Survey of Bisphenol a and Bisphenol-A- Diglycidylether Polymer

Total Page:16

File Type:pdf, Size:1020Kb

Survey of Bisphenol a and Bisphenol-A- Diglycidylether Polymer Survey of Bisphenol A and Bisphenol-A- diglycidylether polymer Part of the LOUS-review Environmental Project No. 1483, 2013 Title: Editing: Survey of Bisphenol A and Bisphenol-A- Lise Møller, Frank Leck Fotel og Poul Bo Larsen diglycidylether polymer DHI Published by: The Danish Environmental Protection Agency Strandgade 29 1401 Copenhagen K, Denmark www.mst.dk/english Year: ISBN no. 2012 978-87-93026-14-8 Disclaimer: When the occasion arises, the Danish Environmental Protection Agency will publish reports and papers concerning research and development projects within the environmental sector, financed by study grants provided by the Danish Environmental Protection Agency. It should be noted that such publications do not necessarily reflect the position or opinion of the Danish Environmental Protection Agency. However, publication does indicate that, in the opinion of the Danish Environmental Protection Agency, the content represents an important contribution to the debate surrounding Danish environmental policy. Sources must be acknowledged. 2 Survey of Bisphenol A and Bisphenol-A-diglycidylether polymer Table of Content Preface ...................................................................................................................... 5 Summary and Conclusion .......................................................................................... 7 Resume og konklusion ............................................................................................. 12 1. Introduction ...................................................................................................... 17 2. Identity of the substances ................................................................................. 19 2.1 Name, identity and composition of the substances ............................................................. 19 2.2 Physico-chemical properties ................................................................................................ 21 3. Regulatory framework...................................................................................... 25 3.1 Classification ........................................................................................................................ 25 3.1.1 Classification in Annex VI of the Classification and Labelling of Products (CLP) regulation .................................................................................................... 25 3.1.2 Selfclassification .................................................................................................... 26 3.2 Restrictions and initiatives in continents and regions (EU, US etc.) ................................ 27 3.3 Additional national initiatives ............................................................................................. 29 3.4 Other regulatory aspekts ...................................................................................................... 31 4. Manufacture, import, export and use................................................................ 32 4.1 Manufacturing ..................................................................................................................... 32 4.1.1 Manufacturing sites & volumes ............................................................................ 32 4.2 Import and export volumes ................................................................................................. 33 4.3 Information on uses ............................................................................................................. 34 4.3.1 Use volumes, BPA ................................................................................................. 34 4.3.2 Use volumes, Bisphenol-A-diglycidylether polymer ........................................... 38 4.3.3 Estimated trends in use ......................................................................................... 41 5. Exposure .......................................................................................................... 43 5.1 Environmental exposure, BPA ............................................................................................ 44 5.2 Exposure to humans, BPA ................................................................................................... 44 5.2.1 Consumer exposure .............................................................................................. 44 5.2.2 Human exposure via the environment ................................................................. 46 5.2.3 Occupational exposure.......................................................................................... 46 5.3 Combined exposure, BPA .................................................................................................... 46 5.4 BPA exposure, concentrations in humans measured by biomonitoring studies .............. 46 5.5 Bisphenol-A-diglycidylether polymer exposure ................................................................. 47 6. Environmental hazard assessment ................................................................... 49 6.1 Environmental persistence .................................................................................................. 49 6.2 Potential for bioaccumulation ............................................................................................. 50 6.3 Potential to Cause Ecological Harm .................................................................................... 50 6.4 Risk Characterization ........................................................................................................... 51 6.4.1 Aquatic compartment ............................................................................................ 51 6.4.2 Terrestrial compartment ....................................................................................... 51 6.5 Bisphenol-A-diglycidylether polymer ................................................................................. 52 Survey of Bisphenol A and Bisphenol-A-diglycidylether polymer 3 7. Human health hazard assessment .................................................................... 53 7.1 Bisphenol A .......................................................................................................................... 54 7.1.1 Toxicokinetics........................................................................................................ 54 7.1.2 Acute toxicity ......................................................................................................... 