WO 2013/093809 Al 27 June 2013 (27.06.2013) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2013/093809 Al 27 June 2013 (27.06.2013) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/093809 Al 27 June 2013 (27.06.2013) P O P C T (51) International Patent Classification: TUMEY, Nathan; 37 William Street, Pawcatuck, Con C07K 16/00 (2006.01) C07K 16/30 (2006.01) necticut 06379 (US). (21) International Application Number: (74) Agent: KLEIMAN, Gabriel L.; Pfizer Inc., 235 East 42nd PCT/IB2012/057491 Street, New York, New York 10017 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 19 December 2012 (19. 12.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, English (25) Filing Language: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (26) Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (30) Priority Data: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 61/580,169 23 December 201 1 (23. 12.201 1) US ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (71) Applicant: PFIZER INC. [US/US]; 235 East 42nd Street, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, New York, New York 10017 (US). RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (72) Inventors: MARQUETTE, Kimberly; 66 Springfield ZM, ZW. Street, Apt. #1, Somerville, Massachusetts 02143 (US). BENNETT, Eric; 45 Morningside Drive, Arlington, Mas (84) Designated States (unless otherwise indicated, for every sachusetts 02474 (US). TCHISTIAKOVA, Lioudmila; 19 kind of regional protection available): ARIPO (BW, GH, Abbot Bridge Drive, Andover, Massachusetts 01810 (US). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, [Continued on nextpage] (54) Title: ENGINEERED ANTIBODY CONSTANT REGIONS FOR SITE-SPECIFIC CONJUGATION AND METHODS AND USES THEREFOR (57) Abstract: The present invention is directed to anti bodies, and antigen-binding portions thereof, engin Figure 11 eered to introduce amino acids for site-specific conjug ation. The invention relates to engineered antibody con stant region (Fc, Cy, CK, and CX) polypeptides, and portions thereof, and antibodies comprising the poly 5T4 Engineered Antibody Binding in MDAMB435/5T4 Cell □ 1ug/ml peptides. Further, the invention relates to Fc fusion pro ■ 10ug/ml teins comprising an engineered Fc region. The inven tion also relates to methods and uses of the engineered antibodies and portions for, among other things, pro duction of antibody-drug conjugate therapeutics. © 00 © o o w o 2013/093809 Ai III 111 II II III I I11 III III II IIII 11ll ll III II I II TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, — as to the applicant's entitlement to claim the priority of EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, the earlier application (Rule 4.1 ?'(in)) LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published: GW, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3)) Declarations under Rule 4.17: — before the expiration of the time limit for amending the — as to the identity of the inventor (Rule 4. 7(i)) claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) — as to applicant's entitlement to apply for and be granted patent (Rule 4.1 7(H)) — with sequence listing part of description (Rule 5.2(a)) ENGINEERED ANTIBODY CONSTANT REGIONS FOR SITE-SPECIFIC CONJUGATION AND METHODS AND USES THEREFOR REFERENCE TO SEQUENCE LISTING This application is being filed electronically via EFS-Web and includes an electronically submitted sequence listing in .txt format. The .txt file contains a sequence listing entitled "PC07 1868A_Sequence_Listing.txt" created on December 15 , 201 2 , and having a size of 303 KB. The sequence listing contained in this .txt file is part of the specification and is incorporated herein by reference in its entirety. FIELD OF THE INVENTION The present invention relates to antibodies, and fragments thereof, wherein at least one constant region is engineered to introduce an amino acid for site-specific conjugation . The invention further relates to methods and uses of the engineered antibodides and fragments for, among other things, production of antibody-drug conjugate therapeutics. BACKGROUND OF THE INVENTION More than 1.2 million Americans develop cancer each year. Cancer is the second leading cause of death in the United States with one in two men and one in three women diagnosed with cancer at some time during their lifetime. Although many chemotherapeutic agents have been developed, they often demonstrate unacceptable toxicity and or lack of specificity for cancer cells over non-cancer tissues. To avoid the non-specific cytotoxic effects of chemotherapeutic agents, targeted antibody therapy has revolutionized cancer treatment, with several monoclonal antibodies (mAbs) demonstrating clinical potential. Because antibodies against tumor-specific antigens often lack therapeutic activities, they have been conjugated to cytotoxic agents in order to combine the effectiveness of chemotherapy with the targeting of antibodies. In principle, selective delivery of cytotoxic agents to specific tumor issues by antibody binding should reduce the systemic toxicity of traditional small-molecule