Retrotransposons and the Evolution of Genome Size in Pisum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genome Analysis of the Smallest Free-Living Eukaryote Ostreococcus
Genome analysis of the smallest free-living eukaryote SEE COMMENTARY Ostreococcus tauri unveils many unique features Evelyne Derellea,b, Conchita Ferrazb,c, Stephane Rombautsb,d, Pierre Rouze´ b,e, Alexandra Z. Wordenf, Steven Robbensd, Fre´ de´ ric Partenskyg, Sven Degroeved,h, Sophie Echeynie´ c, Richard Cookei, Yvan Saeysd, Jan Wuytsd, Kamel Jabbarij, Chris Bowlerk, Olivier Panaudi, BenoıˆtPie´ gui, Steven G. Ballk, Jean-Philippe Ralk, Franc¸ois-Yves Bougeta, Gwenael Piganeaua, Bernard De Baetsh, Andre´ Picarda,l, Michel Delsenyi, Jacques Demaillec, Yves Van de Peerd,m, and Herve´ Moreaua,m aObservatoire Oce´anologique, Laboratoire Arago, Unite´Mixte de Recherche 7628, Centre National de la Recherche Scientifique–Universite´Pierre et Marie Curie-Paris 6, BP44, 66651 Banyuls sur Mer Cedex, France; cInstitut de Ge´ne´ tique Humaine, Unite´Propre de Recherche 1142, Centre National de la Recherche Scientifique, 141 Rue de Cardonille, 34396 Montpellier Cedex 5, France; dDepartment of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology and eLaboratoire Associe´de l’Institut National de la Recherche Agronomique (France), Ghent University, Technologiepark 927, 9052 Ghent, Belgium; fRosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149; gStation Biologique, Unite´Mixte de Recherche 7144, Centre National de la Recherche Scientifique–Universite´Pierre et Marie Curie-Paris 6, BP74, 29682 Roscoff Cedex, France; hDepartment of Applied Mathematics, Biometrics and -
CHLOROPLAST Matk GENE PHYLOGENY of SOME IMPORTANT SPECIES of PLANTS
AKDENİZ ÜNİVERSİTESİ ZİRAAT FAKÜLTESİ DERGİSİ, 2005, 18(2), 157-162 CHLOROPLAST matK GENE PHYLOGENY OF SOME IMPORTANT SPECIES OF PLANTS Ayşe Gül İNCE1 Mehmet KARACA2 A. Naci ONUS1 Mehmet BİLGEN2 1Akdeniz University Faculty of Agriculture Department of Horticulture, 07059 Antalya, Turkey 2Akdeniz University Faculty of Agriculture Department of Field Crops, 07059 Antalya, Turkey Correspondence addressed E-mail: [email protected] Abstract In this study using the chloroplast matK DNA sequence, a chloroplast-encoded locus that has been shown to be much more variable than many other genes, from one hundred and forty two plant species belong to the families of 26 plants we conducted a study to contribute to the understanding of major evolutionary relationships among the studied plant orders, families genus and species (clades) and discussed the utilization of matK for molecular phylogeny. Determined genetic relationship between the species or genera is very valuable for genetic improvement studies. The chloroplast matK gene sequences ranging from 730 to 1545 nucleotides were downloaded from the GenBank database. These DNA sequences were aligned using Clustal W program. We employed the maximum parsimony method for phylogenetic reconstruction using PAUP* program. Trees resulting from the parsimony analyses were similar to those generated earlier using single or multiple gene analyses, but our analyses resulted in strict consensus tree providing much better resolution of relationships among major clades. We found that gymnosperms (Pinus thunbergii, Pinus attenuata and Ginko biloba) were different from the monocotyledons and dicotyledons. We showed that Cynodon dactylon, Panicum capilare, Zea mays and Saccharum officiarum (all are in the C4 metabolism) were improved from a common ancestors while the other cereals Triticum Avena, Hordeum, Oryza and Phalaris were evolved from another or similar ancestors. -
Genetic Effects on Microsatellite Diversity in Wild Emmer Wheat (Triticum Dicoccoides) at the Yehudiyya Microsite, Israel
Heredity (2003) 90, 150–156 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Genetic effects on microsatellite diversity in wild emmer wheat (Triticum dicoccoides) at the Yehudiyya microsite, Israel Y-C Li1,3, T Fahima1,MSRo¨der2, VM Kirzhner1, A Beiles1, AB Korol1 and E Nevo1 1Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel; 2Institute for Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany This study investigated allele size constraints and clustering, diversity. Genome B appeared to have a larger average and genetic effects on microsatellite (simple sequence repeat number (ARN), but lower variance in repeat number 2 repeat, SSR) diversity at 28 loci comprising seven types of (sARN), and