Salih Et Al 2017 to U of H 19122019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: a Review
molecules Review Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review Hanghang Lou 1,†, Lifei Hu 2,†, Hongyun Lu 1, Tianyu Wei 1 and Qihe Chen 1,* 1 Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; [email protected] (H.L.); [email protected] (H.L.); [email protected] (T.W.) 2 Hubei Key Lab of Quality and Safety of Traditional Chinese Medicine & Health Food, Huangshi 435100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0571-8698-4316 † These authors are equally to this manuscript. Abstract: Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, phar- maceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review. Citation: Lou, H.; Hu, L.; Lu, H.; Wei, Keywords: flavonoids; metabolic engineering; co-culture system; biosynthesis; microbial cell factories T.; Chen, Q. -
1 Termite Feeding Deterrent from Japanese Larch Wood K. Chen A, W
Termite feeding deterrent from Japanese larch wood K. Chen a, W. Ohmurab, S. Doic, M. Aoyamad* a Kunming University of Science and Technology, Kunming, People’s Republic of China b Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan c Institute of Wood Technology, Akita Prefectural University, Noshiro 016-0876, Japan d Laboratory of Bioresource Science, Department of Applied Chemistry, Kitami Institute of Technology, Kitami 090-8507, Japan Abstract Extraction of flavonoids from Japanese larch (Larix leptolepis) wood with water was carried out to prepare a termite feeding deterrent. A two-stage procedure for the extraction was adopted. The first extraction step was performed at ambient temperature (22C) and the second at elevated temperatures ranging 50-100C. The first step mainly gave a mixture of polysaccharides together with small amount of flavonoids. At the *Corresponding author. I will move to new laboratory (kitami Institute of Technology) in January, 2004. I can not, at present, supply my facsimile number and e-mail address. They will be available at the time of proof-reading. 1 second step, the yield of extract and its chemical composition were greatly affected by the temperature. The yield of solubilised carbohydrates steadily increased with a rise in the temperature, while the overall yield of flavonoids reached its optimum at 70C. An additional increase in the temperature resulted in a decrease in the yield. Model experiments using dihydroflavonols confirmed the occurrence of oxidative dehydrogenation and/or intramolecular rearrangement during the hydrothermal treatment at higher temperatures. The crude water extracts showed strong feeding deterrent activities against the subterranean termite, Coptotermes formosanus, in a choice paper disc assay. -
Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility. -
Chondroprotective Agents
Europaisches Patentamt J European Patent Office © Publication number: 0 633 022 A2 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 94109872.5 © Int. CI.6: A61K 31/365, A61 K 31/70 @ Date of filing: 27.06.94 © Priority: 09.07.93 JP 194182/93 Saitama 350-02 (JP) Inventor: Niimura, Koichi @ Date of publication of application: Rune Warabi 1-718, 11.01.95 Bulletin 95/02 1-17-30, Chuo Warabi-shi, 0 Designated Contracting States: Saitama 335 (JP) CH DE FR GB IT LI SE Inventor: Umekawa, Kiyonori 5-4-309, Mihama © Applicant: KUREHA CHEMICAL INDUSTRY CO., Urayasu-shi, LTD. Chiba 279 (JP) 9-11, Horidome-cho, 1-chome Nihonbashi Chuo-ku © Representative: Minderop, Ralph H. Dr. rer.nat. Tokyo 103 (JP) et al Cohausz & Florack @ Inventor: Watanabe, Koju Patentanwalte 2-5-7, Tsurumai Bergiusstrasse 2 b Sakado-shi, D-30655 Hannover (DE) © Chondroprotective agents. © A chondroprotective agent comprising a flavonoid compound of the general formula (I): (I) CM < CM CM wherein R1 to R9 are, independently, a hydrogen atom, hydroxyl group, or methoxyl group and X is a single bond or a double bond, or a stereoisomer thereof, or a naturally occurring glycoside thereof is disclosed. The 00 00 above compound strongly inhibits proteoglycan depletion from the chondrocyte matrix and exhibits a function to (Q protect cartilage, and thus, is extremely effective for the treatment of arthropathy. Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) EP 0 633 022 A2 BACKGROUND OF THE INVENTION 1 . Field of the Invention 5 The present invention relates to an agent for protecting cartilage, i.e., a chondroprotective agent, more particularly, a chondroprotective agent containing a flavonoid compound or a stereoisomer thereof, or a naturally occurring glycoside thereof. -