54 7.1.3 Irritation .................................................................................................................55 7.1.4 Skin sensitization ...................................................................................................55 7.1.5 Genotoxicity and carcinogenicity ..........................................................................55 7.1.6 Reproductive toxicity .............................................................................................55 7.1.7 Other effects .......................................................................................................... 58 7.2 BADGE polymers (CAS 25036-25-3 and CAS 25068-38-6) .............................................. 58 7.2.1 Human health assessment, BADGE polymer 25036-25-3 .................................. 58 7.2.2 Human health assessment, BADGE polymer 25068-38-6 ................................. 58 7.2.3 Human health assessment, BADGE (1675-54-3) ................................................. 59 7.3 Risk assessments.................................................................................................................. 60 7.3.1 BPA ........................................................................................................................ 60 7.3.2 BADGE ................................................................................................................... 61 8. Information on alternatives .............................................................................. 63 8.1 Alternatives identified for polycarbonates .......................................................................... 63 8.2 Alternatives identified for use in thermal papers ............................................................... 64 8.3 Alternatives identified for epoxy resin uses ........................................................................ 65 8.4 Exposure example, biomonitoring of alternative to BPA. .................................................. 65 8.5 Examples of economic, etc. consequences on substitution and use of alternatives.......... 65 9. Overall conclusions .......................................................................................... 67 References .............................................................................................................. 69 Abbreviations .......................................................................................................... 78 Appendix 1; Exposure .............................................................................................. 81 Appendix 2; Environmental hazard ......................................................................... 91 Appendix 3; Alternatives ......................................................................................... 95 Appendix 4; Overview of risk managements ........................................................... 107 Overview of status as present September, 2012 .......................................................................
Recommended publications
  • Detoxification Strategies for Zearalenone Using
    microorganisms Review Detoxification Strategies for Zearalenone Using Microorganisms: A Review 1, 2, 1 1, Nan Wang y, Weiwei Wu y, Jiawen Pan and Miao Long * 1 Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China 2 Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China * Correspondence: [email protected] or [email protected] These authors contributed equally to this work. y Received: 21 June 2019; Accepted: 19 July 2019; Published: 21 July 2019 Abstract: Zearalenone (ZEA) is a mycotoxin produced by Fusarium fungi that is commonly found in cereal crops. ZEA has an estrogen-like effect which affects the reproductive function of animals. It also damages the liver and kidneys and reduces immune function which leads to cytotoxicity and immunotoxicity. At present, the detoxification of mycotoxins is mainly accomplished using biological methods. Microbial-based methods involve zearalenone conversion or adsorption, but not all transformation products are nontoxic. In this paper, the non-pathogenic microorganisms which have been found to detoxify ZEA in recent years are summarized. Then, two mechanisms by which ZEA can be detoxified (adsorption and biotransformation) are discussed in more detail. The compounds produced by the subsequent degradation of ZEA and the heterogeneous expression of ZEA-degrading enzymes are also analyzed. The development trends in the use of probiotics as a ZEA detoxification strategy are also evaluated. The overall purpose of this paper is to provide a reliable reference strategy for the biological detoxification of ZEA. Keywords: zearalenone (ZEA); reproductive toxicity; cytotoxicity; immunotoxicity; biological detoxification; probiotics; ZEA biotransformation 1.
    [Show full text]
  • Effect of Vitamin C on Bisphenol a Induced Hepato& Nephrotoxicity in Albino Rats
    Haroun et al. 57 EFFECT OF VITAMIN C ON BISPHENOL A INDUCED HEPATO& NEPHROTOXICITY IN ALBINO RATS Marcelle R. Haroun,M.D.*, Ibrahim S. Zamzam, M.D.*,Eslam S. Metwally, M.D.*, and Rabab Sh. EL-Shafey, M.S.C. * *Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Benha University, Egypt [email protected] [email protected] [email protected] [email protected] ABSTRACT Bisphenol-A (BPA) is a worldwide used endocrine disruptor that is incorporated in many plastic industries. The exposure of humans to that substance starts early during the fetal life. Many agencies raised warnings against the excessive use of such substances. The present study aimed to evaluate the oxidative stress effect of BPA on liver and kidney of albino rats, and whether co-administration of vitamin C can ameliorate this oxidative damage. Albino rats were divided into six groups: -ve control group,+ve control group,vitamin C (60mglkg) treated group, BPA treated group, BPA+ high dose of vitamin C (60mglkg) treated group, and BPA+ low dose of vitamin C (5.5mglkg) treated group The oxidative stress arising from BPA was evaluated in liver and kidney tissues. In addition, serum creatinine, uric acid levels, (AST) and (ALT) activities as markers of kidney and liver function were measured. Biochemical analysis revealed significant reduction in activities of enzymatic antioxidants in BPA treated group and BPA + vitamin C treated groups in high & low doses as compared to control group. In addition, there were significant increase in AST, ALT, uric acid, and creatinine levels in BPA treated group and reduction in their concentrations BPA + vitamin C treated groups in high & low doses as compared to control group.
