Neotrypaea Californiensis Class: Malacostraca Order: Decapoda the Ghost Shrimp Section: Anomura, Paguroidea Family: Callinassidae

Total Page:16

File Type:pdf, Size:1020Kb

Neotrypaea Californiensis Class: Malacostraca Order: Decapoda the Ghost Shrimp Section: Anomura, Paguroidea Family: Callinassidae Phylum: Arthropoda, Crustacea Neotrypaea californiensis Class: Malacostraca Order: Decapoda The ghost shrimp Section: Anomura, Paguroidea Family: Callinassidae Taxonomy: Neotrypaea californiensis was Antennae: Antennal angles rounded described as a member of the genus and naked and antennal peduncle shorter Callianassa 1854 by Dana and remained than antennular peduncle (Campos et al. there until an analysis by Manning and Felder 2009). (1991) resulted in the three NE pacific Mouthparts: The mouth of decapod Callianassa species moving to the new genus crustaceans comprises six pairs of Neotrypaea. Tudge et al. (2000) later appendages including one pair of mandibles analyzed 93 characters of adult morphology (on either side of the mouth), two pairs of and found the genus Neotrypaea to be non- maxillae and three pairs of maxillipeds. The monophyletic and Sakai (1999) synonymized maxillae and maxillipeds attach posterior to Neotrypaea and Callianassa. The monophyly the mouth and extend to cover the mandibles of Neotrypaea is still supported by some (Ruppert et al. 2004). The third maxilliped in authors (e.g. Campos et al. 2009) and we N. californiensis is operculiform, with widened follow the most current local intertidal guides, merus extending beyond articulation with which use N. californiensis (Kuris et al. 2007). carpus and ischium (Manning and Felder For complete list of synonymies see Sakai 1991; Campos et al. 2009; Wicksten 2011). (2005). Carapace: Smooth and with lateral grooves (Wicksten 2011). Description Rostrum: Not prominent, rounded Size: Males up to 115 mm and females to and with small blunt tooth (Wicksten 2011) 120 mm in length (Barnard et al. 1980; Puls (Fig. 2). 2001; Wicksten 2011). Teeth: Color: Can be white to cream with patches of Pereopods: Second pereopod pinkish red or orange on the abdomen and flattened, chelate (Fig. 3) and with row of appendages (see Plate 19, Kozloff 1993; setae along posterior margin (Campos et al. Wicksten 2011). The illustrated specimen 2009). Third to fifth pereopods are (from Coos Bay) is pale pink with light orange predominantly used in walking (MacGinitie abdomen. 1934). Third pereopod with triangular carpus General Morphology: The body of decapod and round, small dactyl. Fourth and fifth crustaceans can be divided into the pereopods are slender (Wicksten 2011). cephalothorax (fused head and thorax) and Chelipeds: First chelipeds are abdomen. They have a large plate-like chelate and unequal (Fig. 1). The large carapace dorsally, beneath which are five cheliped is broad, serrate and with an obvious pairs of thoracic appendages (see chelipeds gap in dactyls. The merus has a conspicuous and pereopods) and three pairs of ventral lobe, the carpus is almost square and maxillipeds (see mouthparts). The abdomen longer than the palm, and with laterally and associated appendages are outstretched incurved dorsal margin (Campos et al. 2009). and shrimp-like in Callianassidae (Stevens The dactyl has a recurved hook distally 1928; Kuris et al. 2007). (Wicksten 2011) (Fig. 1). Propodi are of Cephalothorax: nearly equal length (McGinitie 1934). Second Eyes: Eyestalks flattened and with chelipeds are both chelate with propodi and acute tips. Pigmented corneas are mid-dorsal dactyls near equal in width (Figs. 1, 3). within eyestalk (Fig. 2) (Wicksten 2011). Female and immature individuals have hand Eyes triangular and with diverging tip longer than carpus (Wicksten 2011). (Campos et al. 2009). Hiebert, T.C. 2015. Neotrypaea californiensis. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: http://hdl.handle.net/1794/12725 and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Abdomen (Pleon): Abdomen elongate pink) is strikingly different. Its burrows are (longer than cephalothorax), not reflexed but also more firm and substantial. The most extended, symmetrical and externally noticeable morphological difference between segmented. It bears three pairs of fan-like the species is the first pair of legs: both of pleopods (Fig. 1). First and second pleopods which are small, sub-chelate and equal in U. are vestigal and absent in males. Third to pugettensis. Furthermore, its rostrum is hairy fifth are leaf-like (Fig. 1). In females, the first and has a laterally compressed and slender pleopods are uniramous and the second are tip of the short fixed finger of the chela biramous (Wicksten 