Rainbow Trout

Total Page:16

File Type:pdf, Size:1020Kb

Rainbow Trout Rainbow Trout Native rainbow, often called "McKenzie redsides," occur in the mainstem McKenzie upstream to Tamolitch Falls and in the lower portions of medium and large tributaries above Leaburg Dam (Indian, Gate, Marten, Deer, Quartz, and Horse creeks and Blue River, South Fork McKenzie, and Smith River). The Department's List of Wild Populations includes 5 populations of resident rainbow trout in the McKenzie Basin (Table 1). Most of these populations are in relatively good habitat and probably have enough spawners to comply with the Wild Fish Management Policy. The largest threat may be introgression with stocked non-native rainbow trout and non- native summer steelhead. The wild McKenzie rainbow spawn in the spring and although rainbow are spawned at the hatchery in the early winter, there are examples of hatchery rainbow spawning later in the wild. Hatchery summer steelhead and rainbow have been observed spawning at the same and place in the McKenzie, although not together. Legal-size hatchery rainbow trout are stocked in the mainstem, including Leaburg Lake, from Bellinger Landing (RM 19) to Forest Glen Landing (RM 53.5) and in Blue River above Blue River Reservoir. Releases of legal- size hatchery rainbow in the mainstem between Hayden Bridge and Armitage Park and above Paradise Campground were discontinued in the early 1980s. Releases of legal-size hatchery rainbow in the mainstem between Forest Glen Land and Paradise Campground and in the South Fork Oregon Department of Fish and Wildlife Fish of the McKenzie River Page 1 of 17 McKenzie were discontinued in 1997. Rainbow trout were also previously stocked into Gate and Horse creeks and the Mohawk River. Compliance Population Hatchery:Wild ratio Population > 300 Comments McKenzie River below yes yes Data from Leaburg counts, Trail Bridge and Cougar snorkeling, observations. dams Fall spawning rainbow and steelhead are stocked. Blue River above Blue unknown unknown Fall spawning rainbow are River Dam stocked in Blue River up to Quentin Creek. McKenzie River above unknown unknown Fall spawning rainbow are Trail Bridge Dam stocked in Trail Bridge Reservoir. SF McKenzie River, yes yes Data from Stan Gregory, Cougar Dam to RM 28.5 OSU. Fall spawning rainbow are stocked in Cougar Reservoir. SF McKenzie River yes unknown This population may be above RM 28.5 introduced as a result of stocking high lakes above this area. Cutthroat Trout The name "cutthroat" is derived form the two red slash marks or streaks on the underside of the lower jaw. On some fish this mark may be indistinct or lacking. Cutthroat trout are ubiquitous throughout McKenzie River and the rest of the basin, living in most perennial streams, including areas above Tamolitch Falls and small, higher gradient tributaries not inhabited by rainbow trout. The Department's List of Wild Populations includes 40 populations of resident cutthroat trout in the McKenzie Basin (Table 2). Most of these are listed as out of compliance with the Wild Fish Management Policy because the population size is unknown. Most populations are isolated above barriers in small headwater streams, occupy limited habitat, and are therefore naturally small. Oregon Department of Fish and Wildlife Fish of the McKenzie River Page 2 of 17 Although timber harvest, road building and dams have altered habitat, most of populations are probably not threatened at this time. Hatchery produced cutthroat trout originating from Hackleman Creek in the upper McKenzie watershed are released into some small, high elevation lakes. Table 2. Populations of cutthroat trout in the McKenzie Basin. Compliance Population Hatchery: Populatio Comments Wild ratio n > 300 McKenzie River yes yes electrofish data below Leaburg available Dam McGowan Creek yes unknown 20 ft falls at RM 4.6 Crooked Creek yes unknown 7 ft falls at RM 1.4 Upper Mohawk River yes unknown 7 ft falls at RM 2.4 Holden Creek yes unknown 11 ft falls at RM 1.1 Cogswell Creek yes unknown 10 ft falls at RM 2.2 McKenzie River, Yes yes Leaburg Dam to Trail Bridge Dam Hatchery Creek Yes unknown 8 ft falls Indian Creek yes unknown 15 ft falls RM 0.3 Unnamed creek yes unknown 7 ft falls at RM tributary to NF Gate 0.7 Creek Oregon Department of Fish and Wildlife Fish of the McKenzie River Page 3 of 17 Tom’s Creek yes unknown 20 ft falls at RM 0.3 Marten Creek yes unknown 8 ft falls at RM 2.2 , may not be a barrier, juvenile rainbow found above Bear Creek yes unknown 8 ft falls at RM 0.6 Quartz Creek yes yes 10 ft falls at RM 