A Molecular Study of the Mitochondrial Genome and Invasions of the Veined Rapa Whelk, Rapana Venosa

Total Page:16

File Type:pdf, Size:1020Kb

A Molecular Study of the Mitochondrial Genome and Invasions of the Veined Rapa Whelk, Rapana Venosa W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2007 A Molecular Study of the Mitochondrial Genome and Invasions of the Veined Rapa Whelk, Rapana venosa Emily A. Chandler College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Molecular Biology Commons Recommended Citation Chandler, Emily A., "A Molecular Study of the Mitochondrial Genome and Invasions of the Veined Rapa Whelk, Rapana venosa" (2007). Dissertations, Theses, and Masters Projects. Paper 1539617856. https://dx.doi.org/doi:10.25773/v5-9eph-4w97 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. A MOLECULAR STUDY OF THE MITOCHONDRIAL GENOME AND INVASIONS OF THE VEINED RAPA WHELK, RAP ANA VENOSA A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Science By Emily A. Chandler 2007 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science Emily A. Chandler Approved, April 2007 £ in E. Graves, Ph.D. ^Co-Committee Chair/Advisor Roger L.Mann, Ph.D. Co-Committee Chair/Ad visor n R. McDowell, Ph.D. 'fiA/Lf/l Deborah A. Bronk, Ph.D Robert B. Whitlatch, Ph.D. University of Connecticut Groton, CT TABLE OF CONTENTS Page ACKNOWLEDGMENTS......................................................................................................... v LIST OF TABLES........................................................................................................................vi LIST OF FIGURES.................................................. ;................................................................ vii LIST OF APPENDICES...........................................................................................................viii ABSTRACT........................................................................................................... ix INTRODUCTION......................................................................................................................... 2 CHAPTER I: Mitochondrial DNA sequence of the rapa welk {Rapana venosa) and the genetic variability of mitochondrial coding regions in the neogastropods............................................................................................... 10 INTRODUCTION..........................................................................................................11 MATERIALS AND METHODS..................................................................................14 RESULTS AND DISCUSSION...................................................................................17 Rapana venosa Mitochondrial Amplification and Gene Order Determination....................................................................................... 17 Nucleotide Variability Within Mitochondrial Gene Regions of the Neogastropods.......................................................................................22 CHAPTER II: Populations o f genetic monomorphism: A study of Rapa whelk {Rapana venosa) invasions.............................................................................. 31 INTRODUCTION..........................................................................................................32 MATERIALS AND METHODS................................................................................. 38 RESULTS........................................................................................................................ 41 DISCUSSION................................................................................................................. 44 CONCLUSION................................................................................................... 65 APPENDICES..............................................................................................................................71 LITERATURE CITED............................................................................................................... 81 VITA.............................................................................................................................................. 92 iv ACKNOWLEDGMENTS Thank you to everyone who helped make my thesis research a success. My co­ advisors Dr. John Graves and Dr. Roger Mann provided invaluable advice, direction, and financial support. Dr. Jan McDowell was instrumental in helping me develop my project and overcome the difficulties I encountered in the lab work. Dr. Deborah Bronk and Dr. Robert Whitlatch acted as great additions to my committee. Many thanks to the researchers who collectedRapana venosa samples for me. Dr. Huayong Que and Dr. Kimberly Reece collected samples from China. Japanese samples were sent to me by Dr. Taeko Kimura. Dr. Anna Occhipinti Ambriogi and Dr. Dario Savini graciously shared samples from Italy. France samples were sent to me by Dr. Edouard Bedier and Dr. Dennis Nieweg and Dr. Robert Vink provided samples from The Netherlands. I would also like to give a special thank you to Dr. Juliana Harding who helped me obtain samples from Chesapeake Bay, as well as shared with me her research on Rapana venosa. My research would not have been a success without the funding of the SMS graduate fellowship and support provided by the VIMS Annual Fund Committee. Thank you to all the members of Fisheries Genetics Laboratory and other friends at VIMS who entertained me along the way. Finally, I would like to thank my family and my fiance Andy for their never ending support and encouragement. v LIST OF TABLES Table Page 1. List of primers used in PCR reactions................................................................................ 