Comparison of Two Coniochaeta Species (C. Ligniaria and C

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Two Coniochaeta Species (C. Ligniaria and C Vol. 52, 2016, No. 1: 18–25 Plant Protect. Sci. doi: 10.17221/45/2014-PPS Comparison of Two Coniochaeta Species (C. ligniaria and C. malacotricha) with a New Pathogen of Black Pine Needles – Sordaria macrospora Helena IVANOVÁ1, Peter PRisTAš 2,3 and Emília ONDRUšKOVÁ1 1Institute of Forest Ecology of the Slovak Academy of Sciences, Branch for Woody Plants Biology, Nitra, Slovak Republic; 2Institute of Biology and Ecology, Pavol Jozef šafárik University, Košice, Slovak Republic; 3Institute of Animal Physiology of the Slovak Academy of Sciences, Košice, Slovak Republic Abstract Ivanová H., Pristaš P., Ondrušková E. (2016): Comparison of two Coniochaeta species (C. ligniaria and C. malacotricha) with a new pathogen of black pine needles – Sordaria macrospora. Plant Protect. Sci., 52: 18–25. A new pathogen, Sordaria macrospora, isolated from damaged needles of black pine (Pinus nigra) causes discolouration, brown spots, blight symptoms, and necroses spoiling aesthetic value. Two species, C. ligniaria and C. malacotricha, the most common anamorphs attributed to Coniochaeta species occurring on selected conifers, and a new pathogen, Sordaria macrospora, occurring on Pinus nigra, are compared. Specific differences in spore size and anamorph mor- phology between the similar species C. malacotricha and C. ligniaria could be confirmed. Keywords: Ascomycota; morphological characteristics; phylogenetic analysis; Pinus nigra Sordariomycetes is a heterogeneous group of uni- or striate, sheathed or unsheathed. Spores are sur- tunicate pyrenomycetes with globose or flask-shaped rounded by gelatinous sheath which is sometimes solitary perithecial large ascomata, with large-celled thick and conspicuous to even difficult to detect. membraneous or coriaceous walls. These fungi are Darkly pigmented ascospores show wide variation in worldwide distributed, commonly in dung or decay- the kinds of appendages or sheaths (Alexopoulos ing plant matter, rarely on coniferous needles. These et al. 1996; García et al. 2004). species colonise whole stems and xylem of trees at In the recent literature the family Coniochaetaceae dry sites (Fisher et al. 1992, 1993; Petrini & Fisher is placed under Sordariales, but differs from them in 1988, 1990). Members of the order Sordariales can be ellipsoidal to fusoid, nearly globose ascospores with coprophiliac, fungicolous, herbicolous, lignicolous, longitudinal germ slits extending over the narrow side soil-inhabiting or grow on plant debris. Species of the (Mahoney & La Favre 1981; Hanlin 1990; Lee & family Sordariaceae have persistent cylindrical, basally Hanlin 1999; Kirk et al. 2001; Weber 2002). A dis- clustered asci in perithecial forms and clavate asci in tinguishing character of the genus Coniochaeta is the cleistothecial forms. Asci are commonly cylindrical presence of brown, usually straight and pointed setae with an apical ring. The ascus apex usually has one (Asgari & Zare 2006). Coniochaeta species have been or several germ pores and a refractile ring through reported from different substrates and in many cases which the ascospores are discharged. Sordaria species were isolated from wood samples that rarely showed has smooth-walled, dark brown ascospores, generally necrosis, and were always found in combination with aseptate, with the surface smooth, pitted, reticulate other fungi and basidiomycetes (Asgari & Zare 2006; Supported by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences – VEGA, Grants No. 2/0071/14 and No. 2/0069/14. 