Cuticular Hydrocarbons of the Small Carpenter Bee Ceratina Calcarata Robertson (Hymenoptera: Apidae: Xylocopinae)

Total Page:16

File Type:pdf, Size:1020Kb

Cuticular Hydrocarbons of the Small Carpenter Bee Ceratina Calcarata Robertson (Hymenoptera: Apidae: Xylocopinae) University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2016 Cuticular hydrocarbons of the small carpenter bee Ceratina calcarata Robertson (Hymenoptera: Apidae: Xylocopinae) Nicholas James Pizzi University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Pizzi, Nicholas James, "Cuticular hydrocarbons of the small carpenter bee Ceratina calcarata Robertson (Hymenoptera: Apidae: Xylocopinae)" (2016). Master's Theses and Capstones. 1080. https://scholars.unh.edu/thesis/1080 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. CUTICULAR HYDROCARBONS OF THE SMALL CARPENTER BEE Ceratina calcarata ROBERTSON (HYMENOPTERA: APIDAE: XYLOCOPINAE) BY NICHOLAS JAMES PIZZI BS Zoology, University of New Hampshire, 2014 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Zoology May, 2016 ii This thesis/dissertation has been examined and approved in partial fulfillment of the requirements for the degree of Masters of Science in Zoology by: Sandra M. Rehan, Assistant Professor of Biology Larry Harris, Professor of Zoology Winsor Watson, Professor of Zoology On April 19, 2016 Original approval signatures are on file with the University of New Hampshire Graduate School. iii ACKNOWLEDGEMENTS I would like to thank my adviser Sandra Rehan for her guidance throughout my graduate school career. It was a pleasure working under your mentorship and I am truly grateful for this experience. Thanks for always challenging me and teaching me more than I could have ever imagined. I would also like to thank all members of the UNH Bee Lab, past and present. Thank you Wyatt Shell, Jake Withee, Sarah Lawson, Erika Tucker, Michael Steffen, and Selena Helmreich. Special thanks to Sean Lombard, for without his assistance the completion of my second data chapter would not have been possible. Thank you Richard Kondrat and Ron New for assistance with GC/MS analyses, and the University of New Hampshire, New Hampshire Agricultural Experiment Station and the Tuttle Foundation provided support for this research. Thank you to my graduate committee members, Win Watson and Larry Harris. Your suggestions and feedback were most useful and greatly appreciated. Finally, I would like to thank my family, especially my parents Paul and Lisa Pizzi, for always being there for me night and day. Thank you for your unconditional emotional and financial support. iv ABSTRACT Cuticular hydrocarbons of the small carpenter bee Ceratina calcarata Robertson (Hymenoptera: Apidae: Xylocopinae) by Nicholas J. Pizzi University of New Hampshire, May, 2016 The formation and maintenance of eusocial insect groups, in which there are overlapping generations, cooperative brood care, and reproductive division of labor is a major evolutionary transition. To understand the origins of eusociality, simple societies must be studied. Subsociality is the simplest form of social behavior and is defined as prolonged maternal care for offspring. Studies with subsocial species can provide powerful insights into the transition from basic to advanced social behaviors. In this thesis I use the subsocial small carpenter bee Ceratina calcarata Roberton (Hymenoptera: Xylocopinae) as a model organism. Specifically I study cuticular hydrocarbons (CHCs) of this species to examine two important evolutionary questions. CHCs are long chain hydrocarbons present on the cuticle of insects and are used for signaling and communication purposes. In eusocial insects queen pheromones are CHCs that signal fertility and suppress worker reproduction. It is hypothesized that CHCs were first fertility signals in less social forms and subsequently coopted as queen pheromones in eusocial lineages. I test this hypothesis and show supportive evidence for it, as my results suggest that C. calcarata, a subsocial species, may use CHCs to signal fertility. Second, the use of CHCs to recognize non- nestmates is essential to the fitness of eusocial colonies. My results suggest that C. calcarata v may possibly use CHCs as recognition cues, indicating that the use of CHCs for recognition of conspecifics is not a derived trait unique to eusocial lineages, but was probably conserved and present in less social forms. Therefore, this thesis contributes to our understanding of the factors favoring the formation and evolution of eusociality. I show that fertility signals, and the use of CHCs for non-nestmate recognition are likely to be conserved traits. TABLE OF CONTENTS ACKNOWLEDGEMENTS .................................................................................................... iii ABSTRACT ............................................................................................................................ iv Chapter 1: General Introduction ............................................................................................... 1 Part 1: Social Evolution in Bees .......................................................................................... 1 Part 2: Behaviors of Bees .................................................................................................... 6 Part 3: Cuticular Hydrocarbons and Chemical Communication ........................................ 8 Part 4: Thesis Research Aims ............................................................................................ 