    [Show full text]
  • Pesticides Reduce Symbiotic Efficiency of Nitrogen-Fixing Rhizobia and Host Plants
    Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants Jennifer E. Fox*†, Jay Gulledge‡, Erika Engelhaupt§, Matthew E. Burow†¶, and John A. McLachlan†ʈ *Center for Ecology and Evolutionary Biology, University of Oregon, 335 Pacific Hall, Eugene, OR 97403; †Center for Bioenvironmental Research, Environmental Endocrinology Laboratory, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112-2699; ‡Department of Biology, University of Louisville, Louisville, KY 40292 ; §University of Colorado, Boulder, CO 80309; and ¶Department of Medicine and Surgery, Hematology and Medical Oncology Section, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112-2699 Edited by Christopher B. Field, Carnegie Institution of Washington, Stanford, CA, and approved May 8, 2007 (received for review January 8, 2007) Unprecedented agricultural intensification and increased crop by plants, in rotation with non-N-fixing crops (8, 15). The yield will be necessary to feed the burgeoning world population, effectiveness of this strategy relies on maximizing symbiotic N whose global food demand is projected to double in the next 50 fixation (SNF) and plant yield to resupply organic and inorganic years. Although grain production has doubled in the past four N and nutrients to the soil. The vast majority of biologically fixed decades, largely because of the widespread use of synthetic N is attributable to symbioses between leguminous plants (soy- nitrogenous fertilizers, pesticides, and irrigation promoted by the bean, alfalfa, etc.) and species of Rhizobium bacteria; replacing ‘‘Green Revolution,’’ this rate of increased agricultural output is this natural fertilizer source with synthetic N fertilizer would cost unsustainable because of declining crop yields and environmental Ϸ$10 billion annually (16, 17).
    [Show full text]
  • CPY Document
    3. eHEMieAL eOMPOSITION OF ALeOHOLie BEVERAGES, ADDITIVES AND eONTAMINANTS 3.1 General aspects Ethanol and water are the main components of most alcoholIc beverages, although in some very sweet liqueurs the sugar content can be higher than the ethanol content. Ethanol (CAS Reg. No. 64-17-5) is present in alcoholic beverages as a consequence of the fermentation of carbohydrates with yeast. It can also be manufactured from ethylene obtained from cracked petroleum hydrocarbons. The a1coholic beverage industry has generally agreed not to use synthetic ethanol manufactured from ethylene for the production of alcoholic beverages, due to the presence of impurities. ln order to determine whether synthetic ethanol has been used to fortify products, the low 14C content of synthetic ethanol, as compared to fermentation ethanol produced from carbohydrates, can be used as a marker in control analyses (McWeeny & Bates, 1980). Some physical and chemical characteristics of anhydrous ethanol are as follows (Windholz, 1983): Description: Clear, colourless liquid Boilng-point: 78.5°C M elting-point: -114.1 °C Density: d¡O 0.789 It is widely used in the laboratory and in industry as a solvent for resins, fats and oils. It also finds use in the manufacture of denatured a1cohol, in pharmaceuticals and cosmetics (lotions, perfumes), as a chemica1 intermediate and as a fuel, either alone or in mixtures with gasolIne. Beer, wine and spirits also contain volatile and nonvolatile flavour compounds. Although the term 'volatile compound' is rather diffuse, most of the compounds that occur in alcoholIc beverages can be grouped according to whether they are distiled with a1cohol and steam, or not.