chemotherapeutics. Antibodies have been conjugated to a variety of cytotoxic drugs, including small molecules that alkylate DNA (e.g. , duocarmycin and calicheamicin), disrupt microtubules (e.g. , maytansinoids and auristatins) or bind DNA (e.g. , anthracyclins). One such antibody-drug conjugate (ADC) comprising a humanized anti-CD33 antibody conjugated to calicheamicin - Mylotarg ™ (gemtuzumab ozogamicin, Wyeth) - was approved in 2000 for acute myeloid leukemia. More recently, the US Food and Drug Administration approved Adcetris™ (brentuximab vedotin; Seattle Genetics), an ADC comprising a chimeric antibody to CD30 conjugated to the auristatin monomethyl auristatin E (MMAE; also referred to as N-methylvaline-valine-dolaisoleuine-dolaproine-norephedrine) for treatment of Hodgkin's lymphoma and anaplastic large cell lymphoma. Although ADCs hold promise for cancer therapy, cytotoxic drugs are generally conjugated to the antibodides via lysine side chains or by reducing interchain disulfide bonds present in the antibodies to provide activated cysteine sulfhydryl groups. This non-specific conjugation approach, however, has numerous drawbacks. Not only is it capable of affecting protein folding by disrupting cystine bonds, non-specific conjugation creates a heterogeneous mixture of antibodies having a diverse mix of antibody-to-drug ratios (ADR) and also having a complex mixture of antibodies conjugated at a variety of positions. So, even if it was somehow possible to purify sufficient antibodies having a desired antibody:drug ratio, the fraction would still comprise a complex mix of antibodies conjugated at various positions. Each species could potentially have distinct therapeutic properties, and batch-to-batch consistency would be difficult to control, all of which present significant hurdles to success of using ADC for cancer therapy. To attempt to avoid the drawbacks of non-specific conjugation , a number of approaches have been proposed to provide site-specific conjugation of drug to antibody. However, previous studies attempting to provide reactive conjugation sites in antibodies have shown that biotin or other small non-toxic molecules conjugated to engineered cysteines at other positions of human lgG1 did not appear to affect antibody binding to certain antigens. See, e.g. , WO 201 1/005481 (biotin-maleimide conjugation); WO 201 0/1 4 1902 (conjugating cysteine variants with maleimide dyes); and WO 2006/034488 (biotin-maleimide conjugation was performed and all examples describing conjugation to monomethyl auristatin E (MMAE; N-methylvaline-valine-dolaisoleucine-dolaproine-norephedrine) and monomethyl auristatin F (MMAF; also referred to as "N-methylvaline-valine-dolaisoleuine-dolaproine- phenylalanine") were prophetic only). However, conjugation of a small non-toxic molecule such as biotin as was typically used in those studies is unlikely to mimic the impact on the biological properties an antibody molecule comprising a linker and cytotoxic molecule. Because a successful ADC platform antibody must successfully bind to a target antigen in order to deliver a toxic payload to a target cell without significant binding to non-target cells, it is crucial that the engineered mutant antibodies of the invention retain specific binding ability whilst conjugated to a toxic payload. It is also crucial that the ADC be able to deliver a toxic payload to a target cell, be internalized thereby, and then release the payload once inside the appropriate compartment within the cell. Each of these necessary characteristics for a successful ADC was not demonstrated by prior studies. Despite the successes of currently available anti-cancer treatments, complete responses to these treatments or prolonged survival are infrequently observed, and the patient population refractory to these treatments is still large. Thus, there is an unmet need for the development of new therapeutic modalities, particularly those capable of augmenting or potentiating the anti-tumor activity of anti-neoplastic agents while reducing the cytotoxic
Recommended publications
  • Fig. L COMPOSITIONS and METHODS to INHIBIT STEM CELL and PROGENITOR CELL BINDING to LYMPHOID TISSUE and for REGENERATING GERMINAL CENTERS in LYMPHATIC TISSUES
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date Χ 23 February 2012 (23.02.2012) WO 2U12/U24519ft ft A2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61K 31/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/US201 1/048297 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 18 August 201 1 (18.08.201 1) NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/374,943 18 August 2010 (18.08.2010) US kind of regional protection available): ARIPO (BW, GH, 61/441,485 10 February 201 1 (10.02.201 1) US GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 61/449,372 4 March 201 1 (04.03.201 1) US ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (72) Inventor; and EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, (71) Applicant : DEISHER, Theresa [US/US]; 1420 Fifth LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Avenue, Seattle, WA 98101 (US).