Flesh Color Diversity of Sweet Potato: an Overview of the Composition, Functions, Biosynthesis, and Gene Regulation of the Major Pigments
Phyton-International Journal of Experimental Botany Tech Science Press DOI:10.32604/phyton.2020.011979 Review Flesh Color Diversity of Sweet Potato: An Overview of the Composition, Functions, Biosynthesis, and Gene Regulation of the Major Pigments Hanna Amoanimaa-Dede, Chuntao Su, Akwasi Yeboah, Chunhua Chen, Shaoxia Yang, Hongbo Zhu* and Miao Chen* Department of Biotechnology, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China ÃCorresponding Authors: Hongbo Zhu. Email: [email protected]; Chen Miao. Email: [email protected] Received: 08 June 2020; Accepted: 31 July 2020 Abstract: Sweet potato is a multifunctional root crop and a source of food with many essential nutrients and bioactive compounds. Variations in the flesh color of the diverse sweet potato varieties are attributed to the different phytochemicals and natural pigments they produce. Among them, carotenoids and anthocyanins are the main pigments known for their antioxidant properties which provide a host of health benefits, hence, regarded as a major component of the human diet. In this review, we provide an overview of the major pigments in sweet potato with much emphasis on their biosynthesis, functions, and regulatory control. More- over, current findings on the molecular mechanisms underlying the biosynthesis and accumulation of carotenoids and anthocyanins in sweet potato are discussed. Insights into the composition, biosynthesis, and regulatory control of these major pigments will further advance the biofortification of sweet potato and provide a reference for breeding carotenoid- and anthocyanin-rich varieties. Keywords: Anthocyanin; biosynthesis; carotenoid; flesh color; sweet potato 1 Introduction Sweet potato [Ipomoea batatas (L.) Lam.] is a dicot perennial Convolvulaceae plant cultivated as an annual crop. -
Punicalagin Content and Antifungal Activity of Different
horticulturae Article Punicalagin Content and Antifungal Activity of Different Pomegranate (Punica ganatum L.) Genotypes Domenico Rongai 1,*, Patrizio Pulcini 1, Giovanni Di Lernia 1, Paolo Nota 1, Pjerin Preka 2 and Filomena Milano 1 1 CREA-DC Research Centre for Plant Protection and Certification, via C.G Bertero, 22, 00156 Rome, Italy 2 CREA-OFA Research Centre for Olive, Citrus and Tree fruit, Via di Fioranello, 52, 00134 Rome, Italy * Correspondence: [email protected] Received: 16 May 2019; Accepted: 1 July 2019; Published: 16 July 2019 Abstract: This study investigated the antifungal activity of a number of pomegranate genotypes. Since the main compound of pomegranate extract is punicalagin, an important substance involved in antifungal and antimicrobial activity, we analyzed the contents of punicalagin (α and β) in 21 different pomegranate genotypes. Ellagic acid content, total phenolic content, acidity and pH were also determined. This work allowed us to determine which genotypes of pomegranate can be used to obtain extracts with the highest content of punicalagin, with the goal of developing a green alternative to synthetic pesticides. To improve the extraction system from pomegranate peel fruits, several different solvents were tested. All the pomegranate genotypes tested showed antifungal activity; some genotypes were able to almost completely inhibit the fungus, while others had very low inhibitory activity. Research results also showed that the use of water as a solvent for extraction is very effective, especially when it is combined with ethanol. This is very important for the practical use of the extracts since water is economical and environmentally friendly. The research showed that among the genotypes there is also great variability regarding the chemical parameters. -
BARNES-DISSERTATION-2016.Pdf (1.557Mb)