11, angling data - Randy Wildman, OSU Doe Creek yes unknown 20 ft falls at RM 2.0, unknown if fish are present Indian Creek 1 yes yes 12 ft falls at RM 0.3, angling data - 1991 district data Indian Creek 2 yes yes 30 ft falls at RM 1.0, angling data - 1992 district data Blue River above yes unknown Blue River Reservoir Lookout Creek yes unknown 9 ft falls McCrea Creek yes unknown 7 ft falls Oregon Department of Fish and Wildlife Fish of the McKenzie River Page 4 of 17 Tidbits Creek yes unknown 7 ft falls at RM 2.7 Quentin Creek yes unknown 30 ft falls at RM 1.0 SF McKenzie River yes yes above Cougar Reservoir. French Pete Creek yes unknown 10 ft falls at RM 5.0 Olallie Creek yes unknown falls? Hardy Creek yes unknown 10 ft falls at RM 3.0 Augusta Creek yes unknown 8 ft falls at RM 2.4 Elk Creek yes unknown 9 ft falls at RM 2.4 Mill Creek yes unknown 20 ft falls at RM 2.0 Pasture Creek yes unknown 7 ft falls at RM 0.5 Pothole Creek yes unknown 5 ft falls at RM 0.5 Mosquito Creek yes unknown 20 ft falls at RM 0.6 Lost Creek yes unknown 10 ft falls at RM 2.5 Deer Creek yes unknown 60 ft falls at RM 5.0 County Creek yes yes McKenzie River, yes Unknown Trail Bridge Dam to Tamolitch Falls Smith River above yes unknown Smith Dam Oregon Department of Fish and Wildlife Fish of the McKenzie River Page 5 of 17 Bunchgrass Creek Yes unknown 17 ft falls at RM 0.3 McKenzie River, yes Unknown Carmen Dam to Sahalie Falls Hackleman yes Yes above Clear Creek/Fish Lake Lake Parks Creek yes yes above Lava Flow, brook trout concerns, Wetherbee et al. The cutthroat in the mainstem McKenzie River are fluvial (migrating from large rivers to small tributary streams to spawn). Small cutthroat rear for several year in the tributaries and then migrate to the McKenzie River. They rear in the McKenzie until they are about 10-12 inches and then return to the tributaries in early spring to spawn. Many live to spawn again. Several years ago ODFW placed a fish trap in the Mohawk at the 17th hole of the Springfield Country Club. The trap was operated most weeks from 8 December 1992 to 8 July 1993 and from 7 December 1993 to 10 June 1994. The trap could not be fished during winter freshets because of debris and, by early summer, flow was low enough that the trap would not operate. We estimated that 10,000 to 20,000 juvenile cutthroat migrate from the Mohawk River and that 1,000 to 2,000 adults return downstream after spawning each year. Oregon Department of Fish and Wildlife Fish of the McKenzie River Page 6 of 17 Figure 1. Length frequency in centimeters of cutthroat trout captured by electrofishing in the McKenzie River, 1989-91. Brook Trout Originally from the eastern United States, brook trout have been introduced in many Oregon waters, especially in the cold, mountainous streams and lakes where other species are unable to do well. Brook trout thrive in cold water below 65 degrees. One of the most colorful of the chars, the brook trout is dark green alive, with worm-like markings on the back and dorsal fin. Cream and red spots appear on the sides, with the red spots bordered with blue. The lower fins are reddish, the leading edges bordered with a white and a black stripe. Spawning occurs in the late fall, usually in spring fed tributaries or on gravel bars in the lakes. The female may deposit from 500 to 2,500 eggs. Oregon Department of Fish and Wildlife Fish of the McKenzie River Page 7 of 17 Brook trout (Salvelinus fontinalis) are not native to the McKenzie Basin. Naturalized brook trout populations in streams in the McKenzie Basin are often locally abundant and composed of small but mature fish. Brook trout have established naturalized populations in Hackleman Creek, the upper mainstem McKenzie from Clear Lake to Trail Bridge Reservoir, and in the upper reaches of Horse Creek, Blue River and the South Fork McKenzie. Because brook trout are not an endemic species, provisions of the Wild Fish Management Policy do not apply to them. They can compete with and displace populations of native cutthroat trout and bull trout. Eliminating naturalized brook trout populations from streams in the McKenzie Basin is not practical at this time. Whitefish Mountain whitefish is closely related to trout, salmon and char and is part of the same family, Salmonidae. Although inhabiting many Oregon streams and lakes, it thrives best in clear, cold water. Trout like in appearance, the body is silvery in color with a bronze or darkish back. The mouth is small with weak teeth. Lengths run to 20 inches. Whitefish are often erroneously called graying by many anglers.