24 2. List of annealing temperatures used with each primer pair.............................................26 3. Annotated Rapana venosa mitochondrial genome........................................................... 27 4. Comparison of levels of genetic variation within each mitochondrial gene region among four neogastropod species....................................................................................... 29 5. List of mitochondrial gene regions by increasing genetic variability as seen in neogastropods and mammals................................................................. 30 6. Information on Rapana venosa samples .......................................................................57 7. Population genetics statistics for eachRapana venosa collection calculated from the combined COI/ND2 sequence data............................................................... 59 8. AMOVA results of <D comparison between native collections (LB, YAN, QD, XS, J, KC, KI, KT) and introduced collections (T, A, FN, CB).................................................62 9. Ost Values for Pairwise Comparisons................................................................................. 63 LIST OF FIGURES Figure Page 1. Illustration of circular Rapana venosa mitochondrial genome........................................28 2. Map of current locations ofRapana venosa populations..................................................53 3. Locations ofRapana venosa samples taken within its native range...............................54 4. Locations ofRapana venosa samples taken from introduced populations in the Black Sea, the Adriatic Sea, Quiberon Bay, France, and off the coast of the Netherlands..............................................................................................................................55 5. Locations ofRapana venosa samples taken within Chesapeake Bay............................56 6. Minimum spanning network o f combined COI and ND2 haplotypes.......................... 60 7. Generalized diagram of prevailing currents in the native range ofRapana venosa.. .64 LIST OF APPENDICES Appendix Page 1. The nucleotide sequence of the mitochondrial genome ofRapana venosa....................72 2. A list of the variable sites present in each combined COI/ND2 haplotype.................... 77 viii ABSTRACT Rapana venosa is a predatory marine gastropod native to the coastal waters of China, Korea, and Japan. Since the 1940s,R. venosa has been transported around the globe and introduced populations now exist in the Black Sea, the Mediterranean Sea, the Adriatic and Aegean seas, off the coasts of France and The Netherlands, in Chesapeake Bay, Virginia, U.S.A, and in the Rio de la Plata between Uruguay and Argentina. Identifying the source population(s) of invasions has been recognized as an important step for understanding and potentially controlling the spread of invasive species. Recent studies of marine invasions have found that mitochondrial sequence data can be used to assess the genetic composition of native and introduced populations, allowing researchers to trace invasion pathways and determine source populations. However, amplifying regions of the mitochondrial genome in mollluscs is not always straightforward due to the high levels of gene rearrangement observed within the phylum. Additionally, choosing an appropriately variable mitochondrial gene region for intraspecific studies is difficult in gastropods
Recommended publications
  • Biological Parameters and Feeding Behaviour of Invasive Whelk Rapana Venosa Valenciennes, 1846 in the South-Eastern Black Sea of Turkey
    Journal of Coastal Life Medicine 2014; 2(6): 442-446 442 Journal of Coastal Life Medicine journal homepage: www.jclmm.com Document heading doi:10.12980/JCLM.2.2014J36 2014 by the Journal of Coastal Life Medicine. All rights reserved. 襃 Biological parameters and feeding behaviour of invasive whelk Rapana venosa Valenciennes, 1846 in the south-eastern Black Sea of Turkey Hacer Saglam*, Ertug Düzgünes Karadeniz Technical University, Faculty of Marine Science, Çamburnu 61530, Trabzon, Turkey PEER REVIEW ABSTRACT Peer reviewer Objective: To determine length-weight relationships, growth type and feeding behavior of the Diego Giberto, PhD in Biology, Methods:benthic predator Rapa whelk at the coast of Camburnu, south-eastern Black Sea. Researcher of the National Council Rapa whelk was monthly collected by dredge sampling on the south-eastern Black Sea of Scientific Research, Mar del Plata, at 20 m depth. The relationships between morphometric parameters of Rapa whelk were described A T rgentina. by linear and exponential models. he allomebt ric growth of each variable relative to shell length +54 223 4862586 ( ) Tel: SL was calculated fromt the function Y=aSL or logY=loga+blogSL. The functional regression b E-mail: [email protected] values were tested by -test at the 0.05 significance level if it was significantly different from Comments isometric growth. The total time spent on feeding either on mussel tissue or live mussels was rResults:ecorded for each individual under controlled conditions in laboratory. The paper is of broad interest for The length-weight relationships showed positive allometric growth and no inter-sex scientists working in invasive species variability.
