Security Attacks in Stand-Alone Computer and Cloud Computing: an Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Security Attacks in Stand-Alone Computer and Cloud Computing: an Analysis International Journal of Computer Applications (0975 – 8887) National Conference on Computational Intelligence for Engineering Quality Software (CiQS- 2014) Security Attacks in Stand-Alone Computer and Cloud Computing: An Analysis K.Kavitha B. Arunkumar, Ph. D. Research Scholar, Bharathiar University, Professor Assistant Professor, Coimbatore Institute of Technology Dr.G.R.Damodaran College of Science Coimbatore Coimbatore ABSTRACT Internet, through removable media such as CDs or memory The data that is stored on the computer may be confidential or sticks. sensitive according to its applications or usage. The data must Unlike a virus, an Internet Worm does not need to attach itself be protected from unauthorized users. This paper analyses the to an existing program. It can spread copies of itself from one security attacks in a) stand-alone computers and b) in cloud computer to another without being activated by users like computing. A study of existing protective mechanisms is also file sharing presented. By exploiting network configuration errors (for example, to copy themselves onto a fully accessible disk) Keywords Exploit loopholes in operating system and stand-alone security, cloud computing, virtualization, multi- application security. tenancy, virus. Other worms carry a so-called "payload", a piece of code 1. INTRODUCTION designed to do damage the data stored in the computer. It Computing is data centric. The data can be generated might delete files on the PC( e.g., the ExploreZip worm) or internally, taken from an user of the computer, accessed from cause damage or to retrieve sensitive information such as a file or shared from another data storage which could be local passwords and credit card numbers [1,2,3,4,5,6,7,8]. or over the internet. There is a need to ensure that only authorized personnel have access to the data and are allowed 2.1.1.2Trojan Horse: to modify the data. An unauthorized user may snoop on the A Trojan horse is is another type of malware that looks as a data or malign the data or add wrong data or delete the data or genuine application. Unlike viruses, Trojan horses do not obstruct access to the data. Ensuring authorized data access is replicate themselves. Keylogger is a software program that is termed as Data security. installed on a user’s computer, often by a Trojan horse to capture and record user keystrokes. The data captured is then This paper is organized as: 1) security issues with a transmitted to a hacker’s computer. [4,6,10]. standalone computer 2) the approaches to handling these security issues. 3) the security issues that arise when the 2.1.1.3 Spyware and Adware: computer is in a network 4) security issues when the data is The spyware will get into a computer in any one of the many moved to a cloud storage. 5) The state of art of solutions for methods like handling cloud based security issues. Installing a software package which automatically 2. SECURITY ISSUES IN STAND tries to download ALONE COMPUTER Browser add-ons, a piece of software that add 2.1 Malwares: enhancement to the web browser like toolbar, animated Malware is the short form of “Malicious Software”, designed cursors, screen saver [4,9,10]. to cause damage to a standalone computer or a networked computer. Once malware get into the system, they begin to 2.2 Unauthorized Access: damage a system’s boot sector, data files, software installed in This attack aims in gain access of other’s computer to gain it, including the system BIOS. some information or to modify or to delete the data. The goal of these attacks is to access some resource that the machine 2.1.1 Types of Malware: should not provide the attacker. Password hacking is the 2.1.1.1 Computer Virus and Worms: commonly used method in this kind of threat [11,17]. The virus can get into the user’s computers from network or 14 International Journal of Computer Applications (0975 – 8887) National Conference on Computational Intelligence for Engineering Quality Software (CiQS- 2014) Table 1: Security Attacks in Stand-Alone Computer and 3.1 Defense Mechanisms for Masquerader: Current Solutions 3.1.1User Validation: Password is the most widely used authentication technique to Intrusion Intrusion Consequence Defense validate the user. In this method, the users can access their Mechanis Type s Mechanism computer system with user name (also known user id) along ms of Attack s with password. The problem is that passwords can be hacked [11, 17]. Password Masquerader Misusing User Cracking computer validation. 3.1.2 User Account Control: and Un- system and User control User Account Control (UAC) is a feature that helps to control authorized doing data access. the user in multi - user environment. This can be done using Access processing Data administrator-level permission. Using UAC, changes cannot like file encryption. be made to the computer without administrator’s permission creation, Statistical or knowledge. It can help prevent malicious software modification anomaly (malware) and spyware from being installed on or making and deletion detection. changes to the computer [11, 17]. Rule-based techniques. 