Recommended publications
  • RISK ASSESSMENT of COUGAR DAM, MCKENZIE RIVER, OREGON Kevin S
    RISK ASSESSMENT OF COUGAR DAM, MCKENZIE RIVER, OREGON Kevin S. Richards, PhD Senior Advisor USACE Institute for Water Resources/Risk Management Center/East Division Date: 19 September 2019 “The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation.” 2 PRESENTATION OUTLINE 3 PRESENTATION OUTLINE – Project Background – Risk Assessment – Path Forward and Risk Reduction Measures 4 PROJECT BACKGROUND 5 PROJECT BACKGROUND Located in the Willamette River Basin, NW Oregon South Fork of the McKenzie River, 42 Miles East of Eugene/Springfield Conservation Pool 189,000 acre-feet (summer) and 51,000 acre-feet (winter) Purposes: Flood Risk Management, Hydropower, Water Quality, Water Supply Constructed in 1963 6 PROJECT BACKGROUND 7 PROJECT BACKGROUND - STRUCTURES Rockfill Embankment Dam Elevation Top of Dam, feet (NGVD29) 1,705 + Overbuild Length, feet 1,600 Maximum Height, feet 519 Outlet Works (Tunnel) Type 13.5-ft tunnel Size of Gates (Vertical Slide x2), feet 6.5 x 12.5 Design Discharge at Max Pool, cfs 12,050 Spillway (Gated Chute) Size of Gates (Tainter x2), feet 40 x 43.3 Design Discharge, ft3/s 76,140 Gross Crest Length, feet 89 Crest Elevation, feet (NGVD29) 1,656.75 Power Plant Penstock (x1) Diameter, feet 10.5 Number of Generating Units 2 Rated Capacity, MW 25 Reservoir Minimum Power Pool, feet (NGVD29) 1,516 Minimum Flood Control Pool, feet (NGVD29) 1,532 Maximum Conservation Pool, feet (NGVD29) 1,690 Maximum Pool, feet (NGVD29) 1,699 Operations Operated remotely from Lookout Point Dam approx.
    [Show full text]
  • Timing of In-Water Work to Protect Fish and Wildlife Resources
    OREGON GUIDELINES FOR TIMING OF IN-WATER WORK TO PROTECT FISH AND WILDLIFE RESOURCES June, 2008 Purpose of Guidelines - The Oregon Department of Fish and Wildlife, (ODFW), “The guidelines are to assist under its authority to manage Oregon’s fish and wildlife resources has updated the following guidelines for timing of in-water work. The guidelines are to assist the the public in minimizing public in minimizing potential impacts to important fish, wildlife and habitat potential impacts...”. resources. Developing the Guidelines - The guidelines are based on ODFW district fish “The guidelines are based biologists’ recommendations. Primary considerations were given to important fish species including anadromous and other game fish and threatened, endangered, or on ODFW district fish sensitive species (coded list of species included in the guidelines). Time periods were biologists’ established to avoid the vulnerable life stages of these fish including migration, recommendations”. spawning and rearing. The preferred work period applies to the listed streams, unlisted upstream tributaries, and associated reservoirs and lakes. Using the Guidelines - These guidelines provide the public a way of planning in-water “These guidelines provide work during periods of time that would have the least impact on important fish, wildlife, and habitat resources. ODFW will use the guidelines as a basis for the public a way of planning commenting on planning and regulatory processes. There are some circumstances where in-water work during it may be appropriate to perform in-water work outside of the preferred work period periods of time that would indicated in the guidelines. ODFW, on a project by project basis, may consider variations in climate, location, and category of work that would allow more specific have the least impact on in-water work timing recommendations.