11 Chapter 2: Characterization of cuticular hydrocarbons in a subsocial bee, Ceratina calcarata Robertson (HYMENOPTERA: APIDAE) ............................................................................. 13 INTRODUCTION .............................................................................................................. 13 METHODS ........................................................................................................................ 15 Nest Collections and Dissections ................................................................................... 15 Morphological Measurements ....................................................................................... 17 Cuticular Hydrocarbon Characterization ...................................................................... 17 Comparative Cuticular Hydrocarbon Analyses ............................................................. 18 Statistical Analyses ......................................................................................................... 18 RESULTS .......................................................................................................................... 19 Cuticular Hydrocarbon Profiles .................................................................................... 19 Morphological Measurements ....................................................................................... 20 Comparative Cuticular Hydrocarbon Profiles .............................................................. 20 DISCUSSION .................................................................................................................... 21 Reproductive Signaling and Ovarian Development ....................................................... 22 CHCs vary as a function of age ..................................................................................... 23 Comparative Analysis of Insect Cuticular Hydrocarbons ............................................. 25 Future Directions ........................................................................................................... 25 TABLES AND FIGURES ................................................................................................. 27 Chapter 3: Cuticular hydrocarbons serve as recognition signals in a subsocial bee, Ceratina calcarata Robertson (HYMENOPTERA: XYLOCOPINAE) ............................................... 33 INTRODUCTION .............................................................................................................. 33 METHODS ........................................................................................................................ 37 Bee Collections ............................................................................................................... 37 Nest Dissections and Behavioral Assay Preparations ................................................... 38 Preparation for Behavioral Assays ................................................................................ 38 Circle Tube Behavioral Assays ...................................................................................... 39 Morphological and Physiological Measurements ......................................................... 40 Statistical Analyses ......................................................................................................... 40 RESULTS .......................................................................................................................... 42 Circle Tube Assays ......................................................................................................... 42 Morphological and Physiological Measurements ......................................................... 43 DISCUSSION
Recommended publications
  • Barrett, M., S. Schneider, P. Sachdeva, A. Gomez, S. Buchmann
    Journal of Comparative Physiology A https://doi.org/10.1007/s00359-021-01492-4 ORIGINAL PAPER Neuroanatomical diferentiation associated with alternative reproductive tactics in male arid land bees, Centris pallida and Amegilla dawsoni Meghan Barrett1 · Sophi Schneider2 · Purnima Sachdeva1 · Angelina Gomez1 · Stephen Buchmann3,4 · Sean O’Donnell1,5 Received: 1 February 2021 / Revised: 19 May 2021 / Accepted: 22 May 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Alternative reproductive tactics (ARTs) occur when there is categorical variation in the reproductive strategies of a sex within a population. These diferent behavioral phenotypes can expose animals to distinct cognitive challenges, which may be addressed through neuroanatomical diferentiation. The dramatic phenotypic plasticity underlying ARTs provides a powerful opportunity to study how intraspecifc nervous system variation can support distinct cognitive abilities. We hypothesized that conspecifc animals pursuing ARTs would exhibit dissimilar brain architecture. Dimorphic males of the bee species Centris pallida and Amegilla dawsoni use alternative mate location strategies that rely primarily on either olfaction (large-morph) or vision (small-morph) to fnd females. This variation in behavior led us to predict increased volumes of the brain regions supporting their primarily chemosensory or visual mate location strategies. Large-morph males relying mainly on olfaction had relatively larger antennal lobes and relatively smaller optic lobes than small-morph males relying primarily on visual cues. In both species, as relative volumes of the optic lobe increased, the relative volume of the antennal lobe decreased. In addition, A. dawsoni large males had relatively larger mushroom body lips, which process olfactory inputs.