3.1.3 Data Encryption: Data encryption is the process of converting the data into Malware: Misfeasor Some Anti-virus cipher text using an algorithm (mathematical formula) by use Virus Clandestine malware software. of a code. Decryption is the reverse process of it. A secret key Worms users programs Firewalls. is used to encrypt and decrypt the data. Symmetric key and Trojan delete files, Anti- Asymmetric key are current techniques used in data Horse reformat the spyware. encryption [2]. Spyware hard disk or Anti- Adware cause other keylogging 3.1.4 Statistical Anomaly Detection: damage. technique. This method involves the collection of data relating to the Others only behavior of authorized users in a period of time. Then replicate statistical tests are applied to observed behavior to determine themselves & that the observed behavior is not legitimate user behavior[1]. affect Statistical anomaly detection techniques fall into two broad computer’s categories: Threshold detection and Profile-based systems performance. [18]. Trojan horse install “pay- 3.1.4.1 Threshold Detection: loads” which It involves counting the number of occurrences of a specific capture user’s event type over an interval of time. If the count exceeds than keystroke the reasonable number that one might expect to occur, then process intrusion is assumed [18]. 3.1.4.2 Profile-based Anomaly Detection: 2.3 Password Cracking: It focuses on characterizing the past behavior of individual Password cracking is the process of using other’s password to users or related groups of user and then detecting significant gain data access. This is a technique attacker use to deviations. A profile may consist of a set of parameters, so surreptitiously gain system access through another user's that deviation on just a single parameter may not be sufficient account [11,17]. in itself to signal an alert. Examples of metrics that are useful for profile-based intrusion detection are interval timer, 3. SECURITY MECHANISMS FOR resource utilization etc. Using these metrics, various tests can STAND ALONE COMPUTER SECURITY be performed to determine whether current activity fits within The data which is stored in the computer can be accessed, by acceptable limits such as Mean, standard deviation and a malicious user or third party is known as Intrusion. Intrusion Multivariate. These detection systems work on audit records Detection System is the process of monitoring the events [18]. occurring in a computer system and intrusion prevention is the process of detecting the signs of intrusion and attempting to 3.1.4 Rule-based Techniques: stop the intrusive efforts. It detects intrusion by observing events in the system and The intruder can be broadly divided into 3 types: applying a set of rules that lead to a decision regarding whether a given pattern of activity is or is not suspicious. i) Masquerader: They are outsiders and unauthorized to use With the rule-based approach, historical audit records are the computer system. analyzed to identify usage patterns and to generate ii) Misfeasor: They are insiders and legitimate users but automatically rules that describe those patterns. Rules may misuse their privileges. represent past behavior patterns of users, programs, privileges, time slots, terminals, and so on. Current behavior is then iii) Clandestine users: They can be both insiders and observed, and each transaction is matched against the set of outsiders. rules to determine if it conforms to any historically observed pattern of behavior. These rules can be supplemented with rules generated by knowledgeable security personnel [18]. 15 International Journal of Computer Applications (0975 – 8887) National Conference on Computational Intelligence for Engineering Quality Software (CiQS- 2014) 3.2 Defense Mechanisms for Misfeasor and 4. CLOUD COMPUTING AND ITS Clandestine Users: DEPLOYMENT MODELS 3.2.1 Anti Virus-Software: Cloud computing changed the trend of data storage and access An anti-virus is a software or computer program that can be from the traditional method to on-demand access. It offers the used to scan files to identify and eliminate computer viruses. service to the users through Internet. The users make use of Anti-virus software uses two different techniques to cloud computing for its significant benefits such as reduced accomplish this [4,7,11,12,13]. infrastructure cost, reliable data access, on demand service and also security. Cloud computing provide services to the 3.2.1.1 Virus Dictionary Signature: user community through three different deployment models In this approach, when the anti-virus software examines a file, such as Iaas, PaaS and SaaS. it refers to signatures that have been identified and listed by the anti-virus software service provider.