2011). (Wicksten 2011). Telson & Uropods: Telson nearly Characteristics defining the rectangular, forming a well-developed fan- Callianassidae are described in Sakai 1999 shape with uropods, which are equal in length and and Campos et al. 2009. There are three to the telson (Fig. 1). Telson composed of species locally, Neotrypaea californiensis, N. two dorsal ribs and posterior marginal tooth. gigas and N. buffari (Kuris et al. 2007). Exopod (outer ramus) also with dorsal ribs. Neotrypaea californiensis can be Sexual Dimorphism: Pleopod (see distinguished from the other two species by Abdomen (Pleon)) and cheliped (see the lack of a prominent rostrum (present in N. Chelipeds) morphology differs between gigas) and eyestalks that are acute and males and females. Females are also diverging tips of the eyestalks (rather than commonly seen with conspicuous bright short, blunt and not diverging in N. biffari) orange egg masses attached to their (see Campos et al. 2009). Neotrypaea gigas pleopods. is larger (to 125–150 mm) than the other two, and relatively rare in sandy sublittoral Callianassidae-specific character habitats. Its rostrum is sharp, with prominent Burrow: Neotrypaea californiensis build and medial tooth (whichN. californiensis does not inhabit large, sloppy and permanent burrows possess), and its first chela closes without a with branching side tunnels (Y-shape, Jensen gap. It is more common in its southern 1995; Puls 2001). Individuals dig tirelessly, distribution, south of Point Conception turning over acres of northwest oyster beds (Barnard et al. 1980; Kuris et al. 2007; (Ricketts and Calvin 1971, see Behavior). Wicksten 2011). Neotrypaea gigas and N. Burrows can be to 0.76–1.00 m deep californiensis also differ in the morphology of (MacGinitie 1934; MacGinitie and MacGinitie the second pereopod: In N. californiensis the 1949). They burrow using their first to third propodus and dactyl are of equal length and legs, aided by mouthparts (MacGinitie 1934; in N. gigas, the propodus is curved and wider Kozloff 1993) and begin digging backward than the dactyl (Kuris et al. 2007). Recent before turning and removing excess loose examination of these two species using sediment from the burrow to the surface (see morphological and molecular data suggests MacGinitie 1934 for figure). that the key characters for differentiating species is the length of eyestalks and shape Possible Misidentifications of the distal outer edges (Pernet et al. 2010). Thalassinidea is a former infraorder containing Callianassidae and Upogebiidae Ecological Information and, although shown to be non-monophyletic Range: Type region is California, with (Sakai 2004), most mud and ghost shrimps proposed locality San Francisco or Monterey are often referred to collectively as Bay (Wicksten 2011), but type material has thalassinids. been lost. Known range includes Alaska to Upogebiidae is described in Williams Tiajuana River, California and Point Abreojos, (1986) and Campos et al. 2009 and, locally, Baja California, Mexico (Campos et al. 2009) consists of a single species, Upogebia Local Distribution: Distribution in many pugettensis, the blue mud shrimp, often co- Oregon estuaries including Coos Bay, Alsea occurs with N. californiensis. Upogebia River (Gaumer et al. 1973b), Nestucca pugettensis is easy to recognize because it is estuary (Gaumer et al. 1973a), Netarts Bay larger and its color (bluish and never red or (Gaumer et al. 1974), Umpqua estuary Hiebert, T.C. 2015. Neotrypaea californiensis. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. (Umpqua Estuary 1978), Tillamook Bay 7,100 (Dumbauld et al. 1996). Individuals (Gaumer 1973b) and Yaquina Bay (Gaumer ovigerous from April through August (Willapa et al. 1974). Bay, Washington, Dumbauld et al. 1996). Habitat: Mud or sand. Individuals can Larva: Larval development in N. survive anoxia for nearly six days (Garth and californiensis proceeds via several zoea (five Abbott 1980). In adaptation to living in an total) and, a final, megalopa stage, each environment that is relatively low in oxygen, marked by a molt (Puls 2001). Neotrypaea N. californiensis and U. pugettensis exhibit californiensis zoea have rostrum longer than low metabolic rates and can both survive antennules (compare to Upogebia periods of anoxia. Upogebia pugettensis has pugettensis), abdominal segments with dorsal a higher metabolic rate and N. californiensis and/or lateral spines and telson that is broad is able to survive longer during periods of and flat with medial tooth at posterior (see anoxia (Thompson and Pritchard 1969a; Zebe paguroid zoeae Fig. 53.2, Harvey et al. 2014: 1982). Fig. 11, McCrow 1972; Puls 2001).