    [Show full text]
  • Miller L. P. & M. W. Denny. (2011)
    Reference: Biol. Bull. 220: 209–223. (June 2011) © 2011 Marine Biological Laboratory Importance of Behavior and Morphological Traits for Controlling Body Temperature in Littorinid Snails LUKE P. MILLER1,* AND MARK W. DENNY Hopkins Marine Station, Stanford University, Pacific Grove, California 93950 Abstract. For organisms living in the intertidal zone, Introduction temperature is an important selective agent that can shape species distributions and drive phenotypic variation among Within the narrow band of habitat between the low and populations. Littorinid snails, which occupy the upper limits high tidemarks on seashores, the distribution of individual of rocky shores and estuaries worldwide, often experience species and the structure of ecological communities are extreme high temperatures and prolonged aerial emersion dictated by a variety of biotic and abiotic factors (Connell, during low tides, yet their robust physiology—coupled with 1961, 1972; Lewis, 1964; Paine, 1974; Dayton, 1975; morphological and behavioral traits—permits these gastro- Menge and Branch, 2001). Biological interactions such as pods to persist and exert strong grazing control over algal predation, competition, and facilitation play out on a back- communities. We use a mechanistic heat-budget model to ground of constantly shifting environmental conditions driven primarily by the action of tides and waves (Stephen- compare the effects of behavioral and morphological traits son and Stephenson, 1972; Denny, 2006; Denny et al., on the body temperatures of five species of littorinid snails 2009). Changes in important environmental parameters under natural weather conditions. Model predictions and such as light, temperature, and wave action can alter the field experiments indicate that, for all five species, the suitability of the habitat for a given species at both small relative contribution of shell color or sculpturing to temper- and large spatial scales (Wethey, 2002; Denny et al., 2004; ature regulation is small, on the order of 0.2–2 °C, while Harley, 2008).
    [Show full text]
  • Complex Male Mate Choice in Marine Snails Littorina
    Complex Male Mate Choice in Marine Snails Littorina Sara Hintz Saltin Licentiate thesis Department of Marine Ecology University of Gothenburg Till Mamma, Pappa och Hanna Abstract The ability to recognise potential mates and choose the best possible mating-partner is of fundamental importance for most animal species. This thesis presents studies of male mate choice within the genus Littorina. Males of this genus are sometimes observed to initiate mating with other males or with females of other species. How such suboptimal mating patterns can evolve is the theme of this thesis. In one study we investigated pre-copulatory- and copulation behaviour in L. fabalis and between this species and its sister-species L. obtusata. We found that males preferred to mount and mate with large and more fecund females rather than small females. Males also preferred to track the largest females mucus trails even though these were trails from another species (L. obtusata) although cross-matings were interrupted before completion. In a second study we found that males of three species (L. littorea, L. fabalis and L. obtusata) preferentially followed female trails. This suggests that females add a “gender cue” in the mucus. In the forth species, L. saxatilis, males followed male and female trails at random. Along with experimental evidence for high mating costs and abilities for male L. saxatilis to detect females of a related species, this suggests a sexual conflict over mating frequency. To reduce number of matings females avoid advertising their sex by disguise their mucus. The reason for the different species strategies is that L.
    [Show full text]
  • SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
    PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017.