18 Plant Protect. Sci. Vol. 52, 2016, No. 1: 18–25 doi: 10.17221/45/2014-PPS Damm et al. 2010). Coniochaeta species are of low viru- magnification. Measurements were performed us- lence on most hosts, usually appearing on dead tissue ing the QuickPhotomicro 2.2 programme and the or as opportunistic invaders of previously infected, morphometric values were compared with previously wounded or senescent tissue (Damm et al. 2010). published data for the taxa (Petrini & Fischer During the investigation of mycoflora on a pine tree 1988; Fischer et al. 1992, 1993; Alexopoulos et (Pinus nigra) a fungus with distinctive characteristics al. 1996; Crous et al. 2009). was isolated. The aim of this work was to compare, DNA extraction, PCR amplification and sequencing. on the basis of light-microscopic morphological For DNA extraction, 7–8-day-old fungal mycelia were studies, two Coniochaeta species (C. ligniaria and used. Mycelium was scraped from MEA, ground and C. malacotricha) commonly occurring on conifer homogenised in liquid nitrogen by mortar and pestle. needles, with a newly detected fungus Sordaria mac- Total DNA was extracted according to DNeasy Plant rospora Auersw., that was confirmed by phylogenetic Mini Kit (Qiagen, Germany) protocol and stored in analysis. The similarity and the differences of these –20°C. Primer pairs ITS1F (5'-CTTGGTCATTTAGAG- fungi are discussed. GAAGTAA-3') and ITS4 (5'-TCCTCCGCTTATT- GATATGC-3') (Gardes & Burns 1993; White et al. 1990), and LR0R (5'-ACCCGCTGAACTTAAGC-3') MatERIAL anD METHODS and LR7 (5'-TACTACCACCAAGATCT-3') (Vilgalys & Hester 1990) were used for amplification of ITS or From spring to autumn 2013 and in spring 2014, the partial large subunit ribosomal RNA (LSU) region, needles of Pinus nigra with blight symptoms were respectively. PCR amplifications were performed using collected from plants growing in private gardens a thermocycler (Biometra T Professional, Göttingen, and public greenery at several locations of Nitra, Germany) under the following conditions: 95°C/5 min, Slovakia (Nitra-Zobor, Nitra-Chrenová, Nitra-Sihoť, 95°C/15 s, 50°C/30 s, 72°C/80 s (Husson et al. 2011). Nitra-Kynek). Altogether 20 trees were studied. PCR reaction mixture (20 µl in total) contained 50 ng The age of the evaluated trees was 35–40 years. of DNA, 20 pmol of each primer, 0.2 mM dNTPs, and Samples were taken at each of these localities from 1U Hot Firepol Blend Master mix (Solis BioDyne, some sections of trees with damaged needles. Each Estonia). The PCR products were purified with Nu- sample was cultivated on 30 Petri dishes (PD) with cleoSpin Gel and PCR Clean up (Macherey-Nagel, 3% PDA medium. Occurrence of the new fungus Germany) prior to sequencing. The PCR products were S. macrospora was enumerated in % and identified sequenced with each primer used in the PCR (Sigma by microscopical analysis based on the appearance Aldrich, Germany). DNA sequences were assembled of the fruiting bodies, spore bearing organs (asci), using DNA Baser software (Heracle BioSoft SRL, Ro- reproduction organs (conidia and ascospores) and mania) and submitted to the GenBank database under on the appearance of the fungus in pure cultures. the accession No. KT013302 for S. macrospora Iv 1 Morphometric measurements of ascomata, setae, partial LSU sequence and No. KT013303 for S. mac- asci, and ascospores were made for each sample PD rospora Iv 1 ITS sequence. The DNA sequences were with the occurrence of the fungus S. macrospora. compared against GenBank database using BLASTn The main value of length and width was assessed for and BLASTx algorithms (Altschul et al. 1990). 30 conidia of each isolate. The samples of biological For analysis of phylogenetic relatedness DNA material were deposited in herbarium at the Institute sequences were aligned using Muscle algorithm of Forest Ecology of the Slovak Academy of Sciences, (Edgar 2004) and phylogenetic relationships were Branch for Woody Plant Biology in Nitra, Slovakia. constructed using the Neighbor Joining method avail- To isolate and obtain pure cultures, cultivation able in the MEGA software version 5 (Tamura et al. was performed on nutritive 3% PDA medium in a 2011). Phylogenetic robustness of trees obtained was versatile environmental test chamber MLR-351H tested by bootstrap analysis after 1000 replications. (Sanyo, Osaka, Japan) with constant temperature (24 ± 1°C), humidity (45%), under dark conditions. The needles parts cut from the diseased plants were RESULts surface-sterilized for 20 