Aircraft Holding Procedures Aircraft Holding Procedures

Total Page:16

File Type:pdf, Size:1020Kb

Aircraft Holding Procedures Aircraft Holding Procedures 7/16/2018 Aircraft Holding Procedures Aircraft Holding Procedures Introduction: Holding becomes necessary when there is a need to keep air traffic within specified airspace that is reasonably protected Different types of holding patterns are established, based on their purpose and phase of flight Holding itself and consists of several holding orbits which the pilot must maintain Upon receipt of a holding clearance from Air Traffic Control (ATC), pilots will execute holding procedure Can be accomplished at a NAVAID, a fix, or an intersection A NAVAID (or Navigational Aid) is defined as any visual or electronic device airborne or on the surface which provides point­to­point guidance information or position data to aircraft in flight A fix is defined as a geographical position determined by visual reference to the surface, by reference to one or more radio NAVAIDs, by celestial plotting, or by another navigational device An intersection is defined by a point defined by any combination of courses, radials, or bearings of two or more navigational aids Practice is critical as this can be a perishable skill While holding is an IFR task, it can be performed by aircraft flying under VFR under certain circumstances Figure 1: Instrument Approach Procedures Holding Patterns Reasons to Hold: Traffic congestion, Aircraft emergency, Equipment outage, Waiting for an Expect Further Clearance time, Pilots require time to make a decision, Poor weather, or Unavailability of the runway Types of Holding Patterns There are 3 types of holding, depicted in the instrument approach chart legend: [Figure 1] 1. Holding in lieu of procedure turn: Depicted as a solid bold line on an instrument approach In practice, holding in lieu is not really a holding pattern, but a method by which to turn around (course reversal) http://www.cfinotebook.net/notebook/maneuvers-and-procedures/instrument/aircraft-holding-procedures 1/16 7/16/2018 Aircraft Holding Procedures When used, you do not need to go outbound for the full distance but rather after 1 minute you should turn back in and execute the approach 2. Arrival Pattern Arrival patterns are used to control the flow of traffic on an approach Depicted as a thin solid line on instrument charts Think of it as adding a delay to ensure the airport environment is clear The arrival holding pattern is not authorized unless assigned by ATC 3. Missed Approach Visually depicts holding following the execution of a missed approach Depicted as a dashed line on instrument approach procedure This pattern is considered the "published missed" Many times ATC will assign alternate instructions to facilitate traffic flow, especially during practice approaches Holding Pattern Airspace Protection: Holding areas must be designated as protected, i.e., free from obstacles Holding pattern airspace protection is therefore provided by controlling the pattern's size: Holding Pattern Layout: The FAA's standard pattern consists of right turns (Think that most people are right handed, making that standard) Although nonstandard, left turns may be assigned Note that holding patterns depicted in the instrument approach plate legend show both left and right turns and are in no way an indication of standards Holding Pattern Altitude Clearly, obstacle protection increases with altitude More importantly, altitude impacts airspeeds due to the operation (aircraft operating at higher altitudes fly faster) The standard altitude blocks that we are concerned with are: Surface to 6000 feet MSL 6001 feet to 14,000 feet MSL and 14,001 feet MSL and higher These altitude blocks generally correspond to maximum airspeeds Holding Pattern Airspeeds: Holding is generally performed at max endurance, to conserve fuel Holding patterns may be restricted to a maximum speed ATC: "[Callsign] [holding instructions], maximum holding speed is [Speed in Knots]" Holding speeds are based on an expected turn radius to keep pilots clear of obstacles The speed restriction is depicted in parenthesis inside the holding pattern on the chart: e.g., (175) Pilots unable to comply with the maximum airspeed restriction should notify ATC The aircraft should be at or below the maximum speed prior to initially crossing the holding fix to avoid exiting the protected airspace Below 6,000' MSL: 200 KIAS 6001' MSL to 14,000' MSL: 230 KIAS Holding