    [Show full text]
  • Using the Deadly M-Conotoxins As Probes of Voltage-Gated Sodium Channels
    Toxicon 44 (2004) 117–122 www.elsevier.com/locate/toxicon Mini-review Using the deadly m-conotoxins as probes of voltage-gated sodium channels Ronald A. Li*, Gordon F. Tomaselli The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 871, Baltimore, MD 21205, USA Accepted 23 March 2004 Available online 19 June 2004 Abstract m-Conotoxins (m-CTX) are potent Na channel inhibitory peptides isolated from the venom of the predatory marine snail Conus geographus. m-CTXs exert their biological action by physically occluding the ion-conducting pore of voltage-gated Na (Nav) channels with a 1:1 stoichiometry in an all-or-none fashion. This article reviews our current knowledge of the mechanism of m-CTX and the associated structural and functional insights into its molecular target—Nav channels. q 2004 Elsevier Ltd. All rights reserved. Keywords: Na channel; Pore; m-Conotoxin Contents 1. Well-defined primary and 3-dimensional structures of m-CTX .............................. 117 2. Molecular target of m-CTX: voltage-gated Naþ channels . ................................. 119 3. m-CTX-pore interactions are site-specific.............................................. 119 4. Docking orientation of m-CTX ..................................................... 119 5. Isoform-specificity of m-CTX block ................................................. 121 6. m-CTX versus Kþ channel pore-blocking toxins ........................................ 121 7. Conclusion.................................................................... 121 Acknowledgements
    [Show full text]
  • WO 2012/144892 Al 26 October 2012 (26.10.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/144892 Al 26 October 2012 (26.10.2012) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/192 (2006.01) A61P 9/10 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/352 (2006.01) A61P 31/04 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61P 3/10 (2006.01) A61K 133/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (21) Number: International Application HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, PCT/NL20 12/050241 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 12 April 2012 (12.04.2012) OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 2006621 18 April 201 1 (18.04.201 1) NL GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, (71) Applicant (for all designated States except US): TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, FYTAGORAS B.V.
    [Show full text]
  • WO 2015/028850 Al 5 March 2015 (05.03.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/028850 Al 5 March 2015 (05.03.2015) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C07D 519/00 (2006.01) A61P 39/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07D 487/04 (2006.01) A61P 35/00 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 31/5517 (2006.01) A61P 37/00 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, A61K 47/48 (2006.01) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (21) International Application Number: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, PCT/IB2013/058229 SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (22) International Filing Date: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 2 September 2013 (02.09.2013) ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant: HANGZHOU DAC BIOTECH CO., LTD UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, [US/CN]; Room B2001-B2019, Building 2, No 452 Sixth TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Street, Hangzhou Economy Development Area, Hangzhou EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, City, Zhejiang 310018 (CN).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.498,544 B2 Ennis Et Al