min. Fungal structures were investigated using a light clinical microscope BX41 Culture characteristics of the fungus isolated in (Olympus, Tokyo, Japan) under a 400× and 1000× our experiments from needles of Pinus nigra cul- 19 Vol. 52, 2016, No. 1: 18–25 Plant Protect. Sci. doi: 10.17221/45/2014-PPS Figure 1. Sordaria macrospora on Pinus nigra: (a–b) anamorph: (a) colony on PDA after 2 weeks; (b) vegetative hyphae; (c–o) teleo- morph: (c) ascomata with setae; (d) perithecial neck; (e–g) opening of perithecium; (h–k) rosettes of asci; (i) 8-spored ascus; (j) asco- spore sheath; (m) immature as- cospores; (n) granular content of ascospores; (o) mature ascospores. Scale bars: m = 20 µm, d, i = 50 µm, e = 100 µm tivated on PDA medium: the fungus formed sparse aseptate, cylindrical, with a non-amyloid apical thick- aerial mycelium of pale white colour, after 2 weeks of ening (Figures 1h, i, k), 8 spored (Figure 1j), 160–175 × inoculation dark pycnidia were formed (Figure 1a). 20 μm in size and formed rosettes (Figures 1h, k). Vegetative hyphae were hyaline, 4–5 μm wide, septate, Ascus was elongated to release the ascospores, which branched, lacking chlamydospores. Conidia did not were uniseriate, linearly arranged (Figure 1i), first appear (Figure 1b). After 2 weeks, black perithecia, green to pale brown coloured (Figure 1h), broadly pyriform, setose, solitary (Figure 1c) with a central ellipsoidal, later brown, smooth-walled with granu- ostiole were formed (Figure 1e), size 370–400 (500) × lar contents (Figures 1m, n) without guttules, sur- 250–300 µm (Figures 1f, g), perithecial neck was rounded by a gelatinous sheath (Figure 1j). As the positively phototropic, 35 (60)–150 µm (Figure 1d). asci mature, they swell and fill the upper part of the Setae occurred relatively scarcely, they were brown perithecium. One of the asci stretched and pushed or hyaline, smooth-walled, strait with globose or sub- through the ostiolar opening, while its base remained globose apices, 2 × 55 (68) µm (Figure 1c). Asci with attached to the perithecial wall, 50 μm in size (Fig- truncate apex and small apical rings were unitunicate, ure 1e).
Recommended publications
  • Phylogenetic Investigations of Sordariaceae Based on Multiple Gene Sequences and Morphology
    mycological research 110 (2006) 137– 150 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology Lei CAI*, Rajesh JEEWON, Kevin D. HYDE Centre for Research in Fungal Diversity, Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China article info abstract Article history: The family Sordariaceae incorporates a number of fungi that are excellent model organisms Received 10 May 2005 for various biological, biochemical, ecological, genetic and evolutionary studies. To deter- Received in revised form mine the evolutionary relationships within this group and their respective phylogenetic 19 August 2005 placements, multiple-gene sequences (partial nuclear 28S ribosomal DNA, nuclear ITS ribo- Accepted 29 September 2005 somal DNA and partial nuclear b-tubulin) were analysed using maximum parsimony and Corresponding Editor: H. Thorsten Bayesian analyses. Analyses of different gene datasets were performed individually and Lumbsch then combined to generate phylogenies. We report that Sordariaceae, with the exclusion Apodus and Diplogelasinospora, is a monophyletic group. Apodus and Diplogelasinospora are Keywords: related to Lasiosphaeriaceae. Multiple gene analyses suggest that the spore sheath is not Ascomycota a phylogenetically significant character to segregate Asordaria from Sordaria. Smooth- Gelasinospora spored Sordaria species (including so-called Asordaria species) constitute a natural group. Neurospora Asordaria is therefore congeneric with Sordaria. Anixiella species nested among Gelasinospora Sordaria species, providing further evidence that non-ostiolate ascomata have evolved from ostio- late ascomata on several independent occasions. This study agrees with previous studies that show heterothallic Neurospora species to be monophyletic, but that homothallic ones may have a multiple origins.