Recommended publications
  • Abstracts of Technical Papers, Presented at the 104Th Annual Meeting, National Shellfisheries Association, Seattle, Ashingtw On, March 24–29, 2012
    W&M ScholarWorks VIMS Articles 4-2012 Abstracts of Technical Papers, Presented at the 104th Annual Meeting, National Shellfisheries Association, Seattle, ashingtW on, March 24–29, 2012 National Shellfisheries Association Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation National Shellfisheries Association, Abstr" acts of Technical Papers, Presented at the 104th Annual Meeting, National Shellfisheries Association, Seattle, ashingtW on, March 24–29, 2012" (2012). VIMS Articles. 524. https://scholarworks.wm.edu/vimsarticles/524 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 31, No. 1, 231, 2012. ABSTRACTS OF TECHNICAL PAPERS Presented at the 104th Annual Meeting NATIONAL SHELLFISHERIES ASSOCIATION Seattle, Washington March 24–29, 2012 231 National Shellfisheries Association, Seattle, Washington Abstracts 104th Annual Meeting, March 24–29, 2012 233 CONTENTS Alisha Aagesen, Chris Langdon, Claudia Hase AN ANALYSIS OF TYPE IV PILI IN VIBRIO PARAHAEMOLYTICUS AND THEIR INVOLVEMENT IN PACIFICOYSTERCOLONIZATION........................................................... 257 Cathryn L. Abbott, Nicolas Corradi, Gary Meyer, Fabien Burki, Stewart C. Johnson, Patrick Keeling MULTIPLE GENE SEGMENTS ISOLATED BY NEXT-GENERATION SEQUENCING
    [Show full text]
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • From Ghost and Mud Shrimp
    Zootaxa 4365 (3): 251–301 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4365.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C5AC71E8-2F60-448E-B50D-22B61AC11E6A Parasites (Isopoda: Epicaridea and Nematoda) from ghost and mud shrimp (Decapoda: Axiidea and Gebiidea) with descriptions of a new genus and a new species of bopyrid isopod and clarification of Pseudione Kossmann, 1881 CHRISTOPHER B. BOYKO1,4, JASON D. WILLIAMS2 & JEFFREY D. SHIELDS3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St., New York, New York 10024, U.S.A. E-mail: [email protected] 2Department of Biology, Hofstra University, Hempstead, New York 11549, U.S.A. E-mail: [email protected] 3Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, U.S.A. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 252 Introduction . 252 Methods and materials . 253 Taxonomy . 253 Isopoda Latreille, 1817 . 253 Bopyroidea Rafinesque, 1815 . 253 Ionidae H. Milne Edwards, 1840. 253 Ione Latreille, 1818 . 253 Ione cornuta Bate, 1864 . 254 Ione thompsoni Richardson, 1904. 255 Ione thoracica (Montagu, 1808) . 256 Bopyridae Rafinesque, 1815 . 260 Pseudioninae Codreanu, 1967 . 260 Acrobelione Bourdon, 1981. 260 Acrobelione halimedae n. sp. 260 Key to females of species of Acrobelione Bourdon, 1981 . 262 Gyge Cornalia & Panceri, 1861. 262 Gyge branchialis Cornalia & Panceri, 1861 . 262 Gyge ovalis (Shiino, 1939) . 264 Ionella Bonnier, 1900 .