    [Show full text]
  • The Cell-Free Expression of Mir200 Family Members Correlates with Estrogen Sensitivity in Human Epithelial Ovarian Cells
    International Journal of Molecular Sciences Article The Cell-Free Expression of MiR200 Family Members Correlates with Estrogen Sensitivity in Human Epithelial Ovarian Cells Éva Márton 1, Alexandra Varga 1, Lajos Széles 1,Lóránd Göczi 1, András Penyige 1,2 , 1, 1, , Bálint Nagy y and Melinda Szilágyi * y 1 Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; [email protected] (É.M.); [email protected] (A.V.); [email protected] (L.S.); [email protected] (L.G.); [email protected] (A.P.); [email protected] (B.N.) 2 Faculty of Pharmacology, University of Debrecen, H-4032 Debrecen, Hungary * Correspondence: [email protected] These authors contributed equally to the work. y Received: 26 August 2020; Accepted: 17 December 2020; Published: 20 December 2020 Abstract: Exposure to physiological estrogens or xenoestrogens (e.g., zearalenone or bisphenol A) increases the risk for cancer. However, little information is available on their significance in ovarian cancer. We present a comprehensive study on the effect of estradiol, zearalenone and bisphenol A on the phenotype, mRNA, intracellular and cell-free miRNA expression of human epithelial ovarian cell lines. Estrogens induced a comparable effect on the rate of cell proliferation and migration as well as on the expression of estrogen-responsive genes (GREB1, CA12, DEPTOR, RBBP8) in the estrogen receptor α (ERα)-expressing PEO1 cell line, which was not observable in the absence of this receptor (in A2780 cells). The basal intracellular and cell-free expression of miR200s and miR203a was higher in PEO1, which was accompanied with low ZEB1 and high E-cadherin expression.
    [Show full text]
  • In Vivo Exposure to Bisphenol-A Altered the Reproductive Functionality in Male Coturnix Coturnix Japonica
    In Vivo Exposure to Bisphenol-A Altered the Reproductive Functionality in Male Coturnix Coturnix Japonica SUTHAN PERMUAL Central Avian Research Institute GAUTHAM KOLLURI ( [email protected] ) Central Avian Research Institute JAG MOHAN Central Avian Research Institute RAM SINGH Salim Ali Center for Ornithology and Natural History JAGBIR TYAGI Central Avian Research Institute Research Article Keywords: Bisphenol-A, quails, sperm quality, fertility Posted Date: December 21st, 2020 DOI: https://doi.org/10.21203/rs.3.rs-124102/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/21 Abstract Bisphenol-A, is one of the most characterized endocrine disruptors on the reproductive functions in humans and animals. We have previously reported in vitro and in vivo effects of bisphenol-A on functional role of sperm in chicken. Here, the effects of 1 and 5 mg/kg bisphenol-A daily administered by gavage for 3 wk to adult male Japanese quails on reproductive functionality was investigated. Cloacal index and foam frequency were greatly reduced at high dose. Sperm quality attributes were affected at both doses. Sperm quality attributes were affected at both doses. Alkaline phosphatase showed most signicant reduction among seminal enzymes. Dose dependent response (P < 0.01) of bisphenol-A was noticed with modulating testosterone concentrations at low and high doses. Disturbances regarding fertility and hatchability traits were prominent in high and low dose groups. The current study conrms the compromising actions of bisphenol-A on reproductive success in male Japanese quails at lower doses that are considered to be safe (50 mg/kg BW/d) under in vivo exposure module.
    [Show full text]
  • Fighting Bisphenol A-Induced Male Infertility: the Power of Antioxidants
    antioxidants Review Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants Joana Santiago 1 , Joana V. Silva 1,2,3 , Manuel A. S. Santos 1 and Margarida Fardilha 1,* 1 Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (J.S.); [email protected] (J.V.S.); [email protected] (M.A.S.S.) 2 Institute for Innovation and Health Research (I3S), University of Porto, 4200-135 Porto, Portugal 3 Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal * Correspondence: [email protected]; Tel.: +351-234-247-240 Abstract: Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and poly- carbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestra- diol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants.