    [Show full text]
  • Patrones Filogeográficos De Dos Moluscos Intermareales a Lo Largo De Un Gradiente Biogeográfico En La Costa Norte Del Perú
    PATRONES FILOGEOGRÁFICOS DE DOS MOLUSCOS INTERMAREALES A LO LARGO DE UN GRADIENTE BIOGEOGRÁFICO EN LA COSTA NORTE DEL PERÚ TESIS PARA OPTAR EL GRADO DE MAESTRO EN CIENCIAS DEL MAR BACH. SERGIO BARAHONA PADILLA LIMA – PERÚ 2017 ASESOR DE LA TESIS Aldo Santiago Pacheco Velásquez PhD. en Ciencias Naturales Profesor invitado de la Maestría en Ciencias del Mar de la Universidad Peruana Cayetano Heredia Laboratorio CENSOR, Instituto de Ciencias Naturales Alexander Von Humboldt, Universidad de Antofagasta, Chile CO-ASESORA DE LA TESIS Ximena Vélez Zuazo PhD. en Ecología y Evolución Directora del Programa Marino de Monitoreo y Evaluación de la Biodiversidad (BMAP) del Instituto Smithsonian de Biología de la Conservación, Perú JURADO EVALUADOR DE LA TESIS Dr. Dimitri Gutiérrez Aguilar (Presidente) Dr. Pedro Tapia Ormeño (Secretario) Dr. Jorge Rodríguez Bailón (Vocal) DEDICATORIA Esta tesis está dedicada a mi amada familia, a mis dos padres y a mi hermana, quienes estuvieron, están y estarán siempre allí, apoyándome y dándome ánimos para seguir adelante en esta ardua pero satisfactoria labor que es la investigación. AGRADECIMIENTOS La presente tesis fue financiada por la beca de estudios de posgrado otorgada por FONDECYT (Fondo Nacional de Desarrollo Científica, Tecnológico y e Innovación Tecnológica), CIENCIACTIVA y el Consejo Nacional de Ciencia y Tecnología (CONCYTEC) del Ministerio de Educación del Perú, en el marco del programa de posgrado de Ciencias del Mar de la Universidad Peruana Cayetano Heredia. A mi asesor, Aldo Pacheco Velásquez, por su paciencia y significativos aportes de conocimiento que permitieron atacar la tesis desde varias perspectivas. A mi co- asesora Ximena Vélez-Zuazo, a quien considero una hermana mayor, por el constante ánimo y soporte durante la ejecución de la tesis.
    [Show full text]
  • Structure and Function of the Digestive System in Molluscs
    Cell and Tissue Research (2019) 377:475–503 https://doi.org/10.1007/s00441-019-03085-9 REVIEW Structure and function of the digestive system in molluscs Alexandre Lobo-da-Cunha1,2 Received: 21 February 2019 /Accepted: 26 July 2019 /Published online: 2 September 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The phylum Mollusca is one of the largest and more diversified among metazoan phyla, comprising many thousand species living in ocean, freshwater and terrestrial ecosystems. Mollusc-feeding biology is highly diverse, including omnivorous grazers, herbivores, carnivorous scavengers and predators, and even some parasitic species. Consequently, their digestive system presents many adaptive variations. The digestive tract starting in the mouth consists of the buccal cavity, oesophagus, stomach and intestine ending in the anus. Several types of glands are associated, namely, oral and salivary glands, oesophageal glands, digestive gland and, in some cases, anal glands. The digestive gland is the largest and more important for digestion and nutrient absorption. The digestive system of each of the eight extant molluscan classes is reviewed, highlighting the most recent data available on histological, ultrastructural and functional aspects of tissues and cells involved in nutrient absorption, intracellular and extracellular digestion, with emphasis on glandular tissues. Keywords Digestive tract . Digestive gland . Salivary glands . Mollusca . Ultrastructure Introduction and visceral mass. The visceral mass is dorsally covered by the mantle tissues that frequently extend outwards to create a The phylum Mollusca is considered the second largest among flap around the body forming a space in between known as metazoans, surpassed only by the arthropods in a number of pallial or mantle cavity.
