Received: 16 June 2020 | Accepted: 17 June 2020 DOI: 10.1002/jez.2398 RESEARCH PAPER The control of routine fish maneuvers: Connecting midline kinematics to turn outcomes Stephen P. Howe | Henry C. Astley Department of Biology, Biomimicry Research and Innovation Center, University of Akron, Abstract Akron, Ohio Maneuverability is an important factor in determining an animal's ability to navigate Correspondence its environment and succeed in predator–prey interactions. Although fish are cap- Stephen P. Howe, Department of Biology, Biomimicry Research and Innovation Center, able of a wide range of maneuvers, most of the literature has focused on escape University of Akron, 235 Carroll St., Rm D401, maneuvers while less attention has been paid to routine maneuvers, such as those Akron, OH 44325‐3908. Email:
[email protected] used for habitat navigation. The quantitative relationships between body deforma- tions and maneuver outcomes (displacement of the center of mass and change in trajectory) are fundamental to understanding how fish control their maneuvers, yet remain unknown in routine maneuvers. We recorded high‐speed video of eight giant danios (Devario aquepinnatus) performing routine and escape maneuvers and quan- tified the deformation of the midline, the heading of the anterior body, and the kinematics of the centroid (a proxy for center of mass). We found that both routine and escape behaviors used qualitatively similar independent body bending events, which we curvature pulses, that propagate from head to tail but show quantitative differences in midline kinematics and turn outcomes. In routine maneuvers, the direction change and acceleration of the fish are influenced by both the magnitude of the bending pulse and by the duration of the pulse, whereas in escape maneuvers, only pulse duration influenced direction change and turn acceleration.