Coniochaeta Prunicola - First Record for Slovakia and Europe

Total Page:16

File Type:pdf, Size:1020Kb

Coniochaeta Prunicola - First Record for Slovakia and Europe Cent. Eur. J. Biol. • 8(2) • 2013 • 195-200 DOI: 10.2478/s11535-013-0122-4 Central European Journal of Biology Coniochaeta prunicola - first record for Slovakia and Europe Research Article Helena Ivanová1,*, Slávka Bernadovičová2 1Institute of Forest Ecology SAS Zvolen, Branch for Woody Plants Biology, Sk-949 01 Nitra, Slovakia 2Ministry of Agriculture and Rural Development of the Slovak Republic, Sk-812 66 Bratislava, Slovakia Received 05 March 2012; Accepted 21 May 2012 Abstract: This study reports the first record of Coniochaeta on Laurocerasus officinalis Roem. from the Nitra district. This is the first record of Coniochaeta for Slovakia and also for Europe. The fungus Coniochaeta prunicola Damm & Crous (Coniochaetales, Sordariomycetes, Ascomycota) was isolated from damaged leaves and twigs of host trees. Morphological analyses demonstrate that Coniochaeta prunicola and Coniochaeta velutina are distinct species. Keywords: Ascomycota • Laurocerasus officinalis • Morphological characteristic ©VersitaSp.zo.o. with or without setae, and dark brown, discoid, nearly 1. Introduction globose or ellipsoidal ascospores [5,6]. The genus Coniochaeta (anamorph: Lecythophora) The Coniochaeta (Sacc.) Cooke genus is recognised including ascomycetous fungi are known pathogens of as a large and highly diversified ascomycetous genus woody plants, but some species can also cause human with non-stromatic, globose or subglobose short-necked infections. Coniochaeta contains more than 80 species perithecia with broad ostiole [6]. Species of the genus occurring mostly on wood and bark, leaves and leaf litter Coniochaeta and their Lecythophora anamorphs occur of different trees, in dung of various animals, and in soil on various substrates and media: in plants (wood, bark, and water. leaves leaf litter), animal faeces, soil and in a trongly Different genera of the family Coniochaetaceae acidic water with high heavy metal concentrations [7-10]. were identified based on the differences in their Some Coniochaeta species have significant biochemical ascomata (ostiolate in Coniochaeta, and non-ostiolate in properties. Species of Coniochaeta were isolated from Coniochaetidium and Ephemeroascus) [1,2]. Ornaments various body parts of the representative genus Prunus. in ascospore walls are another useful criterion, and the C. ligniaria (Grev.) Massee was isolated from decaying presence of pitted ascospores indicates Poroconiochaeta bark of Prunus avium L. in the Netherlands (CBS [3]. Phialidic, verticillate conidiogenous cells enable 178.75). [11] reported several species on fruit trees in differentiation Ephemeroascus from Coniochaetidium Moldavia: on dry twigs of apricot and cherry C. ambigua [2]. The most distinctive morphological features are (Sacc.) Cooke, on twigs of cherry and plum was C. calva germ-slits in ascospores, differentiating these fungi from Tode, on dry twigs and wood of plum trees C. ligniaria Sordariaceae and its phialidic anamorphs belonging to (Grev.) Massee. C. velutina (Fuckel) Munk was isolated Lecythophora [4]. Coniochaetaceae are characterized from Prunus sp., C. africana Damm & Crous, sp. nov. by dark brown to black ascocarps, ostiolate peridia from wood of Prunus salicina Lindl., C. prunicola Damm * E-mail: [email protected] 195 Coniochaeta prunicola - first record for Slovakia and Europe & Crous. from wood of Prunus armeniaca L. (syn. and ascospores). The identification was performed Armeniaca vulgaris Lam.), Prunus salicina Lind. and according to morphological keys [10,14-17] and other Prunus sp. [12]. reference guides [4-6,12]. During an investigation on mycoflora of cherry laurel trees growing in urbanized area, besides the fungi of