    [Show full text]
  • Zootaxa: Systematics of the Genus Scleroplax Rathbun, 1893
    Zootaxa 1344: 33–41 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1344 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Systematics of the genus Scleroplax Rathbun, 1893 (Crustacea: Brachyura: Pinnotheridae) ERNESTO CAMPOS Facultad de Ciencias, Universidad Autónoma de Baja California, Apartado Postal 2300, Ensenada, Baja California, 22800 México. E-mail: [email protected]; [email protected] Abstract The taxonomic status of the monotypic genus Scleroplax Rathbun, 1893, is evaluated and separated from other genera of the Pinnixa White, 1846, complex. Distinguishing characters of Scleroplax are a hard, subheptagonal and dorsally, highly convex carapace, and a third maxilliped with a propodus that extends to the end of the dactylus. The genera Scleroplax, Pinnixa, Austinixa Heard & Manning, 1997, Glassella Campos & Wicksten, 1997, Indopinnixa Manning & Morton, 1987, and Tetrias Rathbun, 1898, share a carapace than is wider than long and a distinct lateral exopod lobe on the third maxilliped, all of which may represent monophyletic characters. Updated information on the distribution and hosts of S. granulata Rathbun, 1893, indicate that the species now ranges from Vancouver Island, British Columbia, Canada to El Coyote estuary, Punta Abreojos, Baja California Sur, México. It inhabits burrows of the echiuroid Urechis caupo Fisher & MacGinitie, 1928, and the mud shrimps Neotrypaea californiensis (Dana, 1854), N. gigas (Dana, 1852) (new host record), Upogebia pugettensis (Dana, 1852), and occasionally U. macginiteorum Williams, 1986 (new host record). Key words: Crustacea, Brachyura, Pinnotheridae, Scleroplax, systematics, geographic distribution, new hosts Resumen El estatus taxonómico del género monotípico Scleroplax Rathbun, 1893, es evaluado y separado de otros géneros del complejo Pinnixa White, 1846.
    [Show full text]
  • Upogebia Pugettensis Class: Malacostraca Order: Decapoda Section: Anomura, Paguroidea the Blue Mud Shrimp Family: Upogebiidae
    Phylum: Arthropoda, Crustacea Upogebia pugettensis Class: Malacostraca Order: Decapoda Section: Anomura, Paguroidea The blue mud shrimp Family: Upogebiidae Taxonomy: Dana described Gebia (on either side of the mouth), two pairs of pugettensis in 1852 and this species was later maxillae and three pairs of maxillipeds. The redescribed as Upogebia pugettensis maxillae and maxillipeds attach posterior to (Stevens 1928; Williams 1986). the mouth and extend to cover the mandibles (Ruppert et al. 2004). Description Carapace: Bears two rows of 11–12 Size: The type specimen was 50.8 mm in teeth laterally (Fig. 1) in addition to a small length and the illustrated specimen (ovigerous distal spines (13 distal spines, 20 lateral teeth female from Coos Bay, Fig. 1) was 90 mm in on carapace shoulder, see Wicksten 2011). length. Individuals are often larger and reach Carapace with thalassinidean line extending sizes to 100 mm (range 75–112 mm) and from anterior to posterior margin (Wicksten northern specimens are larger than those in 2011). southern California (MacGinitie and Rostrum: Large, tridentate, obtuse, MacGinitie 1949; Wicksten 2011). rough and hairy (Schmitt 1921), the sides Color: Light blue green to deep olive brown bear 3–5 short conical teeth (Wicksten 2011). with brown fringes on pleopods and pleon. Rostral tip shorter than antennular peduncle. Individual color variable and may depend on Two short processes extending on either side feeding habits (see Fig. 321, Kozloff 1993; each with 0–2 dorsal teeth (Wicksten 2011). Wicksten 2011). Teeth: General Morphology: The body of decapod Pereopods: Two to five simple crustaceans can be divided into the walking legs.