    [Show full text]
  • Mckenzie River Sub-Basin Action Plan 2016-2026
    McKenzie River Sub-basin Strategic Action Plan for Aquatic and Riparian Conservation and Restoration, 2016-2026 MCKENZIE WATERSHED COUNCIL AND PARTNERS June 2016 Photos by Freshwaters Illustrated MCKENZIE RIVER SUB-BASIN STRATEGIC ACTION PLAN June 2016 MCKENZIE RIVER SUB-BASIN STRATEGIC ACTION PLAN June 2016 ACKNOWLEDGEMENTS The McKenzie Watershed Council thanks the many individuals and organizations who helped prepare this action plan. Partner organizations that contributed include U.S. Forest Service, Eugene Water & Electric Board, Oregon Department of Fish and Wildlife, Bureau of Land Management, U.S. Army Corps of Engineers, McKenzie River Trust, Upper Willamette Soil & Water Conservation District, Lane Council of Governments and Weyerhaeuser Company. Plan Development Team Johan Hogervorst, Willamette National Forest, U.S. Forest Service Kate Meyer, McKenzie River Ranger District, U.S. Forest Service Karl Morgenstern, Eugene Water & Electric Board Larry Six, McKenzie Watershed Council Nancy Toth, Eugene Water & Electric Board Jared Weybright, McKenzie Watershed Council Technical Advisory Group Brett Blundon, Bureau of Land Management – Eugene District Dave Downing, Upper Willamette Soil & Water Conservation District Bonnie Hammons, McKenzie River Ranger District, U.S. Forest Service Chad Helms, U.S. Army Corps of Engineers Jodi Lemmer, McKenzie River Trust Joe Moll, McKenzie River Trust Maryanne Reiter, Weyerhaeuser Company Kelly Reis, Springfield Office, Oregon Department of Fish and Wildlife David Richey, Lane Council of Governments Kirk Shimeall, Cascade Pacific Resource Conservation and Development Andy Talabere, Eugene Water & Electric Board Greg Taylor, U.S. Army Corps of Engineers Jeff Ziller, Springfield Office, Oregon Department of Fish and Wildlife MCKENZIE RIVER SUB-BASIN STRATEGIC ACTION PLAN June 2016 Table of Contents EXECUTIVE SUMMARY .................................................................................................................................
    [Show full text]
  • Lower Mckenzie River Watershed
    McKenzie River Watershed Baseline Monitoring Report 2000 to 2009 Karl A. Morgenstern David Donahue Nancy Toth Eugene Water & Electric Board January 2011 ii Acknowledgements The Eugene Water & Electric Board would like to acknowledge the various agencies and organizations that assisted with water quality sampling, providing guidance and input and assisting with the development of this document. McKenzie Watershed Council Water Quality Committee Members McKenzie Watershed Council Larry Six Mohawk Watershed Partnership Jared Weybright Weyerhaueser Company Maryanne Reiter Weyerhaueser Company Bob Danehy International Paper Company Loren Leighton U.S. Forest Service Dave Kreitzing U.S. Forest Service Bonnie Hammond U.S. Bureau of Land Management Steve Liebhardt U.S. Bureau of Land Management Janet Robbins City of Springfield Chuck Gottfried City of Springfield Todd Miller Springfield Utility Board Amy Chinitz Springfield Utility Board Dave Embleton Retired from Springfield Utility Board Chuck Davis Oregon Dept. of Environmental Quality Chris Bayham Springfield School District Stuart Perlmeter Army Corps of Engineers Greg Taylor Eugene Water & Electric Board Karl Morgenstern Eugene Water & Electric Board David Donahue Eugene Water & Electric Board Nancy Toth Partners Providing Sampling Support, Database Support and Document Review U.S. Forest Service Mike Cobb U.S. Forest Service David Bickford City of Springfield Shawn Krueger Eugene Water & Electric Board Jared Rubin Eugene Water & Electric Board Bob DenOuden Eugene Water & Electric Board
    [Show full text]
  • Influence of Cougar Reservoir Drawdown on Sediment and DDT Transport and Deposition in the Mckenzie River Basin, Oregon, Water Years 2002–04