    [Show full text]
  • Gynandromorphism in Xylocopinae Bees (Hymenoptera: Apidae): Description of Four New Cases
    Zootaxa 3401: 37–42 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Gynandromorphism in Xylocopinae Bees (Hymenoptera: Apidae): description of four new cases MARIANO LUCIA, LEOPOLDO J. ALVAREZ & ALBERTO H. ABRAHAMOVICH División Entomología, Museo de La Plata, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900FWA, La Plata, Argentina. CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. E-mail: [email protected], [email protected], [email protected] Abstract Four new gynandromorph Xylocopinae bees from Argentina are described and illustrated; one specimen of Xylocopa splendidula Latreille and three of Ceratina rupestris Holmberg. All specimens are mosaic gynandromorphs as they display mixed female-male characters in different parts of the body. Key words: Gynandromorphs, Carpenter Bees, Argentina Introduction Gynandromorphs are sexually abnormal individuals that display secondary characters of both sexes. Sex anomalies occur relatively frequently among bees and may be of striking appearance in species where the two sexes are markedly dissimilar in structure or color (Engel 2007). Gynandromorphs are interesting because they provide the possibility to recognize both female and male characters in the same specimen, allowing to match the different sexes with reasonable certainty when unknown. Among bees, most reports of gynandromorphism come from the families Megachilidae and Apidae (Ornosa Gallego 1984; Gonzalez 2004; Wcislo et al. 2004; Oliveira and Andrade 2006; Lucia et al. 2009; Michez et al. 2009; Sampson et al. 2010; Giangarelli and Sofia 2011). The subfamily Xylocopinae of Apidae includes four tribes: Manueliini, Xylocopini, Ceratinini and Allodapini; the first three tribes are monotypic and include the genera Manuelia Vachal, Xylocopa Latreille and Ceratina Latreille respectively (Michener 2007).
    [Show full text]
  • Taxon Order Family Scientific Name Common Name Non-Native No. of Individuals/Abundance Notes Bees Hymenoptera Andrenidae Calliop
    Taxon Order Family Scientific Name Common Name Non-native No. of individuals/abundance Notes Bees Hymenoptera Andrenidae Calliopsis andreniformis Mining bee 5 Bees Hymenoptera Apidae Apis millifera European honey bee X 20 Bees Hymenoptera Apidae Bombus griseocollis Brown belted bumble bee 1 Bees Hymenoptera Apidae Bombus impatiens Common eastern bumble bee 12 Bees Hymenoptera Apidae Ceratina calcarata Small carpenter bee 9 Bees Hymenoptera Apidae Ceratina mikmaqi Small carpenter bee 4 Bees Hymenoptera Apidae Ceratina strenua Small carpenter bee 10 Bees Hymenoptera Apidae Melissodes druriella Small carpenter bee 6 Bees Hymenoptera Apidae Xylocopa virginica Eastern carpenter bee 1 Bees Hymenoptera Colletidae Hylaeus affinis masked face bee 6 Bees Hymenoptera Colletidae Hylaeus mesillae masked face bee 3 Bees Hymenoptera Colletidae Hylaeus modestus masked face bee 2 Bees Hymenoptera Halictidae Agapostemon virescens Sweat bee 7 Bees Hymenoptera Halictidae Augochlora pura Sweat bee 1 Bees Hymenoptera Halictidae Augochloropsis metallica metallica Sweat bee 2 Bees Hymenoptera Halictidae Halictus confusus Sweat bee 7 Bees Hymenoptera Halictidae Halictus ligatus Sweat bee 2 Bees Hymenoptera Halictidae Lasioglossum anomalum Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum ellissiae Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum laevissimum Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum platyparium Cuckoo sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum versatum Sweat bee 6 Beetles Coleoptera Carabidae Agonum sp. A ground beetle
    [Show full text]
  • Assessing the Presence and Distribution of 23 Hawaiian Yellow-Faced Bee Species on Lands Adjacent to Military Installations on O‘Ahu and Hawai‘I Island