the classes Hyphomycetes and Coelomycetes isolated 3. Results and Discussion from affected cherry laurels [13], the ascomycetous fungus Coniochaeta prunicola (Coniochaetaceae, The Lecythophora-like fungi isolated from Prunus Coniochaetales) that affects leaves and twigs of the host wood were classified in 13 species representing three trees was noticed. This is the first record of this fungus phylogenetically distinct genera: Collophora gen. as a pathogen of L. officinalis and also the first record of nov., Coniochaeta (anamorph: Lecythophora) and its occurrence in Slovakia and also in Europe. Although Phaeomoniella. Two species of Coniochaeta proved the incidence of disease is sporadic, the infected trees distinct from the known species, and are newly described. showed relatively severe damage. One is Coniochaeta africana Damm & Crous, sp. nov., The recently-noticed new disease of cherry laurel named after the continent of its origin (Africa) and the trees becomes an especially relevant issue. The aim of other is Coniochaeta prunicola Damm & Crous, named our study was to isolate Coniochaeta species as a causal after the host from which it was isolated, Prunus species. factor involved in health state decline of Laurocerasus The isolates from Prunus sp. which were identified officinalis and to present morphological description with as Coniochaeta included, besides C. prunicola and distinctive features. C. africana, also C. velutina (Fuckel) Munk. [12] (Table 1). The fungus isolated from cherry laurel branches with symptoms of necrosis and leaf blight displayed 2. Experimental Procedures morphological characteristics and differences pointing at Coniochaeta prunicola. The issue was studied on samples of leaves and twigs of Coniochaeta prunicola Damm & Crous (Figure 1). Laurocerasus officinalis showing blight symptoms. The Taxonomy: Anatomical and morphological samples were gathered from plants growing in private description. The ascomata were perithecial, gardens and in public greenery of the town Nitra, during subglobose to pyriform, with central ostiole, solitary, spring – autumn 2009 and 2010 and in spring 2011. The 119-159×162-221 µm in size (Figure 1a,b). The collected material was deposed at the Institute of Forest ascomata necks were 38-42 (60) µm long (Figure 1b). Ecology of the Slovak Academy of Sciences, Branch for The peridium walls were thick, multiple-layered. The Woody Plant Biology in Nitra. outer layers were composed of brown, thick-walled For isolation and obtaining pure cultures we used angular cells (Figure 1c) with relatively scarce setae. The classical phytopathological approaches. Leaf and twig setae were 3-4.5 µm and 35-51 µm in size (sometimes parts separated from the diseased plants were surface- shorter), brown or hyaline, smooth walled, straight or sterilized by immersion in a sodium hypochlorite bent, with globose or subglobose apices (Figure 1d,e). solution (1% available chlorine) for 20 minutes, rinsed The literature gives evidence that although the asci and twice or three times with sterile distilled water, and dried ascospores are indicative, the setae remain the definitive carefully with filter paper. Then the plant samples were characteristic for classification of the most Coniochaeta cut into 3–5 mm fragments, placed in Petri dishes with species. The literature gives evidence, that although the a 3% potato-dextrose agar (PDA), cultivated at 24±1°C asci and ascospores are indicative, the setae, in most and 45% air humidity in dark conditions in a versatile cases with brown to black rigid hairs, straight or bent, environmental test chamber MLR-351H (Sanyo) and unbranched with a sharp apex scattered over perithecial isolated on 3% PDA medium. Pure fungal cultures walls or concentrated in their upper parts remain the were obtained by multiple purifications. The obtained