    Prepared in cooperation with the U.S. Army Corps of Engineers Influence of Cougar Reservoir Drawdown on Sediment and DDT Transport and Deposition in the McKenzie River Basin, Oregon, Water Years 2002–04 Scientific Investigations Report 2007–5164 U.S. Department of the Interior U.S. Geological Survey Front Cover: Cougar Reservoir near Terwilliger Hot Springs, Oregon. (Photograph taken by Chauncey Anderson, U.S. Geological Survey.) Back Cover: Cougar Reservoir withdrawal tower upon completion of construction in 2005. (Photograph from U.S. Army Corps of Engineers.) Influence of Cougar Reservoir Drawdown on Sediment and DDT Transport and Deposition in the McKenzie River Basin, Oregon, Water Years 2002–04 By Chauncey W. Anderson Prepared in cooperation with the U.S. Army Corps of Engineers Scientific Investigations Report 2007–5164 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.
    [Show full text]
  • Analyzing Dam Feasibility in the Willamette River Watershed
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 6-8-2017 Analyzing Dam Feasibility in the Willamette River Watershed Alexander Cameron Nagel Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geography Commons, Hydrology Commons, and the Water Resource Management Commons Let us know how access to this document benefits ou.y Recommended Citation Nagel, Alexander Cameron, "Analyzing Dam Feasibility in the Willamette River Watershed" (2017). Dissertations and Theses. Paper 4012. https://doi.org/10.15760/etd.5896 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Analyzing Dam Feasibility in the Willamette River Watershed by Alexander Cameron Nagel A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geography Thesis Committee: Heejun Chang, Chair Geoffrey Duh Paul Loikith Portland State University 2017 i Abstract This study conducts a dam-scale cost versus benefit analysis in order to explore the feasibility of each the 13 U.S. Army Corps of Engineers (USACE) commissioned dams in Oregon’s Willamette River network. Constructed between 1941 and 1969, these structures function in collaboration to comprise the Willamette River Basin Reservoir System (WRBRS). The motivation for this project derives from a growing awareness of the biophysical impacts that dam structures can have on riparian habitats. This project compares each of the 13 dams being assessed, to prioritize their level of utility within the system.
    [Show full text]
  • Fish Screening Exemption Proposal
    BakerCounty MasonDamHydroelectricProject _______________________________________________________________________________________________________________________________________________________ FishScreeningExemptionProposal October2013 Introduction: Baker County is seeking an exemption from screening for the existing Mason Dam in the following proposal. On April 30, 2013 Baker County filed an application with the Federal Energy Regulatory Commission (FERC) for a new hydroelectric license at the existing Bureau of Reclamation (BOR) Mason Dam. Because of the addition of the hydroelectric project this triggers Oregon Revised Statute (ORS) 498.301 through 351 screening criteria. The following proposal provides background describing the project, a summary of the project impacts from the Entrainment and Mortality report, Baker County’s proposed mitigation and an explanation of how those measures will provide resource protection. Background: Existing Project Mason Dam is located in Baker County, Oregon approximately 11 miles southwest of Baker City on State Highway 7(Figure1). Mason Dam was built by the BOR on the Powder River for irrigation, water delivery and flood control. Mason Dam was constructed from 1965 – 1968 and has a total height of 173 feet and a maximum hydraulic height of 157 feet. Phillips Reservoir is a 2,234 acre-reservoir that was formed by the construction of Mason Dam. The reservoir has a total storage capacity of 95,500 acre-feet and an active storage capacity of 90,500 acre-feet. Existing Operation Water is generally stored between October through March with some releases above the minimum flow starting to occur in late March through April. Irrigation season starts in May and runs through September. Releases average approximately 10 cubic feet per second (cfs) between October and January, increase to an average of 20 to 50 cfs during February and March, gradually increasing to 100 cfs during April to early-May.
