,8, Philip A. Ianna1,8, Adric R. Riedel6,8 , Michele L. Silverstein2,8 , John P. Subasavage7,8 , and Eliot Halley Vrijmoet2 1 RECONS Institute, Chambersburg, PA 17201, USA; [email protected], [email protected] 2 Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302, USA; [email protected], [email protected], [email protected] 3 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA; [email protected] 4 Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015, USA; [email protected] 5 Astrometry Department, U.S. Naval Observatory, Washington, DC 20392, USA; charlie.fi[email protected] 6 Space Telescope Science Institute, Baltimore, MD 21218, USA; [email protected] 7 United States Naval Observatory, Flagstaff, AZ 86001, USA; [email protected] Received 2018 April 12; revised 2018 April 27; accepted 2018 May 1; published 2018 June 4 Abstract We describe the 44 systems discovered to be within 10 pc of the Sun by the RECONS team, primarily via the long- term astrometry program at the CTIO/SMARTS 0.9 m that began in 1999. The systems—including 41 with red dwarf primaries, 2 white dwarfs, and 1 brown dwarf—have trigonometric parallaxes greater than 100 mas, with errors of 0.4–2.4 mas in all but one case.
    [Show full text]
  • The Solar Neighborhood XLIV: RECONS Discoveries Within 10 Parsecs
    The Astronomical Journal, 155:265 (23pp), 2018 June https://doi.org/10.3847/1538-3881/aac262 © 2018. The American Astronomical Society. All rights reserved. The Solar Neighborhood XLIV: RECONS Discoveries within 10 parsecs Todd J. Henry1,8, Wei-Chun Jao2,8 , Jennifer G. Winters3,8 , Sergio B. Dieterich4,8, Charlie T. Finch5,8, Philip A. Ianna1,8, Adric R. Riedel6,8 , Michele L. Silverstein2,8 , John P. Subasavage7,8 , and Eliot Halley Vrijmoet2 1 RECONS Institute, Chambersburg, PA 17201, USA; [email protected], [email protected] 2 Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302, USA; [email protected], [email protected], [email protected] 3 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA; [email protected] 4 Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015, USA; [email protected] 5 Astrometry Department, U.S. Naval Observatory, Washington, DC 20392, USA; charlie.fi[email protected] 6 Space Telescope Science Institute, Baltimore, MD 21218, USA; [email protected] 7 United States Naval Observatory, Flagstaff, AZ 86001, USA; [email protected] Received 2018 April 12; revised 2018 April 27; accepted 2018 May 1; published 2018 June 4 Abstract We describe the 44 systems discovered to be within 10 pc of the Sun by the RECONS team, primarily via the long- term astrometry program at the CTIO/SMARTS 0.9 m that began in 1999. The systems—including 41 with red dwarf primaries, 2 white dwarfs, and 1 brown dwarf—have trigonometric parallaxes greater than 100 mas, with errors of 0.4–2.4 mas in all but one case.
    [Show full text]
  • Arxiv:2008.00995V2 [Astro-Ph.EP] 7 Aug 2020 (Öberg Et Al
    MNRAS 000,1–33 (2020) Preprint 10 August 2020 Compiled using MNRAS LATEX style file v3.0 Colour-magnitude diagrams of transiting Exoplanets - III. A public code, nine strange planets, and the role of Phosphine. Georgina Dransfield,1? Amaury H.M.J. Triaud,1 1School of Physics & Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Colour-Magnitude Diagrams provide a convenient way of comparing populations of sim- ilar objects. When well populated with precise measurements, they allow quick inferences to be made about the bulk properties of an astronomic object simply from its proximity on a diagram to other objects. We present here a Python toolkit which allows a user to pro- duce colour-magnitude diagrams of transiting exoplanets, comparing planets to populations of ultra-cool dwarfs, of directly imaged exoplanets, to theoretical models of planetary at- mospheres, and to other transiting exoplanets. Using a selection of near- and mid-infrared colour-magnitude diagrams, we show how outliers can be identified for further investigation, and how emerging sub-populations can be identified. Additionally, we present evidence that observed differences in the Spitzer’s 4.5µm flux, between irradiated Jupiters, and field brown dwarfs, might be attributed to phosphine, which is susceptible to photolysis. The presence of phosphine in low irradiation environments may negate the need for thermal inversions to explain eclipse measurements. We speculate that the anomalously low 4.5µm flux flux of the nightside of HD 189733b and the daysides of GJ 436b and GJ 3470b might be caused by phosphine absorption.