definitive characteristic for classification of the most isolates were transferred on 3% PDA medium to induce Coniochaeta species [5]. Some of species have been sporulation. The fungal structures were examined with referred as lacking setae [17]. The paper [12] informs a clinical microscope BX41 (Olympus) under a 400× that fungus C. prunicola formed perithecial, solitary, and 1000× magnification. superficial on pine needles, immersed or superficial on The isolated fungi were identified by microscopic PDA, subglobose to pyriform ascomata, with a central analyses based on the morphological characteristics ostiole, 200-250 µm in diameter, neck 50-60 µm long; of the fruiting bodies (perithecia), spore bearing peridium pseudoparenchymatous, 20-25 µm (5-8 layers), organs (asci), and reproduction organs (conidia outer wall consists of dark brown textura angularis, 196 H. Ivanová, S.Bernadovičová Authors Examined material [12] Causal agent C. prunicola C. prunicola Armeniaca vulgaris Host/ Laurocerasus officinalis Prunus salicina Plant part twigs, leaves wood perithecial, solitary, subglobose to pyriform perithecial, solitary, subglobose to pyriform with a central ostiole, Ascomata 162-221×119-159 µm, neck 38-42 µm 200-250 µm diam., setose, neck 50-60 µm hyaline or brown setae, smooth walled brown or hyaline, straight, cylindrical, tapering to a round tip, smooth- Setae 3-4.5×35-51 µm walled or granulate, 2.5-3.5 µm wide, 80 µm long Paraphyses hyaline, septate, 3-4×74-78 µm hyaline, septate, 2-3×60-100 µm cylindrical, unitunicate with obtuse end unitunicate, cylindrical, apedicillate Asci 8 ascospores/ascus, 68-81×8-10 µm 8 ascospores/ascus 63-73×8-10 µm uniseriate, 1-celled, brown, smooth-walled with uniseriate, 1-celled, brown, smooth-walled, broadly ellipsoidal in top Ascospores granular content 9(10-)13×(5-)6-7(-8) µm view and reniform from the side, granular content, germ slit, longitudinal germ slit 7×6 µm (7.5-)8.5-10(-11)×(5-)6-7.5(-8)×(3-)4-5 µm Guttules absent absent Hyphae hyaline, 2-3
Recommended publications
  • Diverse Ecological Roles Within Fungal Communities in Decomposing Logs
    FEMS Microbiology Ecology, 91, 2015, fiv012 doi: 10.1093/femsec/fiv012 Advance Access Publication Date: 6 February 2015 Research Article RESEARCH ARTICLE Diverse ecological roles within fungal communities Downloaded from https://academic.oup.com/femsec/article-abstract/91/3/fiv012/436629 by guest on 06 August 2020 in decomposing logs of Picea abies Elisabet Ottosson1, Ariana Kubartova´ 1, Mattias Edman2,MariJonsson¨ 3, Anders Lindhe4, Jan Stenlid1 and Anders Dahlberg1,∗ 1Department of Forest Mycology and Plant Pathology, BioCenter, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden, 2Department of Natural Sciences, Mid Sweden University, SE-851 70 Sundsvall, Sweden, 3Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden and 4Armfeltsgatan 16, SE-115 34 Stockholm, Sweden ∗ Corresponding author: Department of Forest Mycology and Plant Pathology, BioCenter, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden. Tel: +46-70-3502745; E-mail: [email protected] One sentence summary: A Swedish DNA-barcoding study revealed 1910 fungal species in 38 logs of Norway spruce and not only wood decayers but also many mycorrhizal, parasitic other saprotrophic species. Editor: Ian C Anderson ABSTRACT Fungal communities in Norway spruce (Picea abies) logs in two forests in Sweden were investigated by 454-sequence analyses and by examining the ecological roles of the detected taxa. We also investigated the relationship between fruit bodies and mycelia in wood and whether community assembly was affected by how the dead wood was formed. Fungal communities were highly variable in terms of phylogenetic composition and ecological roles: 1910 fungal operational taxonomic units (OTUs) were detected; 21% were identified to species level.