    [Show full text]
  • Mckenzie River Subbasin Assessment Summary Table of Contents
    McKenzie River, ca. 1944 McKenzie River Subbasin Assessment Summary Report February 2000 McKenzie River, ca. 2000 McKenzie River, ca. 2000 Prepared for the McKenzie Watershed Council Prepared By: Alsea Geospatial, Inc. Hardin-Davis, Inc. Pacific Wildlife Research, Inc. WaterWork Consulting McKenzie River Subbasin Assessment Summary Table of Contents High Priority Action Items for Conservation, Restoration, and Monitoring 1 The McKenzie River Watershed: Introduction 8 I. Watershed Overview 9 II. Aquatic Ecosystem Issues & Findings 17 Recommendations 29 III. Fish Populations Issues & Findings 31 Recommendations 37 IV. Wildlife Species and Habitats of Concern Issues & Findings 38 Recommendations 47 V. Putting the Assessment to work 50 Juvenile Chinook Habitat Modeling 51 Juvenile Chinook Salmon Habitat Results 54 VI. References 59 VII. Glossary of Terms 61 The McKenzie River Subbasin Assessment was funded by grants from the Bonneville Power Administration and the U.S. Forest Service. High Priority Action Items for Conservation, Restoration, and Monitoring Our analysis indicates that aquatic and wildlife habitat in the McKenzie River subbasin is relatively good yet habitat quality falls short of historical conditions. High quality habitat currently exists at many locations along the McKenzie River. This assessment concluded, however, that the river’s current condition, combined with existing management and regulations, does not ensure conservation or restoration of high quality habitat in the long term. Significant short-term improvements in aquatic and wildlife habitat are not likely to happen through regulatory action. Current regulations rarely address remedies for past actions. Furthermore, regulations and the necessary enforcement can fall short of attaining conservation goals. Regulations are most effective in ensuring that habitat quality trends improve over the long period.
    [Show full text]
  • Mohawk/Mcgowan Watershed Analysis
    MOHAWK/McGOWAN WATERSHED ANALYSIS BLM MAY 1995 Chapter 1 Introduction What Is Watershed Analysis Watershed analysis is a systematic procedure for characterizing watershed and ecological processes to meet specific management and social objectives. Throughout the analytical process the Bureau of Land Management (BLM) is trying to gain an understanding about how the physical, biological, and social processes are intertwined. The objective is to identify where linkages and processes (functions) are in jeopardy and where processes are complex. The physical processes at work in a watershed establish limitations upon the biological relationships. The biological adaptations of living organisms balance in natural systems; however, social processes have tilted the balance toward resource extraction. The BLM attempt in the Mohawk/McGowan analysis is to collect baseline resource information and understand where physical, biological and social processes are or will be in conflict. What Watershed Analysis Is NOT Watershed analysis is not an inventory process, and it is not a detailed study of everything in the watershed. Watershed analysis is built around the most important issues. Data gaps will be identified and subsequent iterations of watershed analysis will attempt to fill in the important pieces. Watershed analysis is not intended to be detailed, site-specific project planning. Watershed analysis provides the framework in the context of the larger landscape and looks at the "big picture." It identifies and prioritizes potential project opportunities. Watershed analysis is not done under the direction and limitations of the National Environmental Policy Act (NEPA). When specific projects are proposed, more detailed project level planning will be done. An Environmental Assessment will be completed at that time.