    [Show full text]
  • Dothistroma Septosporum
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Secondary metabolism of the forest pathogen Dothistroma septosporum A thesis presented in the partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Genetics at Massey University, Manawatu, New Zealand Ibrahim Kutay Ozturk 2016 ABSTRACT Dothistroma septosporum is a fungus causing the disease Dothistroma needle blight (DNB) on more than 80 pine species in 76 countries, and causes serious economic losses. A secondary metabolite (SM) dothistromin, produced by D. septosporum, is a virulence factor required for full disease expression but is not needed for the initial formation of disease lesions. Unlike the majority of fungal SMs whose biosynthetic enzyme genes are arranged in a gene cluster, dothistromin genes are dispersed in a fragmented arrangement. Therefore, it was of interest whether D. septosporum has other SMs that are required in the disease process, as well as having SM genes that are clustered as in other fungi. Genome sequencing of D. septosporum revealed that D. septosporum has 11 SM core genes, which is fewer than in closely related species. In this project, gene cluster analyses around the SM core genes were done to assess if there are intact or other fragmented gene clusters. In addition, one of the core SM genes, DsNps3, that was highly expressed at an early stage of plant infection, was knocked out and the phenotype of this mutant was analysed.
    [Show full text]
  • Fungal Cannons: Explosive Spore Discharge in the Ascomycota Frances Trail
    MINIREVIEW Fungal cannons: explosive spore discharge in the Ascomycota Frances Trail Department of Plant Biology and Department of Plant Pathology, Michigan State University, East Lansing, MI, USA Correspondence: Frances Trail, Department Abstract Downloaded from https://academic.oup.com/femsle/article/276/1/12/593867 by guest on 24 September 2021 of Plant Biology, Michigan State University, East Lansing, MI 48824, USA. Tel.: 11 517 The ascomycetous fungi produce prodigious amounts of spores through both 432 2939; fax: 11 517 353 1926; asexual and sexual reproduction. Their sexual spores (ascospores) develop within e-mail: [email protected] tubular sacs called asci that act as small water cannons and expel the spores into the air. Dispersal of spores by forcible discharge is important for dissemination of Received 15 June 2007; revised 28 July 2007; many fungal plant diseases and for the dispersal of many saprophytic fungi. The accepted 30 July 2007. mechanism has long been thought to be driven by turgor pressure within the First published online 3 September 2007. extending ascus; however, relatively little genetic and physiological work has been carried out on the mechanism. Recent studies have measured the pressures within DOI:10.1111/j.1574-6968.2007.00900.x the ascus and quantified the components of the ascus epiplasmic fluid that contribute to the osmotic potential. Few species have been examined in detail, Editor: Richard Staples but the results indicate diversity in ascus function that reflects ascus size, fruiting Keywords body type, and the niche of the particular species. ascus; ascospore; turgor pressure; perithecium; apothecium. 2 and 3). Each subphylum contains members that forcibly Introduction discharge their spores.
    [Show full text]
  • Coprophilous Fungal Community of Wild Rabbit in a Park of a Hospital (Chile): a Taxonomic Approach
    Boletín Micológico Vol. 21 : 1 - 17 2006 COPROPHILOUS FUNGAL COMMUNITY OF WILD RABBIT IN A PARK OF A HOSPITAL (CHILE): A TAXONOMIC APPROACH (Comunidades fúngicas coprófilas de conejos silvestres en un parque de un Hospital (Chile): un enfoque taxonómico) Eduardo Piontelli, L, Rodrigo Cruz, C & M. Alicia Toro .S.M. Universidad de Valparaíso, Escuela de Medicina Cátedra de micología, Casilla 92 V Valparaíso, Chile. e-mail <eduardo.piontelli@ uv.cl > Key words: Coprophilous microfungi,wild rabbit, hospital zone, Chile. Palabras clave: Microhongos coprófilos, conejos silvestres, zona de hospital, Chile ABSTRACT RESUMEN During year 2005-through 2006 a study on copro- Durante los años 2005-2006 se efectuó un estudio philous fungal communities present in wild rabbit dung de las comunidades fúngicas coprófilos en excementos de was carried out in the park of a regional hospital (V conejos silvestres en un parque de un hospital regional Region, Chile), 21 samples in seven months under two (V Región, Chile), colectándose 21 muestras en 7 meses seasonable periods (cold and warm) being collected. en 2 períodos estacionales (fríos y cálidos). Un total de Sixty species and 44 genera as a total were recorded in 60 especies y 44 géneros fueron detectados en el período the sampling period, 46 species in warm periods and 39 de muestreo, 46 especies en los períodos cálidos y 39 en in the cold ones. Major groups were arranged as follows: los fríos. La distribución de los grandes grupos fue: Zygomycota (11,6 %), Ascomycota (50 %), associated Zygomycota(11,6 %), Ascomycota (50 %), géneros mitos- mitosporic genera (36,8 %) and Basidiomycota (1,6 %).