    The Hawai`i-Pacific Islands Cooperative Ecosystems Studies Unit & Pacific Cooperative Studies Unit UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 185 Assessing the presence and distribution of 23 Hawaiian yellow-faced bee species on lands adjacent to military installations on O‘ahu and Hawai‘i Island September 2013 Karl N. Magnacca1 and Cynthia B. K. King 2 1 Pacific Cooperative Studies Unit, University of Hawai‘i at Mānoa, Department of Botany, 3190 Maile Way Honolulu, Hawai‘i 96822 2 Hawaii Division of Forestry & Wildlife Native Invertebrate Program 1151 Punchbowl Street, Room 325 Honolulu, Hawaii 96813 PCSU is a cooperative program between the University of Hawai`i and U.S. National Park Service, Cooperative Ecological Studies Unit. Author Contact Information: Karl N. Magnacca. Phone: 808-554-5637 Email: [email protected] Hawaii Division of Forestry & Wildlife Native Invertebrate Program 1151 Punchbowl Street, Room 325 Honolulu, Hawaii 96813. Recommended Citation: Magnacca, K.N. and C.B.K. King. 2013. Assessing the presence and distribution of 23 Hawaiian yellow- faced bee species on lands adjacent to military installations on O‘ahu and Hawai‘i Island. Technical Report No. 185. Pacific Cooperative Studies Unit, University of Hawai‘i, Honolulu, Hawai‘i. 39 pp. Key words: Hylaeus, Colletidae, Apoidea, Hymenoptera, bees, insect conservation Place key words: Oahu, Schofield Barracks, Hawaii, Puu Waawaa, Mauna Kea, Pohakuloa, North Kona Editor: David C. Duffy, PCSU Unit Leader (Email: [email protected]) Series Editor: Clifford W. Morden, PCSU Deputy Director (Email: [email protected]) About this technical report series: This technical report series began in 1973 with the formation of the Cooperative National Park Resources Studies Unit at the University of Hawai'i at Mānoa.
    [Show full text]
  • Classification of the Apidae (Hymenoptera)
    Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes,
    [Show full text]
  • Diversity of Bees (Hymenoptera: Apoidea) in and Around Namdapha National Park, with an Updated Checklist from Arunachal Pradesh, India
    Rec. zool. Surv. India: Vol. 118(4)/ 413-425, 2018 ISSN (Online) : (Applied for) DOI: 10.26515/rzsi/v118/i4/2018/122129 ISSN (Print) : 0375-1511 Diversity of Bees (Hymenoptera: Apoidea) in and around Namdapha National Park, with an Updated Checklist from Arunachal Pradesh, India Jagdish Saini*, Kailash Chandra, Hirdesh Kumar, Dibya Jyoti Ghosh, S. I. Kazmi, Arajush Payra and C. K. Deepak Zoological Survey of India, M-Block, New Alipore, Kolkata-700053, India; [email protected] Abstract The present study documents a preliminary checklist of bee diversity from Arunachal Pradesh, India based on literature study and the surveys undertaken during October, 2016 to July, 2017. Altogether, 49 species have been recorded belonging to 12 genera under 03 families viz. Apidae, Halictidae, and Megachilidae. Family Megachilidae, Genus Ceratina and 13 Keywords: Apidae, Bee diversity, Eastern Himalaya, Halictidae, Megachilidae species of bees are recorded first time from Arunachal Pradesh. Introduction The paper presents an updated checklist of superfamily Apoidea of Arunachal Pradesh. Family Megachilidae with Bees are considered to be the most effective insect in five species is recorded for the first time from Arunachal pollination service (Free, 1993; Torchio, 1990; Thakur Pradesh. Genus Ceratina Latreille is also recorded for the and Dongarwar, 2012; Raj et al., 2012). A sharp decline first time from Arunachal Pradesh. To understand the in bee population globally is been observed due to lack distribution knowledge of bees of eastern Himalaya it is of quality food resources, anthropogenic effects like impeccable that more intensive studies are required from habitat fragmentation, degradation, climate change and the region.