patterns from 6,001’ to 14,000’ may be further restricted to a maximum airspeed of 210 KIAS, but will be depicted or dictated in the clearance as such 14,001' MSL and up: 265 KIAS Note that holding speeds change at 14,001 (as does the holding time (1.0 to 1.5 minutes)) U.S. Air Force Airfields: 310 KIAS U.S. Navy Airfields: 230 KIAS All helicopter/power lift aircraft holding on a "COPTER" instrument procedure is predicated on a minimum airspeed of 90 KIAS unless charted otherwise When a climb­in hold is specified by a published procedure (i.e., "Climb­in holding pattern to depart XYZ VORTAC at or above 10,000." or "All aircraft climb­in TRUCK holding pattern to cross TRUCK Int at or above 11,500 before proceeding on course"), additional obstacle protection area has been provided to allow for greater airspeeds in the climb for those aircraft requiring them A maximum airspeed of 310 KIAS is permitted in Climb­in­holding, unless a maximum holding airspeed is published, in which case that maximum airspeed is applicable Where the holding pattern is restricted to a maximum airspeed of 175 KIAS, the 200 KIAS holding pattern template has been applied for published climb­in hold procedures for altitudes 6,000 feet and below and the http://www.cfinotebook.net/notebook/maneuvers-and-procedures/instrument/aircraft-holding-procedures 2/16 7/16/2018 Aircraft Holding Procedures 230 KIAS holding pattern template has been applied for altitudes above 6,000 feet The airspeed limitations in 14 CFR Section 91.117, Aircraft Speed, still apply The following phraseology may be used by an ATC to advise a pilot of the maximum holding airspeed for a holding pattern airspace area: "[Callsign], [Holding instructions, when needed], maximum holding airspeed is [Speed in knots]" Holding Pattern Timing: Some aircraft will have their own timers but you can just as easily bring your own Flight Timer/watch to mount to the aircraft or kneeboard Inbound Leg: At or below 14,000' MSL, legs should be timed to equal 1 minute Above 14,000' MSL, legs should be timed to equal 1 and 1/2 minutes In order to remember this rule, remember that no one will make you hold at 14,001' but rather 14,000 or 15,000 most likely. The 1.5 minute leg comes to play at 15k 10% RULE: 15 = 1.5 min Timing inbound is measured from the point that the aircraft is wings level, inbound to the holding fix, to the time the aircraft crosses the holding fix Outbound Leg: Outbound time is adjusted to achieve the correct inbound timing Outbound leg timing begins over/abeam the fix, whichever occurs later If the abeam position cannot be determined, start timing when the turn outbound is completed Abeam is when the needle drops below the 90° benchmark in the HSI, not the TO/FROM flip The initial outbound leg should be flown for 1 minute or 1 1/2 minutes (appropriate to altitude) Pilots may use any navigational means available; i.e., DME, RNAV, etc., to ensure the appropriate inbound leg times Timing is generally associated with VOR holding, but some TACAN holds may require timing if no DME specified Holding protected airspace is designed based in part on pilot compliance with the three recommended holding pattern entry procedures discussed below Deviations from these recommendations, coupled with excessive airspeed crossing the holding fix, may in some cases result in the aircraft exceeding holding protected airspace http://www.cfinotebook.net/notebook/maneuvers-and-procedures/instrument/aircraft-holding-procedures 3/16 7/16/2018 Aircraft Holding Procedures Figure 2: Holding Pattern Entry Procedures Holding Orbits: Holding consists of several orbits in an oval shaped pattern The first orbit is the entry orbit which expeditiously establishes the aircraft inbound on the holding courses The second orbit is the no­wind orbit which sets the baseline from which all corrections can then be made The last orbit flown is the correction orbit which updates and refines the wind corrections Entry Orbit: The entry orbit establishes the aircraft into the holding pattern There are three types: the direct, parallel, and teardrop entry Direct Entry: When approaching the holding fix from anywhere in sector (c), the direct entry procedure would be to fly directly to the fix and turn to follow the holding pattern [Figure 2] Parallel Entry: When approaching the holding fix from anywhere in sector (a), the parallel entry procedure would be to turn to a heading to parallel the holding course outbound on the non holding side for one