smaller number of alleles per locus than genome tandem repeated dinucleotide motifs in a natural population A. SSRs with compound motifs showed larger ARN than of wild emmer wheat, Triticum dicoccoides, from a shade vs those with perfect motifs. The effects of replication slippage sun microsite in Yehudiyya, northeast of the Sea of Galilee, and recombinational effects (eg, unequal crossing over) on Israel. It was found that allele distribution at SSR loci is SSR diversity varied with SSR motifs. Ecological stresses clustered and constrained with lower or higher boundary. (sun vs shade) may affect mutational mechanisms, influen- This may imply that SSR have functional significance and cing the level of SSR diversity by both processes. natural constraints. -
"Evolutionary Emergence of Genes Through Retrotransposition"
Evolutionary Emergence of Advanced article Genes Through Article Contents . Introduction Retrotransposition . Gene Alteration Following Retrotransposon Insertion . Retrotransposon Recruitment by Host Genome . Retrotransposon-mediated Gene Duplication Richard Cordaux, University of Poitiers, Poitiers, France . Conclusion Mark A Batzer, Department of Biological Sciences, Louisiana State University, Baton Rouge, doi: 10.1002/9780470015902.a0020783 Louisiana, USA Variation in the number of genes among species indicates that new genes are continuously generated over evolutionary times. Evidence is accumulating that transposable elements, including retrotransposons (which account for about 90% of all transposable elements inserted in primate genomes), are potent mediators of new gene origination. Retrotransposons have fostered genetic innovation during human and primate evolution through: (i) alteration of structure and/or expression of pre-existing genes following their insertion, (ii) recruitment (or domestication) of their coding sequence by the host genome and (iii) their ability to mediate gene duplication via ectopic recombination, sequence transduction and gene retrotransposition. Introduction genes, respectively, and de novo origination from previ- ously noncoding genomic sequence. Genome sequencing Variation in the number of genes among species indicates projects have also highlighted that new gene structures can that new genes are continuously generated over evolution- arise as a result of the activity of transposable elements ary times. Although the emergence of new genes and (TEs), which are mobile genetic units or ‘jumping genes’ functions is of central importance to the evolution of that have been bombarding the genomes of most species species, studies on the formation of genetic innovations during evolution. For example, there are over three million have only recently become possible. -
Capture of a Recombination Activating Sequence from Mammalian Cells
Gene Therapy (1999) 6, 1819–1825 1999 Stockton Press All rights reserved 0969-7128/99 $15.00 http://www.stockton-press.co.uk/gt Capture of a recombination activating sequence from mammalian cells P Olson and R Dornburg The Dorrance H Hamilton Laboratories, Center for Human Virology, Division of Infectious Diseases, Jefferson Medical College, Thomas Jefferson University, Jefferson Alumni Hall, 1020 Locust Street, Rm 329, Philadelphia, PA 19107, USA We have developed a genetic trap for identifying revealed a putative recombination signal (CCCACCC). sequences that promote homologous DNA recombination. When this heptamer or an abbreviated form (CCCACC) The trap employs a retroviral vector that normally disables were reinserted into the vector, they stimulated vector itself after one round of replication. Insertion of defined repair and other DNA rearrangements. Mutant forms of DNA sequences into the vector induced the repair of a 300 these oligomers (eg CCCAACC or CCWACWS) did not. base pair deletion, which restored its ability to replicate. Our data suggest that the recombination events occurred Tests of random sequence libraries made in the vector within 48 h after transfection. Keywords: recombination; retroviral vector; vector stability; gene conversion; gene therapy Introduction scripts are still made from the intact left LTR, but reverse transcription copies the deletion to both LTRs, disabling Recognition of cis-acting DNA signals occupies a central the daughter provirus.15–17 We found that the SIN vectors role in both site-specific and general recombination path- that could escape this programmed disablement did so 1–6 ways. Signals in site-specific pathways define the by recombinationally repairing the U3-deleted LTR. -