Recommended publications
  • Security Analytics for Enterprise Threat Detection
    MADE: Security Analytics for Enterprise Threat Detection Alina Oprea Zhou Li Northeastern University University of California, Irvine [email protected] [email protected] Robin Norris Kevin Bowers EMC/Dell CIRC RSA [email protected] [email protected] ABSTRACT These concerns affect not only individuals, but enterprises as well. Enterprises are targeted by various malware activities at a staggering The enterprise perimeter is only as strong as its weakest link and rate. To counteract the increased sophistication of cyber attacks, that boundary is becoming increasingly fuzzy with the prevalence most enterprises deploy within their perimeter a number of secu- of remote workers using company-issued computers on networks rity technologies, including firewalls, anti-virus software, and web outside of the enterprise control. Enterprises attempt to combat cyber proxies, as well as specialized teams of security analysts forming attacks by deploying firewalls, anti-virus agents, web proxies and Security Operations Centers (SOCs). other security technologies, but these solutions cannot detect or In this paper we address the problem of detecting malicious ac- respond to all malware. Large organizations employ “hunters” or tivity in enterprise networks and prioritizing the detected activities tier 3 analysts (part of the enterprise Security Operations Center – according to their risk. We design a system called MADE using ma- SOC) [44] to search for malicious behavior that has evaded their chine learning applied to data extracted from security logs. MADE automated tools. Unfortunately, this solution is not scalable, both due leverages an extensive set of features for enterprise malicious com- to the lack of qualified people and the rate at which such malware is munication and uses supervised learning in a novel way for prior- invading the enterprise.
    [Show full text]
  • Operation Black Atlas
    A TrendLabs Report Operation Black Atlas How Modular Botnets are Used in PoS Attacks TrendLabs Security Intelligence Blog Jay Yaneza and Erika Mendoza Trend Micro Cyber Safety Solutions Team December 2015 Trend Micro | Operation Black Atlas: How Modular Botnets are Used in Attacks Contents Introduction ............................................................................................................ 3 Technical Details ................................................................................................... 3 Probing and Penetrating the Environment ......................................................... 3 Point-of-Sale Threats ......................................................................................... 5 New Items in NewPosThings ............................................................................. 7 Use of Known PoS Malware Threats ............................................................... 10 Gorynych or Diamond Fox ............................................................................... 13 Spy Net RAT .................................................................................................... 20 Victimology .......................................................................................................... 21 Attribution ............................................................................................................ 23 Conclusion ........................................................................................................... 25 TREND MICRO LEGAL
    [Show full text]
  • Detection of Early-Stage Enterprise Infection by Mining Large-Scale Log Data
    Detection of Early-Stage Enterprise Infection by Mining Large-Scale Log Data Alina Oprea, Zhou Li Ting-Fang Yen Sang Chin Sumayah Alrwais RSA Laboratories E8 Security Draper Laboratory Indiana University Cambridge, MA, USA Palo Alto, CA, USA Cambridge, MA, USA Bloomington, IN, USA Recent years have seen the rise of sophisticated attacks sharing locality in either IP address space, time of access including advanced persistent threats which pose severe risks or set of hosts contacting them. These patterns of infections to organizations and governments. Additionally, new malware have been observed in targeted attacks (e.g., APT1 group [26], strains appear at a higher rate than ever before. Since many Shady RAT [20], Mirage [11]), as well as botnet infections of these malware evade existing security products, traditional (e.g., Zeus, Citadel [12] and ZeroAccess [23]). defenses deployed by enterprises today often fail at detecting infections at an early stage. In this work, we leverage these observations to detect early- stage malware infections in enterprise networks, in particular We address the problem of detecting early-stage enterprise suspicious communications to external destinations initiated infection by proposing a new framework based on belief by internal hosts. We propose a graph-theoretic framework propagation inspired from graph theory. We demonstrate that based on belief propagation [31] to identify small communities our techniques perform well on two large datasets. We achieve of related domains that are indicative of early-stage malware high accuracy on two months of DNS logs released by Los infections. We first restrict our attention to traffic destined Alamos National Lab (LANL), which include APT infection to rare destinations.
    [Show full text]
  • Understanding and Mitigating Attacks Targeting Web Browsers
    Understanding and Mitigating Attacks Targeting Web Browsers A Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Information Assurance by Ahmet Salih Buyukkayhan Northeastern University Khoury College of Computer Sciences Boston, Massachusetts April 2019 To my family, teachers and mentors. i Contents List of Figures v List of Tables vii Acknowledgments viii Abstract of the Dissertation ix 1 Introduction 1 1.1 Structure of the Thesis . .2 2 Background 4 2.1 Browser Extensions . .4 2.1.1 Firefox Extensions . .5 2.1.2 Extension Security . .7 2.2 Vulnerabilities in Web Applications . .9 2.2.1 Vulnerability Reward Programs and Platforms . .9 2.2.2 XSS Vulnerabilities . 10 2.2.3 XSS Defenses . 12 3 CrossFire: Firefox Extension-Reuse Vulnerabilities 14 3.1 Overview . 14 3.2 Threat Model . 15 3.3 Design . 16 3.3.1 Vulnerability Analysis . 17 3.3.2 Exploit Generation . 19 3.3.3 Example Vulnerabilities . 20 3.4 Implementation . 23 3.5 Evaluation . 23 3.5.1 Vulnerabilities in Top Extensions . 23 3.5.2 Random Sample Study of Extensions . 25 3.5.3 Performance & Manual Effort . 27 ii 3.5.4 Case Study: Submitting an Extension to Mozilla Add-ons Repository . 28 3.5.5 Jetpack Extensions. 30 3.5.6 Implications on Extension Vetting Procedures . 31 3.6 Summary . 31 4 SENTINEL: Securing Legacy Firefox Extensions 33 4.1 Overview . 33 4.2 Threat Model . 34 4.3 Design . 35 4.3.1 Intercepting XPCOM Operations . 36 4.3.2 Intercepting XUL Document Manipulations .