    [Show full text]
  • Removal Action Report US Forest Service, Blue River Administration Site Blue River, Oregon
    Removal Action Report US Forest Service, Blue River Administration Site Blue River, Oregon Prepared for: US Forest Service, Willamette National Forest McKenzie River Ranger District Report Date: August 2012 PBS Project No. 76127.000, Phase 0004 Removal Action Report US Forest Service, Blue River Administration Site Blue River, Oregon TABLE OF CONTENTS 1.0 INTRODUCTION ............................................................................................................... 1 2.0 SITE LOCATION AND SETTING ..................................................................................... 1 2.1 Location ............................................................................................................... 1 2.2 Physiographic Setting......................................................................................... 1 3.0 PREVIOUS SITE STUDIES .............................................................................................. 2 3.1 Assessment and Evaluation of Remedial Options ........................................... 2 3.2 Waste Determination ........................................................................................... 2 4.0 REMOVAL ACTION OBJECTIVES AND APPROACH ................................................... 2 5.0 SAFETY ............................................................................................................................ 3 6.0 SUMMARY OF FIELD ACTIVITIES.................................................................................. 4 6.1 Monitoring Well Abandonment
    [Show full text]
  • Volume II Willamette Spring Chinook
    Oregon Native Fish Status Report – Volume II Willamette Spring Chinook Existing Populations The Willamette Spring Chinook SMU consists of six populations (Table 63). The status of four of these populations including the Molalla, South Santiam, Calapooia, and Upper Willamette is somewhat uncertain. Little is known about these populations, but what is known indicates that the native populations are extremely depressed. While some natural spawning occurs, it is likely that these spawners are the offspring of naturally-spawning hatchery fish since hatchery fish comprise almost the entire naturally-spawning population each year in these basins. Future inventory work is needed for these populations so that they may be more appropriately assessed. Table 63. Population list and existence status for the Willamette Spring Chinook SMU. Exist Population Description Yes Molalla Molalla River basin. Yes North Santiam North Santiam River basin. Yes South Santiam South Santiam River basin. Yes Calapooia Calapooia River basin. Yes McKenzie McKenzie River basin. Yes Upper Willamette Willamette River basin upstream from mouth of McKenzie River. Habitat Use Distribution The distribution criterion was based on proportions of accessible and inaccessible habitat. It must be recognized that these estimates are derived at the 1:100,000 scale and thus will not capture habitat lost in many smaller (1:24,000) streams resulting from barriers such as culverts. Habitat lost in smaller streams will vary by population, but is not likely to account for 50% of any population, and thus does not alter assessment outcomes derived using data at the 1:100,000 scale. Data presented in this report on accessibility of habitat should be viewed as general approximations and not as a definitive analysis on habitat availability/accessibility.
    [Show full text]
  • Ground Water in the Eugene-Springfield Area, Southern Willamette Valley, Oregon
    Ground Water in the Eugene-Springfield Area, Southern Willamette Valley, Oregon GEOLOGICAL SURVEY WATER-SUPPLY PAPER 2018 Prepared in cooperation with the Oregon State Engineer Ground Water in the Eugene-Springfield Area, Southern Willamette Valley, Oregon By F. J. FRANK GEOLOGICAL SURVEY WATER-SUPPLY PAPER 2018 Prepared in cooperation with the Oregon State Engineer UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 72-600346 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Price: Paper cover $2.75, domestic postpaid; $2.50, GPO Bookstore Stock Number 2401-00277 CONTENTS Page Abstract ______________________ ____________ 1 Introduction _________ ____ __ ____ 2 Geohydrologic system ___________ __ _ 4 Topography _____________ ___ ____ 5 Streams and reservoirs ______ ___ _ __ _ _ 5 Ground-water system ______ _ _____ 6 Consolidated rocks __ _ _ - - _ _ 10 Unconsolidated deposits ___ _ _ 10 Older alluvium ____ _ 10 Younger alluvium __ 11 Hydrology __________________ __ __ __ 11 Climate _______________ _ 12 Precipitation ___________ __ 12 Temperature -__________ 12 Evaporation _______ 13 Surface water __________ ___ 14 Streamflow _ ____ _ _ 14 Major streams __ 14 Other streams ________ _ _ 17 Utilization of surface water _ 18 Ground water __________ _ __ ___ 18 Upland and valley-fringe areas 19 West side _________ __ 19 East side __________ ________________________ 21 South end ______________________________ 22 Central lowland ________ __ 24 Occurrence and movement of ground water 24 Relationship of streams to alluvial aquifers __ _ 25 Transmissivity and storage coefficient ___ _ 29 Ground-water storage _ __ 30 Storage capacity _ .
    [Show full text]