B2 and ALU Retrotransposons Are Self-Cleaving Ribozymes Whose Activity Is Enhanced by EZH2
B2 and ALU retrotransposons are self-cleaving ribozymes whose activity is enhanced by EZH2 Alfredo J. Hernandeza,1, Athanasios Zovoilisb,c,1,2, Catherine Cifuentes-Rojasb,c,1,3, Lu Hanb,c, Bojan Bujisicb,c, and Jeannie T. Leeb,c,4 aDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115; bDepartment of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114; and cDepartment of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA 02114 Contributed by Jeannie T. Lee, November 18, 2019 (sent for review October 9, 2019; reviewed by Vivian G. Cheung and Karissa Y. Sanbonmatsu) Transposable elements make up half of the mammalian genome. B2s are present in ∼350,000 copies in the mouse genome (10) One of the most abundant is the short interspersed nuclear and give rise to 180- to 200-nucleotide (nt) polymerase III complex element (SINE). Among their million copies, B2 accounts for (POL-III) transcripts. B2 SINEs are transcriptionally active, with ∼350,000 in the mouse genome and has garnered special interest expression being highest in germ cells and in early development, because of emerging roles in epigenetic regulation. Our recent work after which they become epigenetically silenced. However, one of demonstrated that B2 RNA binds stress genes to retard transcription the most intriguing aspects of SINE biology is that these elements elongation. Although epigenetically silenced, B2s become massively become highly up-regulated when somatic cells are acutely stressed up-regulated during thermal and other types of stress. Specifically, (11–13), including during viral infection (8, 11), autoimmune pro- an interaction between B2 RNA and the Polycomb protein, EZH2, cesses such as macular degeneration (14, 15), and progression to results in cleavage of B2 RNA, release of B2 RNA from chromatin, cancer (16, 17). -
Checklist of the Vascular Plants of Redwood National Park
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks. -
Fort Ord Natural Reserve Plant List
UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC -
Conversion Between 100-Million-Year-Old Duplicated Genes Contributes to Rice Subspecies Divergence
Wei et al. BMC Genomics (2021) 22:460 https://doi.org/10.1186/s12864-021-07776-y RESEARCH Open Access Conversion between 100-million-year-old duplicated genes contributes to rice subspecies divergence Chendan Wei1†, Zhenyi Wang1†, Jianyu Wang1†, Jia Teng1, Shaoqi Shen1, Qimeng Xiao1, Shoutong Bao1, Yishan Feng1, Yan Zhang1, Yuxian Li1, Sangrong Sun1, Yuanshuai Yue1, Chunyang Wu1, Yanli Wang1, Tianning Zhou1, Wenbo Xu1, Jigao Yu2,3, Li Wang1* and Jinpeng Wang1,2,3* Abstract Background: Duplicated gene pairs produced by ancient polyploidy maintain high sequence similarity over a long period of time and may result from illegitimate recombination between homeologous chromosomes. The genomes of Asian cultivated rice Oryza sativa ssp. indica (XI) and Oryza sativa ssp. japonica (GJ) have recently been updated, providing new opportunities for investigating ongoing gene conversion events and their impact on genome evolution. Results: Using comparative genomics and phylogenetic analyses, we evaluated gene conversion rates between duplicated genes produced by polyploidization 100 million years ago (mya) in GJ and XI. At least 5.19–5.77% of genes duplicated across the three rice genomes were affected by whole-gene conversion after the divergence of GJ and XI at ~ 0.4 mya, with more (7.77–9.53%) showing conversion of only portions of genes. Independently converted duplicates surviving in the genomes of different subspecies often use the same donor genes. The ongoing gene conversion frequency was higher near chromosome termini, with a single pair of homoeologous chromosomes, 11 and 12, in each rice genome being most affected. Notably, ongoing gene conversion has maintained similarity between very ancient duplicates, provided opportunities for further gene conversion, and accelerated rice divergence. -
Genome Evolution: Mutation Is the Main Driver of Genome Size in Prokaryotes Gabriel A.B