    [Show full text]
  • Artizen XR Safety and Privacy Guide for Artists.Indd
    XR Safety Initiative www.xrsi.org EXTEND REALITY WITH AWARENESS XR Safety and Privacy Guide for Artists EXTEND REALITY WITH AWARENESS! XR Safety and Privacy Guide for Artists DECEMBER 2020 Acknowledgements Kavya Pearlman Alina Kadlubsky XRSI The Cyber XR Coaliti on Marco Magnano Vandana Verma Sehgal XRSI / Ready Hacker 1 The Cyber XR Coaliti on Ryan Wegner Michaela Ternasky-Holland Ready Hacker 1 Acti vist Lens Grant Nancy Baker Cahill Jesse Damiani 4th Wall Acti vist Lens Grant Andrea Kim René Pinnell The Cyber XR Coaliti on Arti zen Cover designed by Alina Kadlubsky Design by Marco Magnano and Alina Kadlubsky This work is licensed under the Creati ve Commons Att ributi on-NonCommercial-ShareAlike 4.0 Internati onal (CC BY-NC-SA 4.0) License. To view a copy of the license, visit htt ps://creati vecommons.org/licenses/by-nc-sa/4.0/legalcode 2 CC BY-NC-SA 4.0 TABLE OF CONTENTS Executi ve Summary . .4 Chapter 1: Basic Cyber Hygiene Tips to Safely Extend Realiti es . .5 Password Manager . .6 Multi -Factor Authenti cati on . .7 Social Engineering . .8 Malware and Botnets . .9 Identi ty Management . 10 Ransomware . 11 Update your Systems and Browsers . 12 Intellectual Property . 13 Virtual Private Network . 14 Maintain Backups . 15 Chapter 2: Advanced Privacy and Security Enhancing Tips . 16 Trust and Safety in the XR Domain . 17 Make Future Truly Private with the XRSI Privacy Framework v 1.0 . 19 Focus Areas Overview . 20 3 CC BY-NC-SA 4.0 Executi ve Summary EXECUTIVE SUMMARY Advances in immersive media are transforming storytelling into story-living.
    [Show full text]
  • FROM CYBER THREATS to CYBER-CRIME Stefan Iovan 1
    JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT FROM CYBER THREATS TO CYBER-CRIME Stefan Iovan 1* Alina-Anabela Iovan 2 ABSTRACT Cyber-attacks and / or on the web arose with the advent of the Internet. They use a variety of malware software. Phishing attacks and spam remain the cyber threats companies are facing most frequently. At the same time the volume of malware and spam attacks have increased substantially in the past years. The threat of cyber-crime is a daily reality for companies and making the challenges dynamic and continuous. This means that the CEOs (Chief Executive Officers) and top management must include FDA (Forensic Data Analytics) as a critical component in their risk management and compliance. The need for these investments is strengthened by the current regulatory environment and market reaction to situations of alleged fraud, bribery and cyber-attacks in the corporate environment. The fact that these attacks will not disappear is given by the reasons behind them, which is that are closely related to people's thirst for power, fame and wealth. The paper aims to present relevant issues, statistics and considerations on this phenomenon - crime / cybercrime and / or cyber. In the end of the paper we present a few issues of the last level that was reached - in cyber war. KEYWORDS: cyber-attacks, cyber war, cyber mercenaries, ransomware, active and proactive actions 1. INTRODUCTION Today more and more companies, businesses, government agencies and non- governmental organizations become victims of cyber attacks [1]. According to a survey, 91% of organizations surveyed have experienced a cyber attack at least once in the last 12 months, while 9% were victims of attacks target predefined - activity carefully planned in advance in order infect the network infrastructure of a specific organization.