    USOO949854.4B2 (12) United States Patent (10) Patent No.: US 9.498,544 B2 Ennis et al. (45) Date of Patent: Nov. 22, 2016 (54) GENETICALLY MODIFIED HUMAN (56) References Cited UMIBILICAL CORD PERVASCULAR CELLS FOR PROPHYLAXIS AGAINST OR U.S. PATENT DOCUMENTS TREATMENT OF BIOLOGICAL, OR 5,158,867 A 10/1992 McNally et al. CHEMICAL AGENTS 5,919,702 A 7/1999 Purchio et al. 6,132,724 A 10/2000 Blum (71) Applicant: Tissue Regeneration Therapeutics 7,122,178 B1 10/2006 Simmons et al. 7,547,546 B2 6/2009 Davies et al. Inc., Toronto (CA) 2003.0161818 A1 8, 2003 Weiss et al. 2004/O136967 A1 7/2004 Weiss et al. 2004/O137612 A1 7/2004 Baksh et al. (72) Inventors: Jane Elizabeth Ennis, Oakville (CA); 2005/OO 19911 A1 1/2005 Gronthos et al. Jeffrey Donald Turner, 2005, 0148074 A1 7/2005 Davies et al. Chute-a-Blondeau (CA); John Edward 2005/O158289 A1 7/2005 Simmons et al. Davies, Toronto (CA) 2005/0281790 A1 12/2005 Simmons et al. 2006, OOO8452 A1 1/2006 Simmons et al. 2006, O193840 A1 8, 2006 Gronthos et al. (73) Assignee: Tissue Regeneration Therapeutics 2006, O199263 A1 9/2006 Auger et al. Inc., Toronto (CA) 2006/0286O77 A1 12/2006 Gronthos et al. 2007/0134205 A1 6/2007 Rosenberg 2008.0020459 A1 1/2008 Baksh et al. (*) Notice: Subject to any disclaimer, the term of this 2008.0113434 A1 5/2008 Davies et al. patent is extended or adjusted under 35 2009/0047277 A1 2/2009 Reed et al.
    [Show full text]
  • Report from the 26Th Meeting on Toxinology,“Bioengineering Of
    toxins Meeting Report Report from the 26th Meeting on Toxinology, “Bioengineering of Toxins”, Organized by the French Society of Toxinology (SFET) and Held in Paris, France, 4–5 December 2019 Pascale Marchot 1,* , Sylvie Diochot 2, Michel R. Popoff 3 and Evelyne Benoit 4 1 Laboratoire ‘Architecture et Fonction des Macromolécules Biologiques’, CNRS/Aix-Marseille Université, Faculté des Sciences-Campus Luminy, 13288 Marseille CEDEX 09, France 2 Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS, Sophia Antipolis, 06550 Valbonne, France; [email protected] 3 Bacterial Toxins, Institut Pasteur, 75015 Paris, France; michel-robert.popoff@pasteur.fr 4 Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; [email protected] * Correspondence: [email protected]; Tel.: +33-4-9182-5579 Received: 18 December 2019; Accepted: 27 December 2019; Published: 3 January 2020 1. Preface This 26th edition of the annual Meeting on Toxinology (RT26) of the SFET (http://sfet.asso.fr/ international) was held at the Institut Pasteur of Paris on 4–5 December 2019. The central theme selected for this meeting, “Bioengineering of Toxins”, gave rise to two thematic sessions: one on animal and plant toxins (one of our “core” themes), and a second one on bacterial toxins in honour of Dr. Michel R. Popoff (Institut Pasteur, Paris, France), both sessions being aimed at emphasizing the latest findings on their respective topics. Nine speakers from eight countries (Belgium, Denmark, France, Germany, Russia, Singapore, the United Kingdom, and the United States of America) were invited as international experts to present their work, and other researchers and students presented theirs through 23 shorter lectures and 27 posters.
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States To
    U.S. International Trade Commission COMMISSIONERS Shara L. Aranoff, Chairman Daniel R. Pearson, Vice Chairman Deanna Tanner Okun Charlotte R. Lane Irving A. Williamson Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement the Dominican Republic- Central America-United States Free Trade Agreement With Respect to Costa Rica Publication 4038 December 2008 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 18, 2008, set forth in the Appendix hereto, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement the Dominican Republic- Central America-United States Free Trade Agreement, as approved in the Dominican Republic-Central America- United States Free Trade Agreement Implementation Act, with respect to Costa Rica. (This page is intentionally blank) Annex I Effective with respect to goods that are entered, or withdrawn from warehouse for consumption, on or after January 1, 2009, the Harmonized Tariff Schedule of the United States (HTS) is modified as provided herein, with bracketed matter included to assist in the understanding of proclaimed modifications. The following supersedes matter now in the HTS. (1). General note 4 is modified as follows: (a). by deleting from subdivision (a) the following country from the enumeration of independent beneficiary developing countries: Costa Rica (b).