minute, turn in the direction of the holding pattern through more than 180 degrees, and return to the holding fix or intercept the holding course inbound [Figure 2] Right Turns: first turn left, then left, then right Left Turns: first turn right, then right, then left Teardrop Entry: When approaching the holding fix from anywhere in sector (b), the teardrop entry procedure would be to fly to the fix, turn outbound to a heading for a 30 degree teardrop entry within the pattern (on the holding side) for a period of one minute, then turn in the direction of the holding pattern to intercept the inbound holding course [Figure 2] Remember Left Add Right Subtract, or LARS for short L+30 R­30 While other entry procedures may enable the
Recommended publications
  • N87- 19393 CE Bith Ab AUTCEETIC TESMINAL EM (BASA) 21 P CSCL 17Ti Unclas H1/06 43501 NASA Tech Ni Ca I Paper 2669
    ) A SIPSCLATICL EVALUATION GP A N87- 19393 CE bITH Ab AUTCEETIC TESMINAL EM (BASA) 21 p CSCL 17ti Unclas H1/06 43501 NASA Tech ni ca I Paper 2669 1987 A Simulation Evaluation of a Pilot Interface With an Automatic Terminal Approach System David A. Hinton Langley Research Center Hampt o n, Virginia National Aeronautics and Space Administration Scientific and Technical Information Branch Summary with a high potential for mistakes and has limited time to detect and correct any errors. A successful A piloted-simulation study was performed to arrival depends on the correct interpretation of ap- evaluate the pilot interface with an automatic termi- proach chart details, the correct setting of numerous nal approach system (ATAS). The ATAS was con- cockpit controls, and precise aircraft guidance near ceived as a concept for improving the pilot inter- the ground. face with high levels of automation. It consists of Automation in the form of an autopilot has been instrument approach data storage, automatic radio used to reduce pilot work load and improve pilot tuning, autopilot, autothrottle, and annunciation of performance in the terminal area. Research studies These components allow the ATAS flight status. (ref. 2) and airplane accident and incident reports to automatically execute instrument approaches, in- suggest, however, that the probability of pilot error cluding procedure turns, altitude changes, missed actually increases with an increase in automation, approaches, and holding patterns, without requir- partially because of design limitations of the pilot- ing the pilot to set up navigation radios or change machine interface. Conventional autopilot interfaces autopilot modes. provide the pilot with many opportunities to make The results show that fewer pilot blunders were errors because of the requirements to change radio made during approaches when using the ATAS than frequencies and autopilot modes as the approach when using a baseline, heading-select autopilot.
    [Show full text]
  • Initiating a Missed Approach Below Mda
    Issue No. 9 INITIATING A MISSED APPROACH BELOW MDA So there you are, on approach, inside the FAF and below MDA. You saw the runway and began descent, but it is raining, visibility is marginal and things are murky and scuddy (technical terms). Wind is directly across the runway at 11G18 and you are crabbing down, passengers are nervous. But you are holding the CDI in the center and maintaining control. Over the runway you go into your wing-low sideslip for the crosswind landing, things are going pretty well and then whoops a big gust destabilizes you so you abort the landing. Now what do you do, go missed or go around for another landing attempt? To provide some context, let’s attach the scenario to an interesting little airport, Andrews- Murphy Airport, NC (KRHP). The instrument approach procedure (IAP) and the takeoff minima and obstacle departure procedure are shown here. This airport is nestled in a scenic valley surrounded by mountains, which are quite close on the north. A topo map can be viewed here or just go to the TopoZone website and search for Andrews, NC, or go to the airport lat/long of 3512N/08352W. You will notice that the MDA is 2329 feet above the runway. Now remember that obstacle protection on a missed approach procedure is based on going missed at the MAP at MDA with a minimum climb gradient of 200 feet per nautical mile. No obstacle protection is assured when you go missed below MDA or past the MAP. In fact, you are not assured of obstacle protection even above MDA if the missed is initiated below MDA or after the MAP.