Genome Evolution: Mutation Is the Main Driver of Genome Size in Prokaryotes Gabriel A.B. Marais, Bérénice Batut, Vincent Daubin To cite this version: Gabriel A.B. Marais, Bérénice Batut, Vincent Daubin. Genome Evolution: Mutation Is the Main Driver of Genome Size in Prokaryotes. Current Biology - CB, Elsevier, 2020, 30 (19), pp.R1083- R1085. 10.1016/j.cub.2020.07.093. hal-03066151 HAL Id: hal-03066151 https://hal.archives-ouvertes.fr/hal-03066151 Submitted on 15 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DISPATCH Genome Evolution: Mutation is the Main Driver of Genome Size in Prokaryotes Gabriel A.B. Marais1, Bérénice Batut2, and Vincent Daubin1 1Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F- 69622 Villeurbanne, France 2Albert-Ludwigs-University Freiburg, Department of Computer Science, 79110 Freiburg, Germany Summary Despite intense research on genome architecture since the 2000’s, genome-size evolution in prokaryotes has remained puzzling. Using a phylogenetic approach, a new study found that increased mutation rate is associated with gene loss and reduced genome size in prokaryotes. In 2003 [1] and later in 2007 in his book “The Origins of Genome Architecture” [2], Lynch developed his influential theory that a genome’s complexity, represented by its size, is primarily the result of genetic drift. -
Evolution of Genome Size
Evolution of Genome Advanced article Article Contents Size • Introduction • How Much Variation Is There? Stephen I Wright, Department of Ecology and Evolutionary Biology, University • What Types of DNA Drive Genome Size of Toronto, Toronto, Ontario, Canada Variation? • Neutral Model • Nearly Neutral Model • Adaptive Hypotheses • Transposable Element Evolution • Conclusion • Acknowledgements Online posting date: 16th January 2017 The size of the genome represents one of the most in the last century. While considerable progress has been made strikingly variable yet poorly understood traits in the characterisation of the extent of genome size variation, in eukaryotic organisms. Genomic comparisons the dominant evolutionary processes driving genome size evolu- suggest that most properties of genomes tend tion remain subject to considerable debate. Large-scale genome sequencing is enabling new insights into both the proximate to increase with genome size, but the fraction causes and evolutionary forces governing genome size differ- of the genome that comprises transposable ele- ences. ments (TEs) and other repetitive elements tends to increase disproportionately. Neutral, nearly neutral and adaptive models for the evolution of How Much Variation Is There? genome size have been proposed, but strong evi- dence for the general importance of any of these Because determining the amount of DNA (deoxyribonucleic models remains lacking, and improved under- acid) in a cell has been much more straightforward and cheaper standing of factors driving the -
A Long Polymorphic GT Microsatellite Within a Gene Promoter Mediates Non-Imprinted Allele-Specific DNA Methylation of a Cpg Island in a Goldfish Inter-Strain Hybrid
International Journal of Molecular Sciences Article A Long Polymorphic GT Microsatellite within a Gene Promoter Mediates Non-Imprinted Allele-Specific DNA Methylation of a CpG Island in a Goldfish Inter-Strain Hybrid 1,2, , 2, 2 Jianbo Zheng * y , Haomang Xu y and Huiwen Cao 1 Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China 2 College of Life Sciences, Zhejiang University, Hangzhou 310058, China * Correspondence: [email protected]; Tel.: +86-572-204-5681 These authors equally contributed to this work. y Received: 26 June 2019; Accepted: 6 August 2019; Published: 12 August 2019 Abstract: It is now widely accepted that allele-specific DNA methylation (ASM) commonly occurs at non-imprinted loci. Most of the non-imprinted ASM regions observed both within and outside of the CpG island show a strong correlation with DNA polymorphisms. However, what polymorphic cis-acting elements mediate non-imprinted ASM of the CpG island remains unclear. In this study, we investigated the impact of polymorphic GT microsatellites within the gene promoter on non-imprinted ASM of the local CpG island in goldfish. We generated various goldfish heterozygotes, in which the length of GT microsatellites or some non-repetitive sequences in the promoter of no tail alleles was different. By examining the methylation status of the downstream CpG island in these heterozygotes, we found that polymorphisms of a long GT microsatellite can lead to the ASM of the downstream CpG island during oogenesis and embryogenesis, polymorphisms of short GT microsatellites and non-repetitive sequences in the promoter exhibited no significant effect on the methylation of the CpG island.