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Taxonomic Re-Examination of Nine Rosellinia Types (Ascomycota, Xylariales) Stored in the Saccardo Mycological Collection
    microorganisms Article Taxonomic Re-Examination of Nine Rosellinia Types (Ascomycota, Xylariales) Stored in the Saccardo Mycological Collection Niccolò Forin 1,* , Alfredo Vizzini 2, Federico Fainelli 1, Enrico Ercole 3 and Barbara Baldan 1,4,* 1 Botanical Garden, University of Padova, Via Orto Botanico, 15, 35123 Padova, Italy; [email protected] 2 Institute for Sustainable Plant Protection (IPSP-SS Torino), C.N.R., Viale P.A. Mattioli, 25, 10125 Torino, Italy; [email protected] 3 Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli, 25, 10125 Torino, Italy; [email protected] 4 Department of Biology, University of Padova, Via Ugo Bassi, 58b, 35131 Padova, Italy * Correspondence: [email protected] (N.F.); [email protected] (B.B.) Abstract: In a recent monograph on the genus Rosellinia, type specimens worldwide were revised and re-classified using a morphological approach. Among them, some came from Pier Andrea Saccardo’s fungarium stored in the Herbarium of the Padova Botanical Garden. In this work, we taxonomically re-examine via a morphological and molecular approach nine different Rosellinia sensu Saccardo types. ITS1 and/or ITS2 sequences were successfully obtained applying Illumina MiSeq technology and phylogenetic analyses were carried out in order to elucidate their current taxonomic position. Only the Citation: Forin, N.; Vizzini, A.; ITS1 sequence was recovered for Rosellinia areolata, while for R. geophila, only the ITS2 sequence was Fainelli, F.; Ercole, E.; Baldan, B. recovered. We proposed here new combinations for Rosellinia chordicola, R. geophila and R. horridula, Taxonomic Re-Examination of Nine R. ambigua R.
    [Show full text]
  • Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases LÁSZLÓ G
    Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases LÁSZLÓ G. NAGY,1 RENÁTA TÓTH,2 ENIKŐ KISS,1 JASON SLOT,3 ATTILA GÁCSER,2 and GÁBOR M. KOVÁCS4,5 1Synthetic and Systems Biology Unit, Institute of Biochemistry, HAS, Szeged, Hungary; 2Department of Microbiology, University of Szeged, Szeged, Hungary; 3Department of Plant Pathology, Ohio State University, Columbus, OH 43210; 4Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary; 5Plant Protection Institute, Center for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary ABSTRACT The fungal lineage is one of the three large provides an overview of some of the most important eukaryotic lineages that dominate terrestrial ecosystems. fungal traits, how they evolve, and what major genes They share a common ancestor with animals in the eukaryotic and gene families contribute to their development. The supergroup Opisthokonta and have a deeper common ancestry traits highlighted here represent just a sample of the with plants, yet several phenotypes, such as morphological, physiological, or nutritional traits, make them unique among characteristics that have evolved in fungi, including po- all living organisms. This article provides an overview of some of larized multicellular growth, fruiting body development, the most important fungal traits, how they evolve, and what dimorphism, secondary metabolism, wood decay, and major genes and gene families contribute to their development. mycorrhizae. However, a great deal of other important The traits highlighted here represent just a sample of the traits also underlie the evolution of the taxonomically characteristics that have evolved in fungi, including polarized and phenotypically hyperdiverse fungal kingdom, which multicellular growth, fruiting body development, dimorphism, could fill up a volume on its own.