    [Show full text]
  • Genetic Perspectives on Marine Biological Invasions
    Annu. Rev. Mar. Sci. 2009. 2:X--X doi: 10.1146/annurev.marine.010908.163745 Copyright © 2009 by Annual Reviews. All rights reserved 1941-1405/09/0115-0000$20.00 <DOI> 10.1146/ANNUREV.MARINE.010908.163745</DOI> GELLER ■ DARLING ■ CARLTON GENETICS OF MARINE INVASIONS GENETIC PERSPECTIVES ON MARINE BIOLOGICAL INVASIONS Jonathan B. Geller Moss Landing Marine Laboratories, Moss Landing, California 95039; email: [email protected] John A. Darling National Exposure Research Laboratory, US EPA, Cincinnati, Ohio 45208; email: [email protected] James T. Carlton Williams College-Mystic Seaport Maritime Studies Program, Mystic, Connecticut 06355; email: [email protected] ■ Abstract The full extent to which both historical and contemporary patterns of marine biogeography have been reshaped by species introduced by human activities remains underappreciated. As a result, the full scale of the impacts of invasive species on marine ecosystems remains equally underappreciated. Recent advances in the application of molecular genetic data in fields such as population genetics, phylogeography, and evolutionary biology have dramatically improved our ability to make inferences regarding invasion histories. Genetic methods have helped to resolve longstanding questions regarding the cryptogenic status of marine species, facilitated recognition of cryptic marine biodiversity, and provided means to determine the sources of introduced marine populations and to begin to recover the patterns of anthropogenic reshuffling of the ocean’s biota. These approaches
    [Show full text]
  • Turbinellidae
    WMSDB - Worldwide Mollusc Species Data Base Family: TURBINELLIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: CAENOGASTROPODA-HYPSOGASTROPODA-NEOGASTROPODA-MURICOIDEA ------ Family: TURBINELLIDAE Swainson, 1835 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=276, Genus=12, Subgenus=4, Species=91, Subspecies=13, Synonyms=155, Images=87 aapta , Coluzea aapta M.G. Harasewych, 1986 acuminata, Turbinella acuminata L.C. Kiener, 1840 - syn of: Latirus acuminatus (L.C. Kiener, 1840) aequilonius, Fulgurofusus aequilonius A.V. Sysoev, 2000 agrestis, Turbinella agrestis H.E. Anton, 1838 - syn of: Nicema subrostrata (J.E. Gray, 1839) aldridgei , Vasum aldridgei G.W. Nowell-Usticke, 1969 - syn of: Attiliosa aldridgei (G.W. Nowell-Usticke, 1969) altocanalis , Coluzea altocanalis R.K. Dell, 1956 amaliae , Turbinella amaliae H.C. Küster & W. Kobelt, 1874 - syn of: Hemipolygona amaliae (H.C. Küster & W. Kobelt, 1874) angularis , Coluzea angularis (K.H. Barnard, 1959) angularis , Turbinella angularis L.A. Reeve, 1847 - syn of: Leucozonia nassa (J.F. Gmelin, 1791) angularis riiseana , Turbinella angularis riiseana H.C. Küster & W. Kobelt, 1874 - syn of: Leucozonia nassa (J.F. Gmelin, 1791) angulata , Turbinella angulata (J. Lightfoot, 1786) annulata, Syrinx annulata P.F. Röding, 1798 - syn of: Pustulatirus annulatus (P.F. Röding, 1798) aptos , Columbarium aptos M.G. Harasewych, 1986 - syn of: Coluzea aapta M.G. Harasewych, 1986 ardeola , Vasum ardeola A. Valenciennes, 1832 - syn of: Vasum caestus (W.J. Broderip, 1833) armatum , Vasum armatum (W.J. Broderip, 1833) armigera , Tudivasum armigera A. Adams, 1855 - syn of: Tudivasum armigerum (A. Adams, 1856) armigera , Turbinella armigera J.B.P.A.