    [Show full text]
  • A Preliminary Detective Survey of Hymenopteran Insects at Jazan Lake Dam Region, Southwest of Saudi Arabia
    Saudi Journal of Biological Sciences 28 (2021) 2342–2351 Contents lists available at ScienceDirect Saudi Journal of Biological Sciences journal homepage: www.sciencedirect.com Original article A preliminary detective survey of hymenopteran insects at Jazan Lake Dam Region, Southwest of Saudi Arabia Hanan Abo El-Kassem Bosly 1 Biology Department - Faculty of Science - Jazan University, Saudi Arabia article info abstract Article history: A preliminary detective survey for the hymenopteran insect fauna of Jazan Lake dam region, Southwest Received 16 November 2020 Saudi Arabia, was carried out for one year from January 2018 to January 2019 using mainly sweep nets Revised 6 January 2021 and Malaise traps. The survey revealed the presence of three hymenopteran Superfamilies (Apoidea, Accepted 12 January 2021 Vespoidea and Evanioidea) representing 15 species belonging to 10 genera of 6 families (Apidae, Available online 28 January 2021 Crabronidae, Sphecidae, Vespidae, Mutillidae, and Evaniidae). The largest number of species has belonged to the family Crabronidae is represented by 6 species under 2 genera. While the family Apidae, is repre- Keywords: sented by 2 species under 2 genera. Family Vespidae is represented by 2 species of one genus. While, the Survey rest of the families Sphecidae, Mutillida, and Evaniidae each is represented by only one species and one Insect fauna Hymenoptera genus each. Eleven species are predators, two species are pollinators and two species are parasitics. Note Jazan for each family was provided, and species was provided with synonyms and general and taxonomic Saudi Arabia remarks and their worldwide geographic distribution and information about their economic importance are also included.
    [Show full text]
  • Carpenter Bees
    E-252-W Household and Structural Department of Entomology CARPENTER BEES Timothy J. Gibb, Extension Entomologist Large, black bees hovering around and drilling holes into Holes are created by the female carpenter bee when homes, out-buildings, wooden furniture and decks during May it selects an appropriate site and begins to chew. Tunnel and June are carpenter bees. They resemble, and are often entrances are approximately ½ inch in diameter, just large mistaken for bumble bees but the most apparent difference is enough for the bee to enter. that the carpenter bee has a black, shiny abdomen, compared to the hairy and often yellowish abdomen of the bumble bee. Tunnels usually consist of an entrance hole that penetrates into the wood ½ to 1 inch across the grain of the wood and Behavior then turns at a right angle to follow the wood grain for 6 – 8 inches. After tunneling is completed the bee will create indi- Behaviorally, carpenter bees also are quite unique. They vidual cells using bits of sawdust and frass along the length are most often noticed as they bore into wood and create of the tunnel. Each cell is provisioned with a pollen ball into tunnels for egg laying and for protection during the winter. which she will lay an individual egg before sealing it off. As Most commonly carpenter bees select bare, unpainted and the eggs hatch in mid summer, the larvae feed on the pol- weathered softwoods including redwood, cedar, cypress and Beginning of hole that will eventually become nearly per- Carpenter bee boring into wood.
    [Show full text]
  • Food Load Manipulation Ability Shapes Flight Morphology in Females Of
    Polidori et al. Frontiers in Zoology 2013, 10:36 http://www.frontiersinzoology.com/content/10/1/36 RESEARCH Open Access Food load manipulation ability shapes flight morphology in females of central-place foraging Hymenoptera Carlo Polidori1*, Angelica Crottini2, Lidia Della Venezia3,5, Jesús Selfa4, Nicola Saino5 and Diego Rubolini5 Abstract Background: Ecological constraints related to foraging are expected to affect the evolution of morphological traits relevant to food capture, manipulation and transport. Females of central-place foraging Hymenoptera vary in their food load manipulation ability. Bees and social wasps modulate the amount of food taken per foraging trip (in terms of e.g. number of pollen grains or parts of prey), while solitary wasps carry exclusively entire prey items. We hypothesized that the foraging constraints acting on females of the latter species, imposed by the upper limit to the load size they are able to transport in flight, should promote the evolution of a greater load-lifting capacity and manoeuvrability, specifically in terms of greater flight muscle to body mass ratio and lower wing loading. Results: Our comparative study of 28 species confirms that, accounting for shared ancestry, female flight muscle ratio was significantly higher and wing loading lower in species taking entire prey compared to those that are able to modulate load size. Body mass had no effect on flight muscle ratio, though it strongly and negatively co-varied with wing loading. Across species, flight muscle ratio and wing loading were negatively correlated, suggesting coevolution of these traits. Conclusions: Natural selection has led to the coevolution of resource load manipulation ability and morphological traits affecting flying ability with additional loads in females of central-place foraging Hymenoptera.