    [Show full text]
  • COVID-19: a Biological Hazard Goes Digital Examining the Crisis Within the Crisis 2 COVID-19: a Biological Hazard Goes Digital Table of Contents 3
    COVID-19: A biological hazard goes digital Examining the crisis within the crisis 2 COVID-19: A biological hazard goes digital Table of contents 3 Table of Contents Background: A global crisis ...................................................................... 5 Summary of the findings ............................................................................................................................ 6 If you only have five minutes ...................................................................................................................... 7 Part I: Impact of the pandemic ................................................................ 9 Exacerbating factors................................................................................................................................. 10 Constant factors .........................................................................................................................................14 Mitigating factors ...................................................................................................................................... 16 Part II: Responding to the cyber side of the crisis ............................... 19 A proposed list of priorities ..................................................................................................................... 21 What the future holds ............................................................................................................................... 26 Part III: Analysis: what we have seen
    [Show full text]
  • 18 Technological and Human Factors of Malware Attacks
    Technological and Human Factors of Malware Attacks: A Computer Security Clinical Trial Approach FANNY LALONDE LÉVESQUE, École Polytechnique de Montréal SONIA CHIASSON and ANIL SOMAYAJI, Carleton University JOSÉ M. FERNANDEZ, École Polytechnique de Montréal The success (or failure) of malware attacks depends upon both technological and human factors. The most security-conscious users are susceptible to unknown vulnerabilities, and even the best security mechanisms can be circumvented as a result of user actions. Although there has been significant research on the technical aspects of malware attacks and defence, there has been much less research on how users interact with both 18 malware and current malware defences. This article describes a field study designed to examine the interactions between users, antivirus (AV) software, and malware as they occur on deployed systems. In a fashion similar to medical studies that evaluate the efficacy of a particular treatment, our experiment aimed to assess the performance of AV softwareand the human risk factors of malware attacks. The 4-month study involved 50 home users who agreed to use laptops that were instrumented to monitor for possible malware attacks and gather data on user behaviour. This study provided some very interesting, non-intuitive insights into the efficacy of AV software and human risk factors. AV performance was found to be lower under real-life conditions compared to tests conducted in controlled conditions. Moreover, computer expertise, volume of network usage, and peer-to-peer activity were found to be significant correlates of malware attacks. We assert that this work shows the viability and the merits of evaluating security products, techniques, and strategies to protect systems through long-term field studies with greater ecological validity than can be achieved through other means.
    [Show full text]
  • Botnet È Una Rete Di Dispositivi Collegati Infettati Da Malware Bot
    IT Da gennaio 2019 ad aprile 2020 B o tn e t Panorama delle minacce analizzato dall’ENISA Quadro generale Una botnet è una rete di dispositivi collegati infettati da malware bot. Questi dispositivi sono in genere utilizzati da attori malintenzionati per lanciare attacchi distribuiti di negazione del servizio (Distributed Denial of Service, DDoS). Operando in modalità peer-to-peer (P2P)1 o da un centro di comando e controllo (Command and Control, C2)2, le botnet sono controllate a distanza da un attore malintenzionato per operare in modo sincronizzato al fine di ottenere un determinato risultato.3 I progressi tecnologici nel calcolo distribuito e nell’automazione hanno offerto ad attori malintenzionati l’opportunità di esplorare nuove tecniche e di migliorare strumenti e metodi di attacco. Grazie a ciò, le botnet operano in modi molto più distribuiti e automatizzati e sono disponibili presso fornitori self-service e pronti per l’uso. Non solo i bot malevoli, denominati «bad bot», sono in continua evoluzione, ma le competenze delle persone e il livello di sviluppo dei bot stanno raggiungendo un elevato livello di specializzazione in alcune applicazioni, come fornitori di difesa o anche tecniche di elusione.4 Da un punto di vista diverso, le botnet rappresentano un vettore che consente ai criminali informatici di lanciare varie operazioni, da frode legata all’e-banking a ransomware, cryptomining e attacchi DDoS.5 2 __Risultati 7,7_milioni di dispositivi IoT sono collegati a Internet ogni giorno Di questi, si stima che 1 su 20 sia protetto