    [Show full text]
  • Planets and Exoplanets
    NASE Publications Planets and exoplanets Planets and exoplanets Rosa M. Ros, Hans Deeg International Astronomical Union, Technical University of Catalonia (Spain), Instituto de Astrofísica de Canarias and University of La Laguna (Spain) Summary This workshop provides a series of activities to compare the many observed properties (such as size, distances, orbital speeds and escape velocities) of the planets in our Solar System. Each section provides context to various planetary data tables by providing demonstrations or calculations to contrast the properties of the planets, giving the students a concrete sense for what the data mean. At present, several methods are used to find exoplanets, more or less indirectly. It has been possible to detect nearly 4000 planets, and about 500 systems with multiple planets. Objetives - Understand what the numerical values in the Solar Sytem summary data table mean. - Understand the main characteristics of extrasolar planetary systems by comparing their properties to the orbital system of Jupiter and its Galilean satellites. The Solar System By creating scale models of the Solar System, the students will compare the different planetary parameters. To perform these activities, we will use the data in Table 1. Planets Diameter (km) Distance to Sun (km) Sun 1 392 000 Mercury 4 878 57.9 106 Venus 12 180 108.3 106 Earth 12 756 149.7 106 Marte 6 760 228.1 106 Jupiter 142 800 778.7 106 Saturn 120 000 1 430.1 106 Uranus 50 000 2 876.5 106 Neptune 49 000 4 506.6 106 Table 1: Data of the Solar System bodies In all cases, the main goal of the model is to make the data understandable.
    [Show full text]
  • The Stability of Ultra-Compact Planetary Systems
    A&A 516, A82 (2010) Astronomy DOI: 10.1051/0004-6361/200912698 & c ESO 2010 Astrophysics The stability of ultra-compact planetary systems B. Funk1, G. Wuchterl2,R.Schwarz1,3, E. Pilat-Lohinger3, and S. Eggl3 1 Department of Astronomy, Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary e-mail: [email protected] 2 Thüringer Landessternwarte, Sternwarte 5, 07778 Tautenburg, Germany e-mail: [email protected] 3 Institute for Astronomy, University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria e-mail: [schwarz;lohinger;eggl]@astro.univie.ac.at Received 15 June 2009 / Accepted 15 March 2010 ABSTRACT Aims. We investigate the dynamical stability of compact planetary systems in the CoRoT discovery space, i.e., with orbital periods of less than 50 days, including a detailed study of the stability of systems, which are spaced according to Hill’s criteria. Methods. The innermost fictitious planet was placed close to the Roche limit from the star (MStar = 1 MSun) and all other fictitious planets are lined up according to Hill’s criteria up to a distance of 0.26 AU, which corresponds to a 50 day period for a Sun-massed star. For the masses of the fictitious planets, we chose a range of 0.33–17 mEarth, where in each simulation all fictitious planets have the same mass. Additionally, we tested the influence of both the semi-major axis of the innermost planet and of the number of planets. In a next step we also included a gas giant in our calculations, which perturbs the inner ones and investigated their stability.
    [Show full text]
  • New Neighbours
    A&A 401, 959–974 (2003) Astronomy DOI: 10.1051/0004-6361:20030188 & c ESO 2003 Astrophysics New neighbours V. 35 DENIS late-M dwarfs between 10 and 30 parsecs N. Phan-Bao1,2, F. Crifo2, X. Delfosse3, T. Forveille3,4, J. Guibert1,2, J. Borsenberger5, N. Epchtein6, P. Fouqu´e7,8, G. Simon2, and J. Vetois1,9 1 Centre d’Analyse des Images, GEPI, Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris, France 2 GEPI, Observatoire de Paris, 5 place J. Janssen, 92195 Meudon Cedex, France 3 Laboratoire d’Astrophysique de Grenoble, Universit´e J. Fourier, BP 53, 38041 Grenoble, France 4 Canada-France-Hawaii Telescope Corporation, 65-1238 Mamalahoa Highway, Kamuela, HI 96743, USA 5 SIO, Observatoire de Paris, 5 place J. Janssen, 92195 Meudon Cedex, France 6 Observatoire de la Cˆote d’Azur, D´epartement Fresnel, BP 4229, 06304 Nice Cedex 4, France 7 LESIA, Observatoire de Paris, 5 place J. Janssen, 92195 Meudon Cedex, France 8 European Southern Observatory, Casilla 19001, Santiago 19, Chile 9 Ecole´ Normale Sup´erieure de Cachan, 61 avenue du Pr´esident-Wilson, 94230 Cachan, France Received 15 July 2002 / Accepted 31 January 2003 Abstract. This paper reports updated results on our systematic mining of the DENIS database for nearby very cool M-dwarfs (M 6V-M 8V, 2.0 ≤ I − J ≤ 3.0, photometric distance within 30 pc), initiated by Phan-Bao et al. (2001, hereafter Paper I). We use M dwarfs with well measured parallaxes (HIP, GCTP, ...) to calibrate the DENIS (MI, I − J) colour-luminosity relationship. The resulting distance error for single dwarfs is about 25%.