    [Show full text]
  • New Records and Description of Two New Species Of
    A peer-reviewed open-access journal ZooKeys 671: 131–153New (2017) records and description of two new species of carideans shrimps... 131 doi: 10.3897/zookeys.671.9081 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research New records and description of two new species of carideans shrimps from Bahía Santa María- La Reforma lagoon, Gulf of California, Mexico (Crustacea, Caridea, Alpheidae and Processidae) José Salgado-Barragán1, Manuel Ayón-Parente2, Pilar Zamora-Tavares2 1 Laboratorio de Invertebrados Bentónicos, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, México 2 Centro Universitario de Ciencias Agrope- cuarias, Universidad de Guadalajara, México Corresponding author: José Salgado-Barragán ([email protected]) Academic editor: S. De Grave | Received 4 May 2016 | Accepted 22 March 2017 | Published 27 April 2017 http://zoobank.org/9742DC49-F925-4B4B-B440-17354BDDB4B5 Citation: Salgado-Barragán J, Ayón-Parente M, Zamora-Tavares P (2017) New records and description of two new species of carideans shrimps from Bahía Santa María-La Reforma lagoon, Gulf of California, Mexico (Crustacea, Caridea, Alpheidae and Processidae). ZooKeys 671: 131–153. https://doi.org/10.3897/zookeys.671.9081 Abstract Two new species of the family Alpheidae: Alpheus margaritae sp. n. and Leptalpheus melendezensis sp. n. are described from Santa María-La Reforma, coastal lagoon, SE Gulf of California. Alpheus margaritae sp. n. is closely related to A. antepaenultimus and A. mazatlanicus from the Eastern Pacific and to A. chacei from the Western Atlantic, but can be differentiated from these by a combination of characters, especially the morphology of the scaphocerite and the first pereopods.
    [Show full text]
  • Systematics, Phylogeny, and Taphonomy of Ghost Shrimps (Decapoda): a Perspective from the Fossil Record
    73 (3): 401 – 437 23.12.2015 © Senckenberg Gesellschaft für Naturforschung, 2015. Systematics, phylogeny, and taphonomy of ghost shrimps (Decapoda): a perspective from the fossil record Matúš Hyžný *, 1, 2 & Adiël A. Klompmaker 3 1 Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria; Matúš Hyžný [hyzny.matus@ gmail.com] — 2 Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, SVK-842 15 Bratislava, Slovakia — 3 Florida Museum of Natural History, University of Florida, 1659 Museum Road, PO Box 117800, Gaines- ville, FL 32611, USA; Adiël A. Klompmaker [[email protected]] — * Correspond ing author Accepted 06.viii.2015. Published online at www.senckenberg.de/arthropod-systematics on 14.xii.2015. Editor in charge: Stefan Richter. Abstract Ghost shrimps of Callianassidae and Ctenochelidae are soft-bodied, usually heterochelous decapods representing major bioturbators of muddy and sandy (sub)marine substrates. Ghost shrimps have a robust fossil record spanning from the Early Cretaceous (~ 133 Ma) to the Holocene and their remains are present in most assemblages of Cenozoic decapod crustaceans. Their taxonomic interpretation is in flux, mainly because the generic assignment is hindered by their insufficient preservation and disagreement in the biological classification. Fur- thermore, numerous taxa are incorrectly classified within the catch-all taxonCallianassa . To show the historical patterns in describing fos- sil ghost shrimps and to evaluate taphonomic aspects influencing the attribution of ghost shrimp remains to higher level taxa, a database of all fossil species treated at some time as belonging to the group has been compiled: 250 / 274 species are considered valid ghost shrimp taxa herein.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Appendix 1. Bodega Marine Lab Student Reports on Polychaete Biology