    [Show full text]
  • Off Airport Ops Guide
    Off Airport Ops Guide TECHNIQUES FOR OFF AIRPORT OPERATIONS weight and balance limitations for your aircraft. Always file a flight plan detailing the specific locations you intend Note: This document suggests techniques and proce- to explore. Make at least 3 recon passes at different levels dures to improve the safety of off-airport operations. before attempting a landing and don’t land unless you’re It assumes that pilots have received training on those sure you have enough room to take off. techniques and procedures and is not meant to replace instruction from a qualified and experienced flight instruc- High Level: Circle the area from different directions to de- tor. termine the best possible landing site in the vicinity. Check the wind direction and speed using pools of water, drift General Considerations: Off-airport operations can be of the plane, branches, grass, dust, etc. Observe the land- extremely rewarding; transporting people and gear to lo- ing approach and departure zone for obstructions such as cations that would be difficult or impossible to reach in trees or high terrain. any other way. Operating off-airport requires high perfor- mance from pilot and aircraft and acquiring the knowledge Intermediate: Level: Make a pass in both directions along and experience to conduct these operations safely takes either side of the runway to check for obstructions and time. Learning and practicing off-airport techniques under runway length. Check for rock size. Note the location of the supervision of an experienced flight instructor will not the touchdown area and roll-out area. Associate land- only make you safer, but also save you time and expense.
    [Show full text]
  • Takeoff and Landing Weather Minimums
    Federal Aviation Administration, DOT § 121.651 field elevation for 15 minutes upon VFR weather minimums of § 91.155 of reaching an ETOPS Alternate Airport this chapter apply at those locations. and then conduct an instrument ap- [Doc. No. 6258, 29 FR 19222, Dec. 31, 1964 as proach and land. amended by Amdt. 121–39, 33 FR 4097, Mar. 2, (3) Fuel to account for APU use. If an 1968; Amdt. 121–206, 54 FR 34331, Aug. 18, 1989; APU is a required power source, the Amdt. 121–226, 56 FR 65663, Dec. 17, 1991] certificate holder must account for its fuel consumption during the appro- § 121.651 Takeoff and landing weather priate phases of flight. minimums: IFR: All certificate hold- ers. [Doc. No. FAA–2002–6717, 72 FR 1882, Jan. 16, 2007, as amended by Amdt. 121–348, 75 FR (a) Notwithstanding any clearance 12121, Mar. 15, 2010] from ATC, no pilot may begin a takeoff in an airplane under IFR when the § 121.647 Factors for computing fuel weather conditions reported by the required. U.S. National Weather Service, a Each person computing fuel required source approved by that Service, or a for the purposes of this subpart shall source approved by the Administrator, consider the following: are less than those specified in— (a) Wind and other weather condi- (1) The certificate holder’s operations tions forecast. specifications; or (b) Anticipated traffic delays. (2) Parts 91 and 97 of this chapter, if (c) One instrument approach and pos- the certificate holder’s operations sible missed approach at destination. specifications do not specify takeoff (d) Any other conditions that may minimums for the airport.
    [Show full text]
  • Chapter: 4. Approaches
    Chapter 4 Approaches Introduction This chapter discusses general planning and conduct of instrument approaches by pilots operating under Title 14 of the Code of Federal Regulations (14 CFR) Parts 91,121, 125, and 135. The operations specifications (OpSpecs), standard operating procedures (SOPs), and any other FAA- approved documents for each commercial operator are the final authorities for individual authorizations and limitations as they relate to instrument approaches. While coverage of the various authorizations and approach limitations for all operators is beyond the scope of this chapter, an attempt is made to give examples from generic manuals where it is appropriate. 4-1 Approach Planning within the framework of each specific air carrier’s OpSpecs, or Part 91. Depending on speed of the aircraft, availability of weather information, and the complexity of the approach procedure Weather Considerations or special terrain avoidance procedures for the airport of intended landing, the in-flight planning phase of an Weather conditions at the field of intended landing dictate instrument approach can begin as far as 100-200 NM from whether flight crews need to plan for an instrument the destination. Some of the approach planning should approach and, in many cases, determine which approaches be accomplished during preflight. In general, there are can be used, or if an approach can even be attempted. The five steps that most operators incorporate into their flight gathering of weather information should be one of the first standards manuals for the in-flight planning phase of an steps taken during the approach-planning phase. Although instrument approach: there are many possible types of weather information, the primary concerns for approach decision-making are • Gathering weather information, field conditions, windspeed, wind direction, ceiling, visibility, altimeter and Notices to Airmen (NOTAMs) for the airport of setting, temperature, and field conditions.