    [Show full text]
  • Phylogenetic Investigations of Sordariaceae Based on Multiple Gene Sequences and Morphology
    mycological research 110 (2006) 137– 150 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology Lei CAI*, Rajesh JEEWON, Kevin D. HYDE Centre for Research in Fungal Diversity, Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China article info abstract Article history: The family Sordariaceae incorporates a number of fungi that are excellent model organisms Received 10 May 2005 for various biological, biochemical, ecological, genetic and evolutionary studies. To deter- Received in revised form mine the evolutionary relationships within this group and their respective phylogenetic 19 August 2005 placements, multiple-gene sequences (partial nuclear 28S ribosomal DNA, nuclear ITS ribo- Accepted 29 September 2005 somal DNA and partial nuclear b-tubulin) were analysed using maximum parsimony and Corresponding Editor: H. Thorsten Bayesian analyses. Analyses of different gene datasets were performed individually and Lumbsch then combined to generate phylogenies. We report that Sordariaceae, with the exclusion Apodus and Diplogelasinospora, is a monophyletic group. Apodus and Diplogelasinospora are Keywords: related to Lasiosphaeriaceae. Multiple gene analyses suggest that the spore sheath is not Ascomycota a phylogenetically significant character to segregate Asordaria from Sordaria. Smooth- Gelasinospora spored Sordaria species (including so-called Asordaria species) constitute a natural group. Neurospora Asordaria is therefore congeneric with Sordaria. Anixiella species nested among Gelasinospora Sordaria species, providing further evidence that non-ostiolate ascomata have evolved from ostio- late ascomata on several independent occasions. This study agrees with previous studies that show heterothallic Neurospora species to be monophyletic, but that homothallic ones may have a multiple origins.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Perithecial Ascomycetes from the 400 Million Year Old Rhynie Chert: an Example of Ancestral Polymorphism
    Mycologia, 97(1), 2005, pp. 269±285. q 2005 by The Mycological Society of America, Lawrence, KS 66044-8897 Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism Editor's note: Unfortunately, the plates for this article published in the December 2004 issue of Mycologia 96(6):1403±1419 were misprinted. This contribution includes the description of a new genus and a new species. The name of a new taxon of fossil plants must be accompanied by an illustration or ®gure showing the essential characters (ICBN, Art. 38.1). This requirement was not met in the previous printing, and as a result we are publishing the entire paper again to correct the error. We apologize to the authors. T.N. Taylor1 terpreted as the anamorph of the fungus. Conidioge- Department of Ecology and Evolutionary Biology, and nesis is thallic, basipetal and probably of the holoar- Natural History Museum and Biodiversity Research thric-type; arthrospores are cube-shaped. Some peri- Center, University of Kansas, Lawrence, Kansas thecia contain mycoparasites in the form of hyphae 66045 and thick-walled spores of various sizes. The structure H. Hass and morphology of the fossil fungus is compared H. Kerp with modern ascomycetes that produce perithecial as- Forschungsstelle fuÈr PalaÈobotanik, Westfalische cocarps, and characters that de®ne the fungus are Wilhelms-UniversitaÈt MuÈnster, Germany considered in the context of ascomycete phylogeny. M. Krings Key words: anamorph, arthrospores, ascomycete, Bayerische Staatssammlung fuÈr PalaÈontologie und ascospores, conidia, fossil fungi, Lower Devonian, my- Geologie, Richard-Wagner-Straûe 10, 80333 MuÈnchen, coparasite, perithecium, Rhynie chert, teleomorph Germany R.T.
    [Show full text]
  • Dothistroma Septosporum
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Secondary metabolism of the forest pathogen Dothistroma septosporum A thesis presented in the partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Genetics at Massey University, Manawatu, New Zealand Ibrahim Kutay Ozturk 2016 ABSTRACT Dothistroma septosporum is a fungus causing the disease Dothistroma needle blight (DNB) on more than 80 pine species in 76 countries, and causes serious economic losses. A secondary metabolite (SM) dothistromin, produced by D. septosporum, is a virulence factor required for full disease expression but is not needed for the initial formation of disease lesions. Unlike the majority of fungal SMs whose biosynthetic enzyme genes are arranged in a gene cluster, dothistromin genes are dispersed in a fragmented arrangement. Therefore, it was of interest whether D. septosporum has other SMs that are required in the disease process, as well as having SM genes that are clustered as in other fungi. Genome sequencing of D. septosporum revealed that D. septosporum has 11 SM core genes, which is fewer than in closely related species. In this project, gene cluster analyses around the SM core genes were done to assess if there are intact or other fragmented gene clusters. In addition, one of the core SM genes, DsNps3, that was highly expressed at an early stage of plant infection, was knocked out and the phenotype of this mutant was analysed.