    Appendix 1. Bodega Marine Lab student reports on polychaete biology. Species names in reports were assigned to currently accepted names. Thus, Ackerman (1976) reported Eupolymnia crescentis, which was recorded as Eupolymnia heterobranchia in spreadsheets of current species (spreadsheets 2-5). Ackerman, Peter. 1976. The influence of substrate upon the importance of tentacular regeneration in the terebellid polychaete EUPOLYMNIA CRESCENTIS with reference to another terebellid polychaete NEOAMPHITRITE ROBUSTA in regard to its respiratory response. Student Report, Bodega Marine Lab, Library. IDS 100 ∗ Eupolymnia heterobranchia (Johnson, 1901) reported as Eupolymnia crescentis Chamberlin, 1919 changed per Lights 2007. Alex, Dan. 1972. A settling survey of Mason's Marina. Student Report, Bodega Marine Lab, Library. Zoology 157 Alexander, David. 1976. Effects of temperature and other factors on the distribution of LUMBRINERIS ZONATA in the substratum (Annelida: polychaeta). Student Report, Bodega Marine Lab, Library. IDS 100 Amrein, Yost. 1949. The holdfast fauna of MACROSYSTIS INTEGRIFOLIA. Student Report, Bodega Marine Lab, Library. Zoology 112 ∗ Platynereis bicanaliculata (Baird, 1863) reported as Platynereis agassizi Okuda & Yamada, 1954. Changed per Lights 1954 (2nd edition). ∗ Naineris dendritica (Kinberg, 1867) reported as Nanereis laevigata (Grube, 1855) (should be: Naineris laevigata). N. laevigata not in Hartman 1969 or Lights 2007. N. dendritica taken as synonymous with N. laevigata. ∗ Hydroides uncinatus Fauvel, 1927 correct per I.T.I.S. although Hartman 1969 reports Hydroides changing to Eupomatus. Lights 2007 has changed Eupomatus to Hydroides. ∗ Dorvillea moniloceras (Moore, 1909) reported as Stauronereis moniloceras (Moore, 1909). (Stauronereis to Dorvillea per Hartman 1968). ∗ Amrein reported Stylarioides flabellata, which was not recognized by Hartman 1969, Lights 2007 or the Integrated Taxonomic Information System (I.T.I.S.).
    [Show full text]
  • Intertidal Organisms of Point Reyes National Seashore
    Intertidal Organisms of Point Reyes National Seashore PORIFERA: sea sponges. CRUSTACEANS: barnacles, shrimp, crabs, and allies. CNIDERIANS: sea anemones and allies. MOLLUSKS : abalones, limpets, snails, BRYOZOANS: moss animals. clams, nudibranchs, chitons, and octopi. ECHINODERMS: sea stars, sea cucumbers, MARINE WORMS: flatworms, ribbon brittle stars, sea urchins. worms, peanut worms, segmented worms. UROCHORDATES: tunicates. Genus/Species Common Name Porifera Prosuberites spp. Cork sponge Leucosolenia eleanor Calcareous sponge Leucilla nuttingi Little white sponge Aplysilla glacialis Karatose sponge Lissodendoryx spp. Skunk sponge Ophlitaspongia pennata Red star sponge Haliclona spp. Purple haliclona Leuconia heathi Sharp-spined leuconia Cliona celata Yellow-boring sponge Plocarnia karykina Red encrusting sponge Hymeniacidon spp. Yellow nipple sponge Polymastia pachymastia Polymastia Cniderians Tubularia marina Tubularia hydroid Garveia annulata Orange-colored hydroid Ovelia spp. Obelia Sertularia spp. Sertularia Abientinaria greenii Green's bushy hydroid Aglaophenia struthionides Giant ostrich-plume hydroid Aglaophenia latirostris Dainty ostrich-plume hydroid Plumularia spp. Plumularia Pleurobrachia bachei Cat's eye Polyorchis spp. Bell-shaped jellyfish Chrysaora melanaster Striped jellyfish Velella velella By-the-wind-sailor Aurelia auria Moon jelly Epiactus prolifera Proliferating anemone Anthopleura xanthogrammica Giant green anemone Anthopleura artemissia Aggregated anemone Anthopleura elegantissima Burrowing anemone Tealia lofotensis
    [Show full text]
  • Thermal Physiological Traits and Plasticity of Metabolism Are Sensitive to Biogeographic Breaks in a Rock-Pool Marine Shrimp Aura M