    [Show full text]
  • Title Proximate Mechanisms Causing Morphological Variation in a Turban
    Proximate Mechanisms Causing Morphological Variation in a Title Turban Snail Among Different Shores Kurihara, Takeo; Shikatani, Mayu; Nakayama, Kouji; Nishida, Author(s) Mutsumi Citation Zoological Science (2006), 23(11): 999-1008 Issue Date 2006-11 URL http://hdl.handle.net/2433/108577 Right (c) 日本動物学会 / Zoological Society of Japan Type Journal Article Textversion publisher Kyoto University ZOOLOGICAL SCIENCE 23: 999–1008 (2006) © 2006 Zoological Society of Japan Proximate Mechanisms Causing Morphological Variation in a Turban Snail Among Different Shores Takeo Kurihara1*, Mayu Shikatani2, Kouji Nakayama3 and Mutsumi Nishida2 1Ishigaki Tropical Station, Seikai National Fisheries Research Institute, Ishigaki Island, Okinawa 907-0451, Japan 2Department of Marine Bioscience, Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan 3 Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan In many benthic organisms with a planktonic larval stage, local populations have different morphol- ogy. Such difference may arise from some of the following proximate mechanisms. “Local recruit- ment (LR)”: no larvae move between local populations, and segregated populations possess alleles coding for locally adaptive morphology. “Intragenerational selection (IS)”: larvae move between local populations, and individuals with alleles for locally adaptive morphology survive after recruit- ment. “Phenotypic plasticity (PP)”: larvae move between local populations and show phenotypic plasticity to adapt to a locality after recruitment. We examined which mechanism explains our find- ing that a planktonic developer Turbo coronatus coronatus (Gastropoda) had significantly longer spines on its shell on more exposed shores at scales of < 2 km. Experiments at Ishigaki Island, Okinawa, Japan, showed the following results.
    [Show full text]
  • Caenogastropoda
    13 Caenogastropoda Winston F. Ponder, Donald J. Colgan, John M. Healy, Alexander Nützel, Luiz R. L. Simone, and Ellen E. Strong Caenogastropods comprise about 60% of living Many caenogastropods are well-known gastropod species and include a large number marine snails and include the Littorinidae (peri- of ecologically and commercially important winkles), Cypraeidae (cowries), Cerithiidae (creep- marine families. They have undergone an ers), Calyptraeidae (slipper limpets), Tonnidae extraordinary adaptive radiation, resulting in (tuns), Cassidae (helmet shells), Ranellidae (tri- considerable morphological, ecological, physi- tons), Strombidae (strombs), Naticidae (moon ological, and behavioral diversity. There is a snails), Muricidae (rock shells, oyster drills, etc.), wide array of often convergent shell morpholo- Volutidae (balers, etc.), Mitridae (miters), Buccin- gies (Figure 13.1), with the typically coiled shell idae (whelks), Terebridae (augers), and Conidae being tall-spired to globose or fl attened, with (cones). There are also well-known freshwater some uncoiled or limpet-like and others with families such as the Viviparidae, Thiaridae, and the shells reduced or, rarely, lost. There are Hydrobiidae and a few terrestrial groups, nota- also considerable modifi cations to the head- bly the Cyclophoroidea. foot and mantle through the group (Figure 13.2) Although there are no reliable estimates and major dietary specializations. It is our aim of named species, living caenogastropods are in this chapter to review the phylogeny of this one of the most diverse metazoan clades. Most group, with emphasis on the areas of expertise families are marine, and many (e.g., Strombidae, of the authors. Cypraeidae, Ovulidae, Cerithiopsidae, Triphori- The fi rst records of undisputed caenogastro- dae, Olividae, Mitridae, Costellariidae, Tereb- pods are from the middle and upper Paleozoic, ridae, Turridae, Conidae) have large numbers and there were signifi cant radiations during the of tropical taxa.