    [Show full text]
  • Toxicological Profile for Bisphenol A
    TT TOXICOLOGICAL PROFILE FOR BISPHENOL A September 2009 Integrated Risk Assessment Branch Office of Environmental Health Hazard Assessment California Environmental Protection Agency Toxicological Profile for Bisphenol A September 2009 Prepared by Office of Environmental Health Hazard Assessment Prepared for Ocean Protection Council Under an Interagency Agreement, Number 07-055, with the State Coastal Conservancy LIST OF CONTRIBUTORS Authors Jim Carlisle, D.V.M., Ph.D., Senior Toxicologist, Integrated Risk Assessment Branch Dave Chan, D. Env., Staff Toxicologist, Integrated Risk Assessment Branch Mari Golub, Ph.D., Staff Toxicologist, Reproductive and Cancer Hazard Assessment Branch Sarah Henkel, Ph.D., California Sea Grant Fellow, California Ocean Science Trust Page Painter, M.D., Ph.D., Senior Toxicologist, Integrated Risk Assessment Branch K. Lily Wu, Ph.D., Associate Toxicologist, Reproductive and Cancer Hazard Assessment Branch Reviewers David Siegel, Ph.D., Chief, Integrated Risk Assessment Branch i Table of Contents Executive Summary ................................................................................................................................ iv Use and Exposure ............................................................................................................................... iv Environmental Occurrence ................................................................................................................. iv Effects on Aquatic Life ......................................................................................................................
    [Show full text]
  • Toxicological Evaluation of Bisphenol a and Its Analogues Bisfenol a Ve Analoglarının Toksikolojik Değerlendirilmesi
    Turk J Pharm Sci 2020;17(4):457-462 DOI: 10.4274/tjps.galenos.2019.58219 REVIEW Toxicological Evaluation of Bisphenol A and Its Analogues Bisfenol A ve Analoglarının Toksikolojik Değerlendirilmesi İrem İYİGÜNDOĞDU1, Aylin ÜSTÜNDAĞ2*, Yalçın DUYDU2 1Gazi University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey 2Ankara University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey ABSTRACT Bisphenol A (BPA) is known as one of the oldest synthetic compounds with endocrine disrupting activity. It is commonly used in the production of epoxy resins, polycarbonates, dental fillings, food storage containers, baby bottles, and water containers. BPA is associated with various health problems such as obesity, diabetes, chronic respiratory diseases, cardiovascular diseases, renal diseases, behavior disorders, breast cancer, tooth development disorders, and reproductive disorders. Increasing health concerns have led the industry to seek alternatives to BPA. As BPA is now being excluded from several consumer products, the use of alternative compounds is increasing. However, the chemicals used to replace BPA are also BP analogues and may have similar or higher toxicological effects on organisms. The aim of this review is to focus on the toxicological profiles of different BP analogues (i.e. BPS and BPF) which are increasingly used today as alternative to BPA. Key words: Bisphenols, bisphenol A, endocrine disruptor, bisphenol S, bisphenol F ÖZ Bisfenol A (BPA) endokrin aktiviteye sahip bilinen en eski bileşiklerden biridir. BPA epoksi reçineler, polikarbonatlar, diş dolguları, yemek saklama kapları, bebek biberonları ve su bidonlarının üretiminde yaygın olarak kullanılmaktadır. BPA obezite, diyabet, kronik solunum hastalıkları, kardiyovasküler hastalıklar, renal hastalıklar, davranış bozuklukları, meme kanseri, diş gelişimi bozuklukları ve üreme bozuklukları gibi çeşitli sağlık sorunlarıyla ilişkilendirilmiştir.
    [Show full text]
  • A Novel Microbial Zearalenone Transformation Through Phosphorylation
    toxins Article A Novel Microbial Zearalenone Transformation through Phosphorylation Yan Zhu 1, Pascal Drouin 2 , Dion Lepp 1, Xiu-Zhen Li 1, Honghui Zhu 1, Mathieu Castex 2 and Ting Zhou 1,* 1 Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; [email protected] (Y.Z.); [email protected] (D.L.); [email protected] (X.-Z.L.); [email protected] (H.Z.) 2 Lallemand Inc., Montréal, QC H1W 2N8, Canada; [email protected] (P.D.); [email protected] (M.C.) * Correspondence: [email protected]; Tel.: +1-226-217-8084; Fax: +1-519-829-2600 Abstract: Zearalenone (ZEA) is a mycotoxin widely occurring in many agricultural commodities. In this study, a purified bacterial isolate, Bacillus sp. S62-W, obtained from one of 104 corn silage samples from various silos located in the United States, exhibited activity to transform the mycotoxin ZEA. A novel microbial transformation product, ZEA-14-phosphate, was detected, purified, and identified by HPLC, LC-MS, and NMR analyses. The isolate has been identified as belonging to the genus Bacillus according to phylogenetic analysis of the 16S rRNA gene and whole genome alignments. The isolate showed high efficacy in transforming ZEA to ZEA-14-phosphate (100% transformation within 24 h) and possessed advantages of acid tolerance (work at pH = 4.0), working under a broad range of temperatures (22–42 ◦C), and a capability of transforming ZEA at high concentrations (up to 200 µg/mL). In addition, 23 Bacillus strains of various species were tested for their ZEA phosphorylation activity.