    [Show full text]
  • Coprophilous Fungal Community of Wild Rabbit in a Park of a Hospital (Chile): a Taxonomic Approach
    Boletín Micológico Vol. 21 : 1 - 17 2006 COPROPHILOUS FUNGAL COMMUNITY OF WILD RABBIT IN A PARK OF A HOSPITAL (CHILE): A TAXONOMIC APPROACH (Comunidades fúngicas coprófilas de conejos silvestres en un parque de un Hospital (Chile): un enfoque taxonómico) Eduardo Piontelli, L, Rodrigo Cruz, C & M. Alicia Toro .S.M. Universidad de Valparaíso, Escuela de Medicina Cátedra de micología, Casilla 92 V Valparaíso, Chile. e-mail <eduardo.piontelli@ uv.cl > Key words: Coprophilous microfungi,wild rabbit, hospital zone, Chile. Palabras clave: Microhongos coprófilos, conejos silvestres, zona de hospital, Chile ABSTRACT RESUMEN During year 2005-through 2006 a study on copro- Durante los años 2005-2006 se efectuó un estudio philous fungal communities present in wild rabbit dung de las comunidades fúngicas coprófilos en excementos de was carried out in the park of a regional hospital (V conejos silvestres en un parque de un hospital regional Region, Chile), 21 samples in seven months under two (V Región, Chile), colectándose 21 muestras en 7 meses seasonable periods (cold and warm) being collected. en 2 períodos estacionales (fríos y cálidos). Un total de Sixty species and 44 genera as a total were recorded in 60 especies y 44 géneros fueron detectados en el período the sampling period, 46 species in warm periods and 39 de muestreo, 46 especies en los períodos cálidos y 39 en in the cold ones. Major groups were arranged as follows: los fríos. La distribución de los grandes grupos fue: Zygomycota (11,6 %), Ascomycota (50 %), associated Zygomycota(11,6 %), Ascomycota (50 %), géneros mitos- mitosporic genera (36,8 %) and Basidiomycota (1,6 %).
    [Show full text]
  • Culture Inventory
    For queries, contact the SFA leader: John Dunbar - [email protected] Fungal collection Putative ID Count Ascomycota Incertae sedis 4 Ascomycota Incertae sedis 3 Pseudogymnoascus 1 Basidiomycota Incertae sedis 1 Basidiomycota Incertae sedis 1 Capnodiales 29 Cladosporium 27 Mycosphaerella 1 Penidiella 1 Chaetothyriales 2 Exophiala 2 Coniochaetales 75 Coniochaeta 56 Lecythophora 19 Diaporthales 1 Prosthecium sp 1 Dothideales 16 Aureobasidium 16 Dothideomycetes incertae sedis 3 Dothideomycetes incertae sedis 3 Entylomatales 1 Entyloma 1 Eurotiales 393 Arthrinium 2 Aspergillus 172 Eladia 2 Emericella 5 Eurotiales 2 Neosartorya 1 Paecilomyces 13 Penicillium 176 Talaromyces 16 Thermomyces 4 Exobasidiomycetes incertae sedis 7 Tilletiopsis 7 Filobasidiales 53 Cryptococcus 53 Fungi incertae sedis 13 Fungi incertae sedis 12 Veroneae 1 Glomerellales 1 Glomerella 1 Helotiales 34 Geomyces 32 Helotiales 1 Phialocephala 1 Hypocreales 338 Acremonium 20 Bionectria 15 Cosmospora 1 Cylindrocarpon 2 Fusarium 45 Gibberella 1 Hypocrea 12 Ilyonectria 13 Lecanicillium 5 Myrothecium 9 Nectria 1 Pochonia 29 Purpureocillium 3 Sporothrix 1 Stachybotrys 3 Stanjemonium 2 Tolypocladium 1 Tolypocladium 2 Trichocladium 2 Trichoderma 171 Incertae sedis 20 Oidiodendron 20 Mortierellales 97 Massarineae 2 Mortierella 92 Mortierellales 3 Mortiererallales 2 Mortierella 2 Mucorales 109 Absidia 4 Backusella 1 Gongronella 1 Mucor 25 RhiZopus 13 Umbelopsis 60 Zygorhynchus 5 Myrmecridium 2 Myrmecridium 2 Onygenales 4 Auxarthron 3 Myceliophthora 1 Pezizales 2 PeZiZales 1 TerfeZia 1
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • The Genus Podospora (Lasiosphaeriaceae, Sordariales) in Brazil