    [Show full text]
  • The Two Tontti Tudiul Lui Hi Ha Unit
    THETWO TONTTI USTUDIUL 20170267753A1 LUI HI HA UNIT ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2017 /0267753 A1 Ehrenpreis (43 ) Pub . Date : Sep . 21 , 2017 ( 54 ) COMBINATION THERAPY FOR (52 ) U .S . CI. CO - ADMINISTRATION OF MONOCLONAL CPC .. .. CO7K 16 / 241 ( 2013 .01 ) ; A61K 39 / 3955 ANTIBODIES ( 2013 .01 ) ; A61K 31 /4706 ( 2013 .01 ) ; A61K 31 / 165 ( 2013 .01 ) ; CO7K 2317 /21 (2013 . 01 ) ; (71 ) Applicant: Eli D Ehrenpreis , Skokie , IL (US ) CO7K 2317/ 24 ( 2013. 01 ) ; A61K 2039/ 505 ( 2013 .01 ) (72 ) Inventor : Eli D Ehrenpreis, Skokie , IL (US ) (57 ) ABSTRACT Disclosed are methods for enhancing the efficacy of mono (21 ) Appl. No. : 15 /605 ,212 clonal antibody therapy , which entails co - administering a therapeutic monoclonal antibody , or a functional fragment (22 ) Filed : May 25 , 2017 thereof, and an effective amount of colchicine or hydroxy chloroquine , or a combination thereof, to a patient in need Related U . S . Application Data thereof . Also disclosed are methods of prolonging or increasing the time a monoclonal antibody remains in the (63 ) Continuation - in - part of application No . 14 / 947 , 193 , circulation of a patient, which entails co - administering a filed on Nov. 20 , 2015 . therapeutic monoclonal antibody , or a functional fragment ( 60 ) Provisional application No . 62/ 082, 682 , filed on Nov . of the monoclonal antibody , and an effective amount of 21 , 2014 . colchicine or hydroxychloroquine , or a combination thereof, to a patient in need thereof, wherein the time themonoclonal antibody remains in the circulation ( e . g . , blood serum ) of the Publication Classification patient is increased relative to the same regimen of admin (51 ) Int .
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0172932 A1 Peyman (43) Pub
    US 20170172932A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0172932 A1 Peyman (43) Pub. Date: Jun. 22, 2017 (54) EARLY CANCER DETECTION AND A 6LX 39/395 (2006.01) ENHANCED IMMUNOTHERAPY A61R 4I/00 (2006.01) (52) U.S. Cl. (71) Applicant: Gholam A. Peyman, Sun City, AZ CPC .......... A61K 9/50 (2013.01); A61K 39/39558 (US) (2013.01); A61K 4I/0052 (2013.01); A61 K 48/00 (2013.01); A61K 35/17 (2013.01); A61 K (72) Inventor: sham A. Peyman, Sun City, AZ 35/15 (2013.01); A61K 2035/124 (2013.01) (21) Appl. No.: 15/143,981 (57) ABSTRACT (22) Filed: May 2, 2016 A method of therapy for a tumor or other pathology by administering a combination of thermotherapy and immu Related U.S. Application Data notherapy optionally combined with gene delivery. The combination therapy beneficially treats the tumor and pre (63) Continuation-in-part of application No. 14/976,321, vents tumor recurrence, either locally or at a different site, by filed on Dec. 21, 2015. boosting the patient’s immune response both at the time or original therapy and/or for later therapy. With respect to Publication Classification gene delivery, the inventive method may be used in cancer (51) Int. Cl. therapy, but is not limited to such use; it will be appreciated A 6LX 9/50 (2006.01) that the inventive method may be used for gene delivery in A6 IK 35/5 (2006.01) general. The controlled and precise application of thermal A6 IK 4.8/00 (2006.01) energy enhances gene transfer to any cell, whether the cell A 6LX 35/7 (2006.01) is a neoplastic cell, a pre-neoplastic cell, or a normal cell.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0250896 A1 Zhao (43) Pub