ABSORPTION AND METABOLISM OF MANGO (MANGIFERA INDICA L.) GALLIC ACID AND GALLOYL GLYCOSIDES A Dissertation by RYAN CRISPEN BARNES Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Stephen Talcott Co-Chair of Committee, Susanne Talcott Committee Members, Nancy Turner Arul Jayaraman Head of Department, Boon Chew December 2016 Major Subject: Food Science and Technology Copyright 2016 Ryan Barnes ABSTRACT The composition, absorption, metabolism, and excretion of gallic acid, monogalloyl glucose, and gallotannins in mango (Mangifera indica L.) pulp were investigated. Each galloyl derivative was hypothesized to have a different rate of absorption, and their concentrations were compared in the pulp of five mango varieties. The cultivar Ataulfo was found to have the highest concentration of monogalloyl glucose and gallotannins while the cultivar Kent had the lowest. Enzymatic hydrolysis of gallotannins with tannase led to the characterization of six digalloyl glucoses and five trigalloyl glucoses that have the potential to be formed in the colon following gallotannin consumption. The bioaccessibility of galloyl derivatives was evaluated in both homogenized mango pulp and 0.65 mm3 cubes following in vitro digestion conditions. Monogalloyl glucose was found to be bioaccessible in both homogenized and cubed mango pulp. However, cubed mango pulp had a significantly higher amount of gallotannins still bound to the fruit following digestion. Gallic acid bioaccessibility significantly increased following digestion in both homogenized and cubed mango pulp, likely from hydrolysis of gallotannins. Additionally, for the first time, the absorption of monogalloyl glucose and gallic acid was investigated in both Caco-2 monolayer transport models and a porcine pharmacokinetic model with no significant differences found in their absorption or ability to produce phase II metabolites. -
Unravelling the Antibacterial Activity of Terminalia Sericea Root Bark Through a Metabolomic Approach
molecules Article Unravelling the Antibacterial Activity of Terminalia sericea Root Bark through a Metabolomic Approach Chinedu P Anokwuru 1,2, Sidonie Tankeu 2, Sandy van Vuuren 3 , Alvaro Viljoen 2,4, Isaiah D. I Ramaite 1 , Orazio Taglialatela-Scafati 5 and Sandra Combrinck 2,* 1 Department of Chemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; [email protected] (C.P.A.); [email protected] (I.D.I.R.) 2 Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; [email protected] (S.T.); [email protected] (A.V.) 3 Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa; [email protected] 4 SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa 5 Department of Pharmacy, University of Naples, Federico II Via D. Montesano 49, 1-80131 Napoli, Italy; [email protected] * Correspondence: [email protected]; Tel./Fax: +27-84-402-7463 Academic Editor: Souvik Kusari Received: 20 July 2020; Accepted: 7 August 2020; Published: 13 August 2020 Abstract: Terminalia sericea Burch. ex. DC. (Combretaceae) is a popular remedy for the treatment of infectious diseases. It is widely prescribed by traditional healers and sold at informal markets and may be a good candidate for commercialisation. For this to be realised, a thorough phytochemical and bioactivity profile is required to identify constituents that may be associated with the antibacterial activity and hence the quality of raw materials and consumer products. -
Chapter 6 ENUMERATION
Chapter 6 ENUMERATION . ENUMERATION The spermatophytic plants with their accepted names as per The Plant List [http://www.theplantlist.org/ ], through proper taxonomic treatments of recorded species and infra-specific taxa, collected from Gorumara National Park has been arranged in compliance with the presently accepted APG-III (Chase & Reveal, 2009) system of classification. Further, for better convenience the presentation of each species in the enumeration the genera and species under the families are arranged in alphabetical order. In case of Gymnosperms, four families with their genera and species also arranged in alphabetical order. The following sequence of enumeration is taken into consideration while enumerating each identified plants. (a) Accepted name, (b) Basionym if any, (c) Synonyms if any, (d) Homonym if any, (e) Vernacular name if any, (f) Description, (g) Flowering and fruiting periods, (h) Specimen cited, (i) Local distribution, and (j) General distribution. Each individual taxon is being treated here with the protologue at first along with the author citation and then referring the available important references for overall and/or adjacent floras and taxonomic treatments. Mentioned below is the list of important books, selected scientific journals, papers, newsletters and periodicals those have been referred during the citation of references. Chronicles of literature of reference: Names of the important books referred: Beng. Pl. : Bengal Plants En. Fl .Pl. Nepal : An Enumeration of the Flowering Plants of Nepal Fasc.Fl.India : Fascicles of Flora of India Fl.Brit.India : The Flora of British India Fl.Bhutan : Flora of Bhutan Fl.E.Him. : Flora of Eastern Himalaya Fl.India : Flora of India Fl Indi. -