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb181008. doi:10.1242/jeb.181008 RESEARCH ARTICLE Thermal physiological traits and plasticity of metabolism are sensitive to biogeographic breaks in a rock-pool marine shrimp Aura M. Barria1, Leonardo D. Bacigalupe2, Nelson A. Lagos3 and Marco A. Lardies1,* ABSTRACT gradually shapes the phenotypic responses of populations of a Populations of broadly distributed species commonly exhibit species along geographic clines (Castañeda et al., 2004; Lardies latitudinal variation in thermal tolerance and physiological plasticity. et al., 2011), leading to intraspecific variation in physiological traits This variation can be interrupted when biogeographic breaks occur in widely distributed species inhabiting contrasting environments across the range of a species, which are known to affect patterns of (Gaitán-Espitía et al., 2014; Stillman, 2002). In ectotherms, community structure, abundance and recruitment dynamics. Coastal performance traits (e.g. growth, reproduction, physiology) vary biogeographic breaks often impose abrupt changes in environmental with differences in TA, and this relationship can be described by a characteristics driven by oceanographic processes and can affect thermal performance curve (TPC; Angilletta, 2009; Huey and the physiological responses of populations inhabiting these areas. Berrigan, 2001) that includes three parameters: (1) critical thermal Here, we examined thermal limits, performances for heart rate minimum (CTmin), (2) critical thermal maximum (CTmax) and (3) and plasticity in metabolic rate of the intertidal shrimp Betaeus optimum temperature (Topt). Specifically, CTmin and CTmax emarginatus from seven populations along its latitudinal range represent the TA below and above which performance is at a (∼3000 km). The distribution of this species encompass two breaks minimum, and Topt represents the TA at which performance is along the southeastern Pacific coast of Chile: the northern break is maximized.
    [Show full text]
  • Family PANDALIDAE the Genera of This Family May
    122 L. B. HOLTHUIS Family PANDALIDAE Pandalinae Dana, 1852, Proc. Acad. nat. Sci. Phila. 6: 17, 24. Pandalidae Bate, 1888, Rep. Voy. Challenger, Zool. 24: xii, 480, 625. The genera of this family may be distinguished with the help of the fol- lowing key, which is largely based on the key given by De Man (1920, Siboga Exped. 39 (a3) : 101, 102); use has also been made of Kemp's (1925, Rec. Indian Mus. 27:271, 272) key to the Chlorotocus section of this family. 1. Carpus of second pereiopods consisting of more than three joints. 2 — Carpus of second pereiopods consisting of 2 or 3 joints 13 2. No longitudinal carinae on the carapace except for the postrostral crest. 3 — Carapace with longitudinal carinae on the lateral surfaces. Integument very firm. 12 3. Rostrum movably connected with the carapace Pantomus — Rostrum not movable 4 4. Eyes poorly developed, cornea narrower than the eyestalk . Dorodotes — Eyes well developed, cornea much wider than the eyestalk .... 5 5. Third maxilliped with an exopod 6 — Third maxilliped without exopod 8 6. Epipods on at least the first two pereiopods 7 — No epipods on any of the pereiopods Parapandalus 7. Posterior lobe of scaphognathite broadly rounded or truncate. Stylocerite pointed anteriorly. Rostrum with at least some fixed teeth dorsally. Plesionika — Posterior lobe of scaphognathite acutely produced. Stylocerite broad and rounded. Rostrum with only movable spines dorsally Dichelopandalus 8. Laminar expansion of the inner border of the ischium of the first pair of pereiopods very large Pandalopsis — Laminar expansion of the inner border of the ischium of the first pair of pereiopods wanting or inconspicuous 9 9.
    [Show full text]