    US 20150250896A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0250896 A1 Zhao (43) Pub. Date: Sep. 10, 2015 (54) HYDROPHILIC LINKERS AND THEIR USES Publication Classification FOR CONUGATION OF DRUGS TO A CELL (51) Int. Cl BNDING MOLECULES A647/48 (2006.01) (71) Applicant: Yongxin R. ZHAO, Henan (CN) Ek E. 30.8 C07D 207/216 (2006.01) (72) Inventor: R. Yongxin Zhao, Lexington, MA (US) C07D 40/12 (2006.01) C07F 9/30 (2006.01) C07F 9/572 (2006.01) (73) Assignee: Hangzhou DAC Biotech Co., Ltd., (52) U.S. Cl. Hangzhou City, ZJ (CN) CPC ........... A61K47/48715 (2013.01); C07F 9/301 (2013.01); C07F 9/65583 (2013.01); C07F (21) Appl. No.: 14/432,073 9/5721 (2013.01); C07D 207/46 (2013.01); C07D 401/12 (2013.01); A61 K3I/454 (22) PCT Filed: Nov. 24, 2012 (2013.01) (86). PCT No.: PCT/B2O12/0567OO Cell(57) binding- agent-drugABSTRACT conjugates comprising hydrophilic- S371 (c)(1), linkers, and methods of using Such linkers and conjugates are (2) Date: Mar. 27, 2015 provided. Patent Application Publication Sep. 10, 2015 Sheet 1 of 23 US 2015/0250896 A1 O HMDS OSiMe 2n O Br H-B-H HPC 3 2 COOEt essiop-\5. E B to NH 120 °C, 2h OsiMe3 J 50 °C, 2h eSiO OEt 120 oC, sh 1 2 3. 42% from 1 Bra-11a1'oet - Brn 11-1 or a 1-1 or ÓH 140 °C ÓEt ÓEt 4 5 6 - --Messio. 8 B1a-Br aus 20 cc, hP-1}^-'ot Br1-Y.
    [Show full text]
  • WO 2016/176089 Al 3 November 2016 (03.11.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/176089 Al 3 November 2016 (03.11.2016) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A01N 43/00 (2006.01) A61K 31/33 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US2016/028383 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 20 April 2016 (20.04.2016) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/154,426 29 April 2015 (29.04.2015) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: KARDIATONOS, INC. [US/US]; 4909 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Lapeer Road, Metamora, Michigan 48455 (US).
    [Show full text]
  • Mechanism of M-Conotoxin PIIIA Binding to the Voltage-Gated Na+
    Mechanism of m-Conotoxin PIIIA Binding to the + Voltage-Gated Na Channel NaV1.4 Rong Chen*, Anna Robinson, Shin-Ho Chung Research School of Biology, Australian National University, Canberra, ACT, Australia Abstract + Several subtypes of voltage-gated Na (NaV) channels are important targets for pain management. m-Conotoxins isolated from venoms of cone snails are potent and specific blockers of different NaV channel isoforms. The inhibitory effect of m- conotoxins on NaV channels has been examined extensively, but the mechanism of toxin specificity has not been understood in detail. Here the known structure of m-conotoxin PIIIA and a model of the skeletal muscle channel NaV1.4 are used to elucidate elements that contribute to the structural basis of m-conotoxin binding and specificity. The model of NaV1.4 is constructed based on the crystal structure of the bacterial NaV channel, NaVAb. Six different binding modes, in which the side chain of each of the basic residues carried by the toxin protrudes into the selectivity filter of NaV1.4, are examined in atomic detail using molecular dynamics simulations with explicit solvent. The dissociation constants (Kd) computed for two selected binding modes in which Lys9 or Arg14 from the toxin protrudes into the filter of the channel are within 2 fold; both values in close proximity to those determined from dose response data for the block of NaV currents. To explore the mechanism of PIIIA specificity, a double mutant of NaV1.4 mimicking NaV channels resistant to m-conotoxins and tetrodotoxin is constructed and the binding of PIIIA to this mutant channel examined.
    [Show full text]