    [Show full text]
  • Go-Around Decision-Making and Execution Project
    Final Report to Flight Safety Foundation Go-Around Decision-Making and Execution Project Tzvetomir Blajev, Eurocontrol (Co-Chair and FSF European Advisory Committee Chair) Capt. William Curtis, The Presage Group (Co-Chair and FSF International Advisory Committee Chair) MARCH 2017 1 Acknowledgments We would like to acknowledge the following people and organizations without which this report would not have been possible: • Airbus • Johan Condette — Bureau d’Enquêtes et d’Analyses • Air Canada Pilots Association • Capt. Bertrand De Courville — Air France (retired) • Air Line Pilots Association, International • Capt. Dirk De Winter — EasyJet • Airlines for America • Capt. Stephen Eggenschwiler — Swiss • The Boeing Company • Capt. Alex Fisher — British Airways (retired) • Eurocontrol • Alvaro Gammicchia — European Cockpit Association • FSF European Advisory Committee • Harald Hendel — Airbus • FSF International Advisory Committee • Yasuo Ishihara — Honeywell Aerospace Advanced • Honeywell International Technology • International Air Transport Association • David Jamieson, Ph.D. — The Presage Group • International Federation of Air Line Pilots’ Associations • Christian Kern — Vienna Airport • The Presage Group • Capt. Pascal Kremer — FSF European Advisory Committee • Guillaume Adam — Bureau d’Enquêtes et d’Analyses • Richard Lawrence — Eurocontrol • John Barras – FSF European Advisory Committee • Capt. Harry Nelson — Airbus • Tzvetomir Blajev — Eurocontrol • Bruno Nero — The Presage Group • Karen Bolten — NATS • Zeljko Oreski — International
    [Show full text]
  • PRESSURIZED PISTON CRUISER We Fly the Piper M350! FAST™ SOLUTION PREVENTIVE, ACTIONABLE & WIRELESS FULL-FLIGHT INTELLIGENCE KNOW YOUR ENGINE from the INSIDE OUT
    AN MHM PUBLISHING MAGAZINE MArcH/APrIL 2017 [ INSIDE ] SKIES magaz • AIR CANADA REBRANDS • SPECIAL MISSION AIRCRAFT • NORTHERN OPS UPDATE mag.com • PILOT CAREER PATHWAYS I n E • CUSTOM GLOBAL REFURB • TURBOPROP COMEBACK SKIES • CELEBRATING CANADA 150 AvIAtIoN IS oUr PassioN PRESSURIZED PISTON CRUISER WE FLY THE PIPER M350! FAST™ SOLUTION PREVENTIVE, ACTIONABLE & WIRELESS FULL-FLIGHT INTELLIGENCE KNOW YOUR ENGINE FROM THE INSIDE OUT P&WC’s FASTTM solution captures, analyzes and sends full-flight data intelligence electronically to customers within moments of engine shutdown. By providing actionable preventative alerts and prognostics directly to the people who need it, we empower operators to make informed decisions, reduce costs and troubleshoot issues before they happen. With the FAST TM solution we take the words rapid response to a new level. It’s that easy. It’s that powerful. FAST™ Solution: Unparalleled dispatch availability and reduced operating costs. POWERFUL. EFFICIENT. VERSATILE. SOUND LIKE ANYBODY YOU KNOW? You demand continuous improvement in your business, so why not expect it from your business aircraft? Through intelligent design the new PC-12 NG climbs faster, cruises faster, and is even more quiet, comfortable and efficient than its predecessor. If your current aircraft isn’t giving you this kind of value, maybe it’s time for a Pilatus. Stan Kuliavas, Vice President of Sales | [email protected] | 1 844.538.2376 | www.levaero.com SKIES Magazine | March/April 2017 1 Levaero-Full-CSV6I6.indd 1 2016-09-29 1:12 PM March/April 2017 | Volume 7, Issue 2 IN THIS ISSUE 22 58 68 82 14 AIR CANADA 30 ASSESSING THE 58 TURBOPROP 82 IT’S THE SKIES REBRANDS APPROACH COMEBACK THAT BIND As it turns 80, the airline Nav Canada’s flight Simple economics have As Canada celebrates unveils a distinctive new inspection crews regularly revived the business case its 150 th anniversary this livery, stylish uniforms and test navigational aids at more for turboprop aircraft, with year, the nation’s aviation premium on-board products.