    [Show full text]
  • The Solar Neighborhood. V. Vri Photometry of Southern Nearby Star Candidates Richard J.Patterson,1 Philip A
    THE ASTRONOMICAL JOURNAL, 115:1648È1652, 1998 April ( 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE SOLAR NEIGHBORHOOD. V. VRI PHOTOMETRY OF SOUTHERN NEARBY STAR CANDIDATES RICHARD J.PATTERSON,1 PHILIP A. IANNA,1 AND MICHAEL C. BEGAM1 Leander J. McCormick Observatory, University of Virginia, Charlottesville, VA 22903-0818; ricky=virginia.edu ; pai=virginia.edu ; mcb2d=virginia.edu Received 1997 November 25; revised 1997 December 19 ABSTRACT Cousins (V )RI photometry is presented for 73 nearby star candidates in the Southern Hemisphere, mostly high proper motion stars. Included are 37 stars from the lists of Wroblewski & Torres of faint high proper motion stars, for which there was no previous color information. Almost all of the stars appear to be M dwarfs or subdwarfs, several of which are probably closer than 10 pc. Key words: astrometry È stars: distances È stars: fundamental parameters È stars: late-type È stars: low-mass, brown dwarfs 1. INTRODUCTION 2. OBSERVATIONS The sample of nearby M dwarfs is known to be woefully The stars were observed on 21 photometric nights over incomplete out to 8 pc, even if it is assumed to be complete the course of six observing runs, spanning 2 years at Siding out to 5 pc(Henry, Kirkpatrick, & Simons 1994). Because Spring Observatory with the 40 inch (1 m) (f/8) telescope. M dwarfs are by far the most common type of star, the The detector was an EEV 2186 ] 1152 CCD (22.5 km identiÐcation of more of these stars in the solar neighbor- pixels, yielding a scale of0A.58 pixel~1), which was formatted hood toward completing the sample has long been seen as to a 700 ] 700 pixel size, yielding a Ðeld [email protected] ] [email protected].
    [Show full text]
  • The Solar Neighborhood. Xxviii. the Multiplicity Fraction of Nearby Stars from 5 to 70 Au and the Brown Dwarf Desert Around M Dwarfs
    The Astronomical Journal, 144:64 (19pp), 2012 August doi:10.1088/0004-6256/144/2/64 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE SOLAR NEIGHBORHOOD. XXVIII. THE MULTIPLICITY FRACTION OF NEARBY STARS FROM 5 TO 70 AU AND THE BROWN DWARF DESERT AROUND M DWARFS Sergio B. Dieterich1, Todd J. Henry1, David A. Golimowski2,JohnE.Krist3, and Angelle M. Tanner4 1 Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302-4106, USA; [email protected] 2 Space Telescope Science Institute, Baltimore, MD 21218, USA 3 Jet Propulsion Laboratory, Pasadena, CA 91109, USA 4 Department of Physics and Astronomy, Mississippi State University, Starkville, MS 39762, USA Received 2012 February 13; accepted 2012 May 29; published 2012 July 16 ABSTRACT We report on our analysis of Hubble Space Telescope/NICMOS snapshot high-resolution images of 255 stars in 201 systems within ∼10 pc of the Sun. Photometry was obtained through filters F110W, F180M, F207M, and F222M using NICMOS Camera 2. These filters were selected to permit clear identification of cool brown dwarfs through methane contrast imaging. With a plate scale of 76 mas pixel−1, NICMOS can easily resolve binaries with subarcsecond separations in the 19.5×19.5 field of view. We previously reported five companions to nearby M and L dwarfs from this search. No new companions were discovered during the second phase of data analysis presented here, confirming that stellar/substellar binaries are rare. We establish magnitude and separation limits for which companions can be ruled out for each star in the sample, and then perform a comprehensive sensitivity and completeness analysis for the subsample of 138 M dwarfs in 126 systems.
    [Show full text]
  • The TRAPPIST-1 JWST Community Initiative
    Bulletin of the AAS • Vol. 52, Issue 2 The TRAPPIST-1 JWST Community Initiative Michaël Gillon1, Victoria Meadows2, Eric Agol2, Adam J. Burgasser3, Drake Deming4, René Doyon5, Jonathan Fortney6, Laura Kreidberg7, James Owen8, Franck Selsis9, Julien de Wit10, Jacob Lustig-Yaeger11, Benjamin V. Rackham10 1Astrobiology Research Unit, University of Liège, Belgium, 2Department of Astronomy, University of Washington, USA, 3Department of Physics, University of California San Diego, USA, 4Department of Astronomy, University of Maryland at College Park, USA, 5Institute for Research in Exoplanets, University of Montreal, Canada, 6Other Worlds Laboratory, University of California Santa Cruz, USA, 7Center for Astrophysics | Harvard and Smithsonian, USA, 8Department of Physics, Imperial College London, United Kingdom, 9Laboratoire d’Astrophysique de Bordeaux, University of Bordeaux, France, 10Department of Earth, Atmospheric, and Planetary Sciences, MIT, USA, 11Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA Published on: Dec 02, 2020 DOI: 10.3847/25c2cfeb.afbf0205 License: Creative Commons Attribution 4.0 International License (CC-BY 4.0) Bulletin of the AAS • Vol. 52, Issue 2 The TRAPPIST-1 JWST Community Initiative ABSTRACT The upcoming launch of the James Webb Space Telescope (JWST) combined with the unique features of the TRAPPIST-1 planetary system should enable the young field of exoplanetology to enter into the realm of temperate Earth-sized worlds. Indeed, the proximity of the system (12pc) and the small size (0.12 R )
    [Show full text]