    Mycosphere 6 (2): 201–215(2015) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2015 Online Edition Doi 10.5943/mycosphere/6/2/10 The genus Podospora (Lasiosphaeriaceae, Sordariales) in Brazil Melo RFR1, Miller AN2 and Maia LC1 1Universidade Federal de Pernambuco, Departamento de Micologia, Centro de Ciências Biológicas, Avenida da Engenharia, s/n, 50740–600, Recife, Pernambuco, Brazil. [email protected] 2 Illinois Natural History Survey, University of Illinois, 1816 S. Oak St., Champaign, IL 61820 Melo RFR, Miller AN, MAIA LC 2015 – The genus Podospora (Lasiosphaeriaceae, Sordariales) in Brazil. Mycosphere 6(2), 201–215, Doi 10.5943/mycosphere/6/2/10 Abstract Coprophilous species of Podospora reported from Brazil are discussed. Thirteen species are recorded for the first time in Northeastern Brazil (Pernambuco) on herbivore dung. Podospora appendiculata, P. australis, P. decipiens, P. globosa and P. pleiospora are reported for the first time in Brazil, while P. ostlingospora and P. prethopodalis are reported for the first time from South America. Descriptions, figures and a comparative table are provided, along with an identification key to all known species of the genus in Brazil. Key words – Ascomycota – coprophilous fungi – taxonomy Introduction Podospora Ces. is one of the most common coprophilous ascomycetes genera worldwide, rarely absent in any survey of fungi on herbivore dung (Doveri, 2008). It is characterized by dark coloured, non-stromatic perithecia, with coriaceous or pseudobombardioid peridium, vestiture varying from glabrous to tomentose, unitunicate, non-amyloid, 4- to multispored asci usually lacking an apical ring and transversely uniseptate two-celled ascospores, delimitating a head cell and a hyaline pedicel, frequently equipped with distinctly shaped gelatinous caudae (Lundqvist, 1972).
    [Show full text]
  • Taxonomic Re-Examination of Nine Rosellinia Types (Ascomycota, Xylariales) Stored in the Saccardo Mycological Collection
    microorganisms Article Taxonomic Re-Examination of Nine Rosellinia Types (Ascomycota, Xylariales) Stored in the Saccardo Mycological Collection Niccolò Forin 1,* , Alfredo Vizzini 2, Federico Fainelli 1, Enrico Ercole 3 and Barbara Baldan 1,4,* 1 Botanical Garden, University of Padova, Via Orto Botanico, 15, 35123 Padova, Italy; [email protected] 2 Institute for Sustainable Plant Protection (IPSP-SS Torino), C.N.R., Viale P.A. Mattioli, 25, 10125 Torino, Italy; [email protected] 3 Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli, 25, 10125 Torino, Italy; [email protected] 4 Department of Biology, University of Padova, Via Ugo Bassi, 58b, 35131 Padova, Italy * Correspondence: [email protected] (N.F.); [email protected] (B.B.) Abstract: In a recent monograph on the genus Rosellinia, type specimens worldwide were revised and re-classified using a morphological approach. Among them, some came from Pier Andrea Saccardo’s fungarium stored in the Herbarium of the Padova Botanical Garden. In this work, we taxonomically re-examine via a morphological and molecular approach nine different Rosellinia sensu Saccardo types. ITS1 and/or ITS2 sequences were successfully obtained applying Illumina MiSeq technology and phylogenetic analyses were carried out in order to elucidate their current taxonomic position. Only the Citation: Forin, N.; Vizzini, A.; ITS1 sequence was recovered for Rosellinia areolata, while for R. geophila, only the ITS2 sequence was Fainelli, F.; Ercole, E.; Baldan, B. recovered. We proposed here new combinations for Rosellinia chordicola, R. geophila and R. horridula, Taxonomic Re-Examination of Nine R. ambigua R.