    [Show full text]
  • LA MALACOFAUNA DEL YACIMIENTO DE LA PEÑA DE ESTEBANVELA (SEGOVIA) Jesús F
    4•La Peña.qxd 18/9/07 09:27 Página 107 LA MALACOFAUNA DEL YACIMIENTO DE LA PEÑA DE ESTEBANVELA (SEGOVIA) Jesús F. Jordá Pardo Universidad Nacional de Educación a Distancia. Departamento de Prehistoria y Arqueología. Senda del Rey, 7. E-28040 Madrid. [email protected] 107 RESUMEN ABSTRACT El yacimiento arqueológico del Pleistoceno superior final de La The archaeological site of La Peña de Estebanvela has pro- Peña de Estebanvela ha proporcionado una interesante colec- vided an interesting malacological collection integrated by 389 ción malacológica integrada por 389 individuos correspondien- individuals corresponding to 11 different taxa. Of these, 5 are tes a 11 taxones diferentes. De estos, 5 son gasterópodos continental gastropods (Theodoxus fluviatilis, Melanopsis sp., continentales (Theodoxus fluviatilis, Melanopsis sp., Helicella Helicella unifasciata, Jaminia quadridens and Gastropoda unifasciata, Jaminia quadridens y Gastropoda indet.), 5 son gas- indet.), 5 are marine gastropods (Littorina obtusata, Trivia arc- terópodos marinos (Littorina obtusata, Trivia arctica, Columbe- tica, Columbella rustica, Nassarius reticulatus and Cyclope ner- lla rustica, Nassarius reticulatus y Cyclope neritea) y 1 es un itea) and 1 is a fragment of marine bivalve (Pecten maximus). fragmento de bivalvo marino (Pecten maximus). Por niveles, los For levels, the three superiors are the richest quantitative and tres superiores son los más ricos tanto cuantitativa como cuali- qualitatively, whereas the three low ones present a scanty pres- tativamente, mientras que los tres inferiores presentan una baja ence of mollusks, basically represented by the continental gas- presencia de moluscos, básicamente representados por los gas- tropods. We could have established four sets: ornamental set, terópodos continentales.
    [Show full text]
  • Marine Invasive Species in Nordic Waters - Fact Sheet
    NOBANIS - Marine invasive species in Nordic waters - Fact Sheet Rapana venosa Author of this species fact sheet: Kathe R. Jensen, Zoological Museum, Natural History Museum of Denmark, Universitetsparken 15, 2100 København Ø, Denmark. Phone: +45 353-21083, E-mail: [email protected] Bibliographical reference – how to cite this fact sheet: Jensen, Kathe R. (2010): NOBANIS – Invasive Alien Species Fact Sheet – Rapana venosa – From: Identification key to marine invasive species in Nordic waters – NOBANIS www.nobanis.org, Date of access x/x/201x. Species description Species name Rapana venosa, (Valenciennes, 1846) – Veined rapa whelk Synonyms Purpura venosa Valenciennes, 1846; Rapana thomasiana Crosse, 1861; ?Rapana marginata (Valenciennes, 1846); ?Rapana pechiliensis Grabau & King, 1928; Rapana pontica Nordsieck, 1969. Common names Veined rapa whelk, Asian rapa whelk (USA, UK); Thomas’ whelk (English common name for Black Sea whelks identified as R. thomasiana); Cocozza, Bobolone (IT); Geaderde stekelhoorn (NL); Bai top shell (commercial name for Bulgarian Black Sea specimens); Akanishi (JP). Taxonomic note The genus Rapana is sometimes referred to the family Muricidae (e.g., DAISIE, 2006), sometimes to Thaididae (e.g., Koutsoubas & Voultsiadou-Koukoura, 1991; Mann & Harding, 2000). According to World Register of Marine Species (WoRMS) the family should be Muricidae, and the Thaididae is considered a synonym of Rapaninae, a subfamily of Muricidae (see Bouchet & Rocroi, 2005). Identification Rapana venosa is a large, 9-16 cm shell length, species with a heavy, strongly sculptured shell. Specimens up to 17.5 cm have been recorded in the Black Sea (Micu et al., 2008). The spire is relatively short, less than half the height of the aperture.
    [Show full text]