    [Show full text]
  • The Genera of Fungi ÂŒ G6: <I>Arthrographis
    VOLUME 6 DECEMBER 2020 Fungal Systematics and Evolution PAGES 1–24 doi.org/10.3114/fuse.2020.06.01 The Genera of Fungi – G6: Arthrographis, Kramasamuha, Melnikomyces, Thysanorea, and Verruconis M. Hernández-Restrepo1*, A. Giraldo1,2, R. van Doorn1, M.J. Wingfield3, J.Z. Groenewald1, R.W. Barreto4, A.A. Colmán4, P.S.C. Mansur4, P.W. Crous1,2,3 1Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 2Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa 3Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa 4Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil *Corresponding author: [email protected] Key words: Abstract: The Genera of Fungi series, of which this is the sixth contribution, links type species of fungal genera to their DNA barcodes morphology and DNA sequence data. Five genera of microfungi are treated in this study, with new species introduced fungal systematics in Arthrographis, Melnikomyces, and Verruconis. The genus Thysanorea is emended and two new species and nine ITS combinations are proposed.Kramasamuha sibika, the type species of the genus, is provided with DNA sequence data LSU for first time and shown to be a member ofHelminthosphaeriaceae (Sordariomycetes). Aureoconidiella is introduced new taxa as a new genus representing a new lineage in the Dothideomycetes. Corresponding editor: U. Braun Editor-in-Chief EffectivelyProf. dr P.W. Crous, published Westerdijk Fungal online: Biodiversity 5 February Institute, P.O.
    [Show full text]
  • Integrative Activity of Mating Loci, Environmentally Responsive Genes, and Secondary Metabolism Pathways During Chaetomium Globosum Sexual Development
    Integrative activity of mating loci, environmentally responsive genes, and secondary metabolism pathways during Chaetomium globosum sexual development Zheng Wang1, Francesc López-Giráldez2, Junrui Wang1, Frances Trail5, Jeffrey P. Townsend1,4,5 1 Department of Biostatistics, Yale University, New Haven, CT 06510, USA 2 Yale Center for Genome Analysis (YCGA) and Department of Genetics, Yale University, New Haven, CT 06511, USA 3 Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA 4 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA 5 Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA Running title: Chaetomium sexual development Abstract The origins and maintenance of the rich morphological and ecological diversity of fungi has been a longstanding question in evolutionary biology. To investigate how differences in expression regulation contribute to divergences in development and ecology among closely related species, comparative transcriptomics was applied to Chaetomium globosum and previously studied model species of Neurospora and Fusarium, which represent diversity from saprotrophic to pathogenetic biology, from post-fire terrestrial to highly humid ecology, and from heterothallic, pseudo-homothallic to homothallic lifestyles. Gene expression was quantified in perithecia at nine distinct morphological stages during nearly synchronous sexual development. Unlike N. crassa, expression of all mating loci in C. globosum was highly correlated. Key regulators of the initiation of sexual development in response to light stimuli—including orthologs of N. crassa sub-1, sub-1-dependent gene NCU00309, and asl-1—showed regulatory dynamics matching between C. globosum and N. crassa. Among 24 secondary-metabolism gene clusters in C.
    [Show full text]
  • Molecular Systematics of the Sordariales: the Order and the Family Lasiosphaeriaceae Redefined
    Mycologia, 96(2), 2004, pp. 368±387. q 2004 by The Mycological Society of America, Lawrence, KS 66044-8897 Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae rede®ned Sabine M. Huhndorf1 other families outside the Sordariales and 22 addi- Botany Department, The Field Museum, 1400 S. Lake tional genera with differing morphologies subse- Shore Drive, Chicago, Illinois 60605-2496 quently are transferred out of the order. Two new Andrew N. Miller orders, Coniochaetales and Chaetosphaeriales, are recognized for the families Coniochaetaceae and Botany Department, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605-2496 Chaetosphaeriaceae respectively. The Boliniaceae is University of Illinois at Chicago, Department of accepted in the Boliniales, and the Nitschkiaceae is Biological Sciences, Chicago, Illinois 60607-7060 accepted in the Coronophorales. Annulatascaceae and Cephalothecaceae are placed in Sordariomyce- Fernando A. FernaÂndez tidae inc. sed., and Batistiaceae is placed in the Euas- Botany Department, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605-2496 comycetes inc. sed. Key words: Annulatascaceae, Batistiaceae, Bolini- aceae, Catabotrydaceae, Cephalothecaceae, Ceratos- Abstract: The Sordariales is a taxonomically diverse tomataceae, Chaetomiaceae, Coniochaetaceae, Hel- group that has contained from seven to 14 families minthosphaeriaceae, LSU nrDNA, Nitschkiaceae, in recent years. The largest family is the Lasiosphaer- Sordariaceae iaceae, which has contained between 33 and 53 gen- era, depending on the chosen classi®cation. To de- termine the af®nities and taxonomic placement of INTRODUCTION the Lasiosphaeriaceae and other families in the Sor- The Sordariales is one of the most taxonomically di- dariales, taxa representing every family in the Sor- verse groups within the Class Sordariomycetes (Phy- dariales and most of the genera in the Lasiosphaeri- lum Ascomycota, Subphylum Pezizomycotina, ®de aceae were targeted for phylogenetic analysis using Eriksson et al 2001).