Evaluation of Anticancer Activities of Phenolic Compounds In
EVALUATION OF ANTICANCER ACTIVITIES OF PHENOLIC COMPOUNDS IN BLUEBERRIES AND MUSCADINE GRAPES by WEIGUANG YI (Under the Direction of CASIMIR C. AKOH) ABSTRACT Research has shown that diets rich in phenolic compounds may be associated with lower risk of several chronic diseases including cancer. This study systematically evaluated the bioactivities of phenolic compounds in blueberries and muscadine grapes, and assessed their potential cell growth inhibition and apoptosis induction effects using two colon cancer cell lines (HT-29 and Caco-2), and one liver cancer cell line (HepG2). In addition, the absorption of blueberry anthocyanin extracts was evaluated using Caco-2 human intestinal cell monolayers. Polyphenols in three blueberry cultivars (Briteblue, Tifblue and Powderblue), and four cultivars of muscadine (Carlos, Ison, Noble, and Supreme) were extracted and freeze dried. The extracts were further separated into phenolic acids, tannins, flavonols, and anthocyanins using a HLB cartridge and LH20 column. In both blueberries and muscadine grapes, some individual phenolic acids and flavonoids were identified by HPLC with more than 90% purity in anthocyanin fractions. The dried extracts and fractions were added to the cell culture medium to test for cell growth inhibition and induction of apoptosis. Polyphenols from both blueberries and muscadine grapes had significant inhibitory effects on cancer cell growth. The phenolic acid fraction showed relatively lower bioactivities with 50% inhibition at 0.5-3 µg/mL. The intermediate bioactivities were observed in the flavonol and tannin fractions. The greatest inhibitory effect among all four fractions was from the anthocyanin fractions in the three cell lines. Cell growth was significantly inhibited more than 50% by the anthocyanin fractions at concentrations of 15-300 µg/mL. -
Combretaceae: Phylogeny, Biogeography and DNA
COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION o Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. o NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/ M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved from: https://ujdigispace.uj.ac.za (Accessed: Date). Combretaceae: Phylogeny, Biogeography and DNA Barcoding by JEPHRIS GERE THESIS Submitted in fulfilment of the requirements for the degree PHILOSOPHIAE DOCTOR in BOTANY in the Faculty of Science at the University of Johannesburg December 2013 Supervisor: Prof Michelle van der Bank Co-supervisor: Dr Olivier Maurin Declaration I declare that this thesis has been composed by me and the work contained within, unless otherwise stated, is my own. _____________________ J. Gere (December 2013) Table of contents Table of contents i Abstract v Foreword vii Index to figures ix Index to tables xv Acknowledgements xviii List of abbreviations xxi Chapter 1: General introduction and objectives 1.1 General introduction 1 1.2 Vegetative morphology 2 1.2.1 Leaf morphology and anatomy 2 1.2.2. Inflorescence 3 1.2.3 Fruit morphology 4 1.3 DNA barcoding 5 1.4 Cytology 6 1.5 Fossil record 7 1.6 Distribution and habitat 7 1.7 Economic Importance 8 1.8 Taxonomic history 9 1.9 Aims and objectives of the study 11 i Table of contents Chapter 2: Molecular phylogeny of Combretaceae with implications for infrageneric classification within subtribe Terminaliinae. -
Assembly of a Novel Biosynthetic Pathway for Production of the Plant Flavonoid Fisetin in Escherichia Coli
Downloaded from orbit.dtu.dk on: Oct 06, 2021 Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli Stahlhut, Steen Gustav; Siedler, Solvej; Malla, Sailesh; Harrison, Scott James; Maury, Jerome; Neves, Ana Rute; Förster, Jochen Published in: Metabolic Engineering Link to article, DOI: 10.1016/j.ymben.2015.07.002 Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Stahlhut, S. G., Siedler, S., Malla, S., Harrison, S. J., Maury, J., Neves, A. R., & Förster, J. (2015). Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli. Metabolic Engineering, 31, 84-93. https://doi.org/10.1016/j.ymben.2015.07.002 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Metabolic Engineering 31 (2015) 84–93 Contents lists available at ScienceDirect Metabolic Engineering journal homepage: www.elsevier.com/locate/ymben Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli Steen G.