    [Show full text]
  • Savoryellales (Hypocreomycetidae, Sordariomycetes): a Novel Lineage
    Mycologia, 103(6), 2011, pp. 1351–1371. DOI: 10.3852/11-102 # 2011 by The Mycological Society of America, Lawrence, KS 66044-8897 Savoryellales (Hypocreomycetidae, Sordariomycetes): a novel lineage of aquatic ascomycetes inferred from multiple-gene phylogenies of the genera Ascotaiwania, Ascothailandia, and Savoryella Nattawut Boonyuen1 Canalisporium) formed a new lineage that has Mycology Laboratory (BMYC), Bioresources Technology invaded both marine and freshwater habitats, indi- Unit (BTU), National Center for Genetic Engineering cating that these genera share a common ancestor and Biotechnology (BIOTEC), 113 Thailand Science and are closely related. Because they show no clear Park, Phaholyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120, Thailand, and Department of relationship with any named order we erect a new Plant Pathology, Faculty of Agriculture, Kasetsart order Savoryellales in the subclass Hypocreomyceti- University, 50 Phaholyothin Road, Chatuchak, dae, Sordariomycetes. The genera Savoryella and Bangkok 10900, Thailand Ascothailandia are monophyletic, while the position Charuwan Chuaseeharonnachai of Ascotaiwania is unresolved. All three genera are Satinee Suetrong phylogenetically related and form a distinct clade Veera Sri-indrasutdhi similar to the unclassified group of marine ascomy- Somsak Sivichai cetes comprising the genera Swampomyces, Torpedos- E.B. Gareth Jones pora and Juncigera (TBM clade: Torpedospora/Bertia/ Mycology Laboratory (BMYC), Bioresources Technology Melanospora) in the Hypocreomycetidae incertae
    [Show full text]
  • IDENTIFICATION and COMPARISION of FUNGI from DIFFERENT DEPTHS of ANCIENT GLACIAL ICE Angira Patel a Thesis Submitted to the Grad
    IDENTIFICATION AND COMPARISION OF FUNGI FROM DIFFERENT DEPTHS OF ANCIENT GLACIAL ICE Angira Patel A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the Requirements for the degree of MASTER OF SCIENCE MAY 2006 Committee: Dr. Scott Rogers, Advisor Dr. Stan Smith Dr. Dawn Hentges ii ABSTRACT Dr. Scott Rogers, Advisor Glacial ice serves as a unique preservation matrix for contemporary and ancient microorganisms. The main objective of this study was to evaluate and test the existence of the fungi encased in ancient glacial ice of Antarctica and Greenland. PCR (polymerase chain reaction) amplification was used to isolate the DNA followed by DNA sequencing to obtain the DNA sequences of the ancient microorganisms. Most of the sequences obtained from ancient microbes were similar to the contemporary fungi. Few fungi cultured were approximately 10,000 years old. Microorganisms isolated from ancient glacial ice have undergone repeated phases of evolutionary changes, such as irradiation, freezing and thawing, and in the process they have been archiving various biogenic materials over the period of time. These microorganisms entrapped in glacial ice provide valuable information about the evolutionary processes, as well as the rich biodiversity during ancient times. Hence, various species of microorganisms may appear to be extinct, but factually they might be dormant, entrapped in ice for millions of years and are capable to reappear amidst suitable conditions. The results of this study can be used in future to relate the biological, biogeochemical and genetic composition to a unique and well characterized geologic history of the fungi entrapped in ancient glacial ice.
    [Show full text]