    [Show full text]
  • Diversity and Distribution Patterns of Endolichenic Fungi in Jeju Island, South Korea
    sustainability Article Diversity and Distribution Patterns of Endolichenic Fungi in Jeju Island, South Korea Seung-Yoon Oh 1,2 , Ji Ho Yang 1, Jung-Jae Woo 1,3, Soon-Ok Oh 3 and Jae-Seoun Hur 1,* 1 Korean Lichen Research Institute, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Korea; [email protected] (S.-Y.O.); [email protected] (J.H.Y.); [email protected] (J.-J.W.) 2 Department of Biology and Chemistry, Changwon National University, 20 Changwondaehak-ro, Changwon 51140, Korea 3 Division of Forest Biodiversity, Korea National Arboretum, 415 Gwangneungsumok-ro, Pocheon 11186, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-61-750-3383 Received: 24 March 2020; Accepted: 1 May 2020; Published: 6 May 2020 Abstract: Lichens are symbiotic organisms containing diverse microorganisms. Endolichenic fungi (ELF) are one of the inhabitants living in lichen thalli, and have potential ecological and industrial applications due to their various secondary metabolites. As the function of endophytic fungi on the plant ecology and ecosystem sustainability, ELF may have an influence on the lichen diversity and the ecosystem, functioning similarly to the influence of endophytic fungi on plant ecology and ecosystem sustainability, which suggests the importance of understanding the diversity and community pattern of ELF. In this study, we investigated the diversity and the factors influencing the community structure of ELF in Jeju Island, South Korea by analyzing 619 fungal isolates from 79 lichen samples in Jeju Island. A total of 112 ELF species was identified and the most common species belonged to Xylariales in Sordariomycetes.
    [Show full text]
  • Coniochaeta Ershadii, a New Species from Iran, and a Key to Well-Documented Coniochaeta Species
    Nova Hedwigia 84 1—2 175—187 Stuttgart, February 2007 Coniochaeta ershadii, a new species from Iran, and a key to well-documented Coniochaeta species by Bita Asgari1, Rasoul Zare1* and Walter Gams2 1Department of Botany, Plant Pests & Diseases Research Institute, P.O. Box 1454, Tehran 19395, Iran 2Centraalbureau voor Schimmelcultures, P.O. Box 85167, 3508 AD Utrecht, the Netherlands With 1 figure Asgari, B., R. Zare & W. Gams (2007): Coniochaeta ershadii, a new species from Iran, and a key to well-documented Coniochaeta species. - Nova Hedwigia 84: 175-187. Abstract: A new species of Coniochaeta from dead pistachio twigs, C. ershadii, is described from Varamin district, Tehran Province. C. ershadii differs from the similar C. gamsii by possessing smaller ascocarps covered with setae, a peridium with an irregular texture, longer and narrower asci, shorter ascospores, and by producing numerous crystals when cultivated on Leonian agar and other media. It is particularly distinguished by its ascospores with protruding ends up to 1.7-2.5 μm long. The conidiophores of the nodulisporium-like anamorph of C. ershadii produce 2-3 conidiogenous loci and cylindrical blastoconidia with attenuated bases. A dichotomous key for identification of 54 sufficiently documented Coniochaeta species is provided. Key words: Ascomycetes, Coniochaeta, pistachio, taxonomy. Introduction Coniochaeta (Sacc.) Cooke was originally introduced by Saccardo (1882) as a subgenus of Rosellinia De Not. for species with hairy perithecia. Cooke (1887) raised it to genus level. The genus was lectotypified with C. ligniaria (Grev.) Massee (Clements & Shear 1931, von Arx & Müller 1954). Malloch & Cain (1971) established the family Coniochaetaceae to include Coniochaeta and Coniochaetidium.
    [Show full text]