    [Show full text]
  • Federal Aviation Administration, DOT § 91.175
    Federal Aviation Administration, DOT § 91.175 a certificated and appropriately rated in paragraph (b)(1) of this section, is radio repair station or, outside the used, an entry must be made in the air- United States, a test signal operated or craft log or other record by the repair approved by an appropriate authority station certificate holder or the certifi- to check the VOR equipment (the max- cate holder's representative certifying imum permissible indicated bearing to the bearing transmitted by the re- error is plus or minus 4 degrees); or pair station for the check and the date (2) Use, at the airport of intended de- of transmission. parture, a point on the airport surface designated as a VOR system check- (Approved by the Office of Management and point by the Administrator, or, outside Budget under control number 2120±0005) the United States, by an appropriate authority (the maximum permissible § 91.173 ATC clearance and flight plan bearing error is plus or minus 4 de- required. grees); No person may operate an aircraft in (3) If neither a test signal nor a des- controlled airspace under IFR unless ignated checkpoint on the surface is that person hasÐ available, use an airborne checkpoint (a) Filed an IFR flight plan; and designated by the Adninistrator or, (b) Received an appropriate ATC outside the United States, by an appro- clearance. priate authority (the maximum per- missible bearing error is plus or minus § 91.175 Takeoff and landing under 6 degrees); or IFR. (4) If no check signal or point is (a) Instrument approaches to civil air- available, while in flightÐ ports.
    [Show full text]
  • (VL for Attrid
    ECCAIRS Aviation 1.3.0.12 Data Definition Standard English Attribute Values ECCAIRS Aviation 1.3.0.12 VL for AttrID: 391 - Event Phases Powered Fixed-wing aircraft. (Powered Fixed-wing aircraft) 10000 This section covers flight phases specifically adopted for the operation of a powered fixed-wing aircraft. Standing. (Standing) 10100 The phase of flight prior to pushback or taxi, or after arrival, at the gate, ramp, or parking area, while the aircraft is stationary. Standing : Engine(s) Not Operating. (Standing : Engine(s) Not Operating) 10101 The phase of flight, while the aircraft is standing and during which no aircraft engine is running. Standing : Engine(s) Start-up. (Standing : Engine(s) Start-up) 10102 The phase of flight, while the aircraft is parked during which the first engine is started. Standing : Engine(s) Run-up. (Standing : Engine(s) Run-up) 990899 The phase of flight after start-up, during which power is applied to engines, for a pre-flight engine performance test. Standing : Engine(s) Operating. (Standing : Engine(s) Operating) 10103 The phase of flight following engine start-up, or after post-flight arrival at the destination. Standing : Engine(s) Shut Down. (Standing : Engine(s) Shut Down) 10104 Engine shutdown is from the start of the shutdown sequence until the engine(s) cease rotation. Standing : Other. (Standing : Other) 10198 An event involving any standing phase of flight other than one of the above. Taxi. (Taxi) 10200 The phase of flight in which movement of an aircraft on the surface of an aerodrome under its own power occurs, excluding take- off and landing.