    [Show full text]
  • The Fates of Endocrine Disruptors in Consumer Products: Bisphenol A
    The Fates of Endocrine Disruptors in Consumer Products: Bisphenol A Prepared by Dr. Matthew A. DeNardo for the One Health One Planet Conference on March 8, 2018 at Phipps Conservatory The Fates of Endocrine Disruptors in Consumer Products: Bisphenol A Prepared by Dr. Matthew A. DeNardo for the One Health One Planet Conference on March 8, 2017 at Phipps Conservatory The Fates of Endocrine Disruptors in Consumer Products: Bisphenol A Prepared by Dr. Matthew A. DeNardo for the One Health One Planet Conference on March 8, 2017 at Phipps Conservatory A multidisciplinary investigation of the technical and environmental performances of TAML/peroxide elimination of Bisphenol A compounds from water. Green Chemistry doi:10.1039/C7GC01415E The Fates of Endocrine Disruptors in Consumer Products: Bisphenol A Prepared by Dr. Matthew A. DeNardo for the One Health One Planet Conference on March 8, 2017 at Phipps Conservatory HO OH Bisphenol A HO OH Phenol Bisphenol A HO OH Phenol Phenol Bisphenol A A HO OH Phenol Phenol Bisphenol A A HO OH Phenol Phenol Bisphenol A + O H 1 + 2 + H2O HO Δ HO OH Acetone Phenol Bisphenol A Water A HO OH Phenol Phenol Bisphenol A + O H 1 + 2 + H2O HO Δ HO OH Acetone Phenol Bisphenol A Water + A HO OH Phenol Phenol Bisphenol A + O H 1 + 2 + H2O HO Δ HO OH Acetone Phenol Bisphenol A Water + Bhandari 2015 HO OH Bisphenol A HO OH Bisphenol A HO OH Bisphenol A HO OH Bisphenol A O NaOH Cl Cl (Sodium (Phosgene) HO Hydroxide) o H2O, 25 C Bisphenol A OH O Cl O O Cl NaOH (Phosgene) O O O O (Sodium o C Hydroxide)O, 25 Bisphenol A Polycarbonate
    [Show full text]
  • Cannabis Impurities Standards
    CANNABIS IMPURITIES STANDARDS Cannabis impurity and terpene mixtures lgcstandards.com LGC Quality | ISO 9001 | ISO/IEC 17025 | ISO 17034/ISO Guide 34 | ISO 17043 WE’RE MEETING YOUR STATE’S STANDARDS For cannabis impurity testing Dr. Ehrenstorfer offers a broad range of state-by-state cannabis impurity standards as well as a full list of terpenes to meet your state’s requirements. We manufacture standards for the analysis of pesticide, solvent, heavy metal, mycotoxin, bacteria and growth regulator residues and an extensive list of terpenes. Our cannabis product group features mixes to meet the current needs for cannabis impurity testing in most states. State regulations frequently change. Our catalog is updated as new regulations are implemented, so check back often for the latest version. All of our Dr. Ehrenstorfer™ brand mixes are manufactured in accordance with ISO 17034 requirements. If none of our stock standards suit your needs, we will manufacture a custom standard to your specifications. Please let us know if you have questions or would like to discuss your specific requirements. We are here to help. Email: [email protected] Order online at: lgcstandards.com Prefer to speak to someone in the US?: +1 603 622 7660 Additional sales office contact details are listed at the back. CONTENTS Table of contents Introduction Pesticides and growth regulators California 1 Canada 3 Colorado 6 Nevada 6 Oregon 7 Single Component Pesticide Solutions 15 Neat Pesticides 15 Residual solvents California 18 Cannabis Spiking Mix 22 Butane/Ethanol
    [Show full text]