    [Show full text]
  • 12 ESPINOZA.Indd
    FLOWER DAMAGE IN CONTRASTING HABITATS 503 REVISTA CHILENA DE HISTORIA NATURAL Revista Chilena de Historia Natural 85: 503-511, 2012 © Sociedad de Biología de Chile RESEARCH ARTICLE Reproductive consequences of fl ower damage in two contrasting habitats: The case of Viola portalesia (Violaceae) in Chile Consecuencias reproductivas del daño fl oral en dos hábitats contrastantes: el caso de Viola portalesia (Violaceae) en Chile CLAUDIA L. ESPINOZA, MAUREEN MURÚA, RAMIRO O. BUSTAMANTE, VÍCTOR H. MARÍN & RODRIGO MEDEL* 1Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile *Corresponding author: [email protected] ABSTRACT The indirect impact of fl ower herbivory on plant reproduction depends on the pollination environment, particularly on the presence or absence of pollinator species with the ability to discriminate damaged from undamaged fl owers. The change in pollinator assemblages, due to habitat modifi cation, may modify the impact of fl ower herbivory on plant reproductive success. In this work, we evaluate the effect of fl ower herbivory on the seed production of Viola portalesia (Gay) in two contrasting environments, a native and low-disturbed habitat and an extensively transformed habitat characterized by Pinus radiata plantations. Even though the two habitats differed substantially in the composition of pollinator assemblages and visitation rate, the fl ower damage performed on different petals had no impact on seed production neither within nor between habitats, indicating that change in pollinator assemblages have no indirect reproductive impact via discrimination of damaged fl owers. There was a strong habitat effect, however, for seed production, being higher in the pine plantation than in the native habitat.
    [Show full text]
  • Carpenter Bees Xylocopa Species; Family: Anthophoridae; Subfamily: Xylocopinae
    INSECT DIAGNOSTIC LABORATORY IDL Cornell University, Dept. of Entomology, 2144 Comstock Hall, Ithaca NY 14853-2601 Carpenter Bees Xylocopa species; Family: Anthophoridae; Subfamily: Xylocopinae Carpenter Bee Wood damage: tunnel (with cells for larvae). Photo from www.forestryimages.org USDA Forest Service, Wood Products Insect Lab Archives, USDA Forest Station. Injury Carpenter bees bore into wood to make a home for the young. In preferred sites, bees can drill a large number of holes. A common species in the Northeast, Xylocopa virginica, drills holes 1/2 inch in diameter. Often the same nesting sites are used year after year, and the same tunnels are reused. The damage is primarily to fascia boards. Nail holes, exposed saw cuts, and unpainted wood are attractive nesting sites to these insects. Porches, garages, shed ceilings and trim, railings, roof overhangs and outdoor wooden furniture, are all common nesting sites. Continued borings may weaken some wooden structures, and the yellow "sawdust and pollen" waste materials may stain cars, clothing, or furniture. Behavior The males are territorial, and in the spring they often guard the potential nest sites. They discourage intruders by hovering or darting at any moving thing that ventures into the nesting area. This can create a "human annoyance" factor, and it is one that often startles and concerns the homeowner. However, male carpenter bees do not sting. The female carpenter bee, like many other bees, can sting -- but it is uncommon for her to do so. Description Carpenter bees of the genus Xylocopa are large black and yellow insects about one inch long that closely resemble bumblebees.
    [Show full text]
  • Comparative Methods Offer Powerful Insights Into Social Evolution in Bees Sarah Kocher, Robert Paxton
    Comparative methods offer powerful insights into social evolution in bees Sarah Kocher, Robert Paxton To cite this version: Sarah Kocher, Robert Paxton. Comparative methods offer powerful insights into social evolution in bees. Apidologie, Springer Verlag, 2014, 45 (3), pp.289-305. 10.1007/s13592-014-0268-3. hal- 01234748 HAL Id: hal-01234748 https://hal.archives-ouvertes.fr/hal-01234748 Submitted on 27 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2014) 45:289–305 Review article * INRA, DIB and Springer-Verlag France, 2014 DOI: 10.1007/s13592-014-0268-3 Comparative methods offer powerful insights into social evolution in bees 1 2 Sarah D. KOCHER , Robert J. PAXTON 1Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA 2Institute for Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany Received 9 September 2013 – Revised 8 December 2013 – Accepted 2 January 2014 Abstract – Bees are excellent models for studying the evolution of sociality. While most species are solitary, many form social groups. The most complex form of social behavior, eusociality, has arisen independently four times within the bees.
    [Show full text]