    [Show full text]
  • THREAT INTELLIGENCE REPORT: POWERED by ATLAS Cyber Cri M E’S in N Ovation Machine
    NETSCOUT Threat Intelligence NETSCOUT THREAT INTELLIGENCE REPORT: POWERED BY ATLAS Cyber cri m e’s In n ovation Machine Findings from 1H 2019 B NETSCOUT Threat Intelligence TABLE OF CONTENTS INTRODUCTION 1 Editorʼs Note 1 Executive Summary 2 ADVANCED THREAT 4 Key Findings 4 Nation-State Actor Highlights 6 CRIMEWARE 14 Key Findings 14 Crimeware Highlights 15 DDoS 19 Key Findings 19 DDoS Attack Trends 20 DDoS Highlights 26 CONCLUSION 32 APPENDIX 33 NETSCOUT Threat Intelligence EDITOR'S NOTE HARDIK MODI Senior Director, Threat Intelligence It’s hard to express the scale of today’s cyber threat landscape, let alone its global impact. We can tell you that there were nearly four million DDoS attacks around the world in the last six months, and that attack frequency grew by 39 percent. Or that the NETSCOUT ASERT team saw 20,000 unique samples per month from just one family of IoT malware. Or even that it can take only five days from the discovery of a new attack vector to the availability of tools for the script-kiddie designed to exploit that vulnerability. But those numbers, while startling, don’t fully convey the impact of that steady drumbeat of new threats. Cybercrime has entered the mainstream of our culture to an unprecedented extent, and it is here to stay. We already saw online gamers hire DDoS botnets to take down opponents; now, college students can easily do the same — to take down their testing platform. Globally, cyber tactics like malware, DDoS attacks, and social engineering are increasingly used by geopolitical adversaries.
    [Show full text]
  • Microsoft Security Intelligence Report
    Microsoft Security Intelligence Report Volume 21 | January through June, 2016 This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT. This document is provided “as-is.” Information and views expressed in this document, including URL and other Internet Web site references, may change without notice. You bear the risk of using it. Copyright © 2016 Microsoft Corporation. All rights reserved. The names of actual companies and products mentioned herein may be the trademarks of their respective owners. Authors Charlie Anthe Michael Johnson Siddharth Pavithran Cloud and Enterprise Security Windows Defender Labs Windows Defender Labs Evan Argyle Jeff Jones Daryl Pecelj Windows Defender Labs Corporate Communications Microsoft IT Information Security and Risk Eric Douglas Tim Kerk Management Windows Defender Labs Windows Defender Labs Ferdinand Plazo Sarah Fender Mathieu Letourneau Windows Defender Labs Azure Security Windows Defender Labs Tim Rains Elia Florio Marianne Mallen Commercial Communications Windows Defender Labs Windows Defender Labs Paul Rebriy Chad Foster Matt Miller Bing Bing Microsoft Security Response Center Karthik Selvaraj Ram Gowrishankar Windows Defender Labs Windows Defender Labs Chad Mills Safety Platform Tom Shinder Volv Grebennikov Azure Security Bing Nam Ng Enterprise Cybersecurity Nitin Sood Paul Henry Group Windows Defender Labs Wadeware LLC Hamish O'Dea Tomer Teller Aaron Hulett Windows Defender Labs Azure Security Windows
    [Show full text]
  • Understanding the Domain Abuse Activity Reporting (DAAR) Monthly Report
    Understanding the Domain Abuse Activity Reporting (DAAR) Monthly Report DAAR identifies and tracks domain names identified as threats to the security of the domain name ecosystem, known as DNS Abuse. The DAAR report is automatically generated monthly from data collected on the last day of the month. This report is intended to give the ICANN community reliable, persistent, and unbiased data using an open and community-vetted methodology that can be used to facilitate policy discussions related to mitigating DNS Abuse. General Overview of the DAAR Data DAAR monthly report provides insight on security threat concentrations by collecting a large body of domain name data and complements this with a large set of reputation data feeds and aggregates this to Registries or Registrars. Data used in the DAAR system is collected and reported by the iThreat Cyber Group (ICG). The system collects three sets of data: i) Top-Level Domain Zone Data, ii) Sponsoring Registrar Registration Data, and iii) Domain Reputation Data (Security Threat or Abuse Data). The DAAR system relies on open or commercial blocklist data to identify and classify security threats. The Domain Reputation Data used are elected to be publicly or commercially available sourced so that the reports or findings from any studies that use the DAAR system would be reproducible or independently validated by any party who collects the same data sets and applies the same processing rules to those data. At this juncture the statistics provided in the monthly reports are aggregated to gTLD registries. Reporting about registrar portfolios requires domain name registration data to identify which domains are sponsored by which registrars.
    [Show full text]