    [Show full text]
  • Missed Approach Point Study Guide for Jeppesen Charts Retrieved From
    Missed Approach Point Study Guide for Jeppesen Charts Retrieved from http://captainslog.aero/?p=1711 Introduction Reading a missed approach procedure is a critical step toward briefing and flying a complete instrument approach to an airport. The missed approach point is the position where the pilot must immediately climb away from the airport if the landing criteria of FAR 91.175(c) are not met. There are two challenges involved in reading the missed approach point: a. Location Where is the missed approach point? The profile view depicts the missed approach point as a block M symbol or as a pull-up arrow, as shown above. A text description also appears in the time and speed table below the profile view. Missed approach points are generally located between the final approach fix and the airport. Each procedure may have two or three different missed approach points. Common locations for a missed approach point include the runway threshold, the primary NAVAID for the approach, and the intersection of the glide slope with the decision altitude. b. Identification How does the pilot know when the aircraft has reached the missed approach point? The pilot must understand the aircraft position relative to the missed approach point while flying each instrument approach procedure. Because each procedure has a unique configuration, the indications and techniques used to identify the missed approach point may be unique as well. Common identifiers for a missed approach point include a named waypoint, a DME fix, and a time and speed table. Revised 7 January © 2015 by Robert Chapin. Jeppesen chart excerpts displayed for nonprofit educational purposes only.
    [Show full text]
  • Aircraft Fuel Consumption – Estimation and Visualization
    1 Project Aircraft Fuel Consumption – Estimation and Visualization Author: Marcus Burzlaff Supervisor: Prof. Dr.-Ing. Dieter Scholz, MSME Delivery Date: 13.12.2017 Faculty of Engineering and Computer Science Department of Automotive and Aeronautical Engineering URN: http://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2017-12-13.019 Associated URLs: http://nbn-resolving.org/html/urn:nbn:de:gbv:18302-aero2017-12-13.019 © This work is protected by copyright The work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License: CC BY-NC-SA http://creativecommons.org/licenses/by-nc-sa/4.0 Any further request may be directed to: Prof. Dr.-Ing. Dieter Scholz, MSME E-Mail see: http://www.ProfScholz.de This work is part of: Digital Library - Projects & Theses - Prof. Dr. Scholz http://library.ProfScholz.de Published by Aircraft Design and Systems Group (AERO) Department of Automotive and Aeronautical Engineering Hamburg University of Applied Science This report is deposited and archived: Deutsche Nationalbiliothek (http://www.dnb.de) Repositorium der Leibniz Universität Hannover (http://www.repo.uni-hannover.de) This report has associated published data in Harvard Dataverse: http://doi.org/10.7910/DVN/2HMEHB Abstract In order to uncover the best kept secret in today’s commercial aviation, this project deals with the calculation of fuel consumption of aircraft. With only the reference of the aircraft manu- facturer’s information, given within the airport planning documents, a method is established that allows computing values for the fuel consumption of every aircraft in question. The air- craft's fuel consumption per passenger and 100 flown kilometers decreases rapidly with range, until a near constant level is reached around the aircraft’s average range.
    [Show full text]
  • Descent and Approach Profile Management
    Descent Management Flight Operations Briefing Notes Descent and Approach Profile Management Flight Operations Briefing Notes Descent Management Descent and Approach Profile Management I Introduction Inadequate management of descent-and-approach profile and/or incorrect management of aircraft energy level may lead to: • Loss of vertical situational awareness; and/or, • Rushed and unstabilized approaches. Either situation increases the risk of approach-and-landing accidents, including those involving CFIT. II Statistical Data Approximately 70 % of rushed and unstable approaches involve an inadequate management of the descent-and-approach profile and/or an incorrect management of energy level; this includes: • Aircraft higher or lower than the desired vertical flight path; and/or, • Aircraft faster or slower than the desired airspeed. III Best Practices and Guidelines To prevent delay in initiating the descent and to ensure an optimum management of descent-and-approach profile, descent preparation and approach briefings should be initiated when pertinent data have been received (e.g ATIS, …), and completed before the top-of-descent (typically 10 minutes before). Page 1 of 6 Descent Management Flight Operations Briefing Notes Descent and Approach Profile Management Descent Preparation Insert a realistic FMS flight plan built up from the arrival expected to be flown. If, for example, a standard terminal arrival route (STAR) is inserted in the FMS flight plan but is not expected to be flown, because of anticipated radar vectors, the STAR should be revised (i.e. The track-distance, altitude restrictions and/or speed restrictions) according to pilot’s expectations so as to allow the FMS adjustment of the top-of- descent point; and, Wind forecast should be entered (as available) on the appropriate FMS page, at waypoints close to the top-of-descent point and along the descent profile in order to get a realistic top-of-descent.
    [Show full text]