Geology and Physical Properties Investigations by the Insight Lander M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Curiosity's Candidate Field Site in Gale Crater, Mars
Curiosity’s Candidate Field Site in Gale Crater, Mars K. S. Edgett – 27 September 2010 Simulated view from Curiosity rover in landing ellipse looking toward the field area in Gale; made using MRO CTX stereopair images; no vertical exaggeration. The mound is ~15 km away 4th MSL Landing Site Workshop, 27–29 September 2010 in this view. Note that one would see Gale’s SW wall in the distant background if this were Edgett, 1 actually taken by the Mastcams on Mars. Gale Presents Perhaps the Thickest and Most Diverse Exposed Stratigraphic Section on Mars • Gale’s Mound appears to present the thickest and most diverse exposed stratigraphic section on Mars that we can hope access in this decade. • Mound has ~5 km of stratified rock. (That’s 3 miles!) • There is no evidence that volcanism ever occurred in Gale. • Mound materials were deposited as sediment. • Diverse materials are present. • Diverse events are recorded. – Episodes of sedimentation and lithification and diagenesis. – Episodes of erosion, transport, and re-deposition of mound materials. 4th MSL Landing Site Workshop, 27–29 September 2010 Edgett, 2 Gale is at ~5°S on the “north-south dichotomy boundary” in the Aeolis and Nepenthes Mensae Region base map made by MSSS for National Geographic (February 2001); from MOC wide angle images and MOLA topography 4th MSL Landing Site Workshop, 27–29 September 2010 Edgett, 3 Proposed MSL Field Site In Gale Crater Landing ellipse - very low elevation (–4.5 km) - shown here as 25 x 20 km - alluvium from crater walls - drive to mound Anderson & Bell -
Boundary Condition Controls on the High-Sand-Flux Regions of Mars Matthew Chojnacki1, Maria E
https://doi.org/10.1130/G45793.1 Manuscript received 8 November 2018 Revised manuscript received 18 January 2019 Manuscript accepted 20 February 2019 © 2019 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 11 March 2019 Boundary condition controls on the high-sand-flux regions of Mars Matthew Chojnacki1, Maria E. Banks2, Lori K. Fenton3, and Anna C. Urso1 1Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA 2National Aeronautics and Space Administration (NASA) Goddard Space Flight Center, Greenbelt, Maryland 20771, USA 3Carl Sagan Center at the SETI (Search for Extra-Terrestrial Intelligence) Institute, Mountain View, California 94043, USA ABSTRACT DATA SETS AND METHODS Wind has been an enduring geologic agent throughout the history of Mars, but it is often To assess bed-form morphology and dynamics, unclear where and why sediment is mobile in the current epoch. We investigated whether we analyzed images acquired by the High Resolu- eolian bed-form (dune and ripple) transport rates are depressed or enhanced in some areas tion Imaging Science Experiment (HiRISE) cam- by local or regional boundary conditions (e.g., topography, sand supply/availability). Bed- era on the Mars Reconnaissance Orbiter (0.25–0.5 form heights, migration rates, and sand fluxes all span two to three orders of magnitude m/pixel; McEwen et al., 2007; see Table DR1 in across Mars, but we found that areas with the highest sand fluxes are concentrated in three the GSA Data Repository1). Digi tal terrain mod- regions: Syrtis Major, Hellespontus Montes, and the north polar erg. -
Selection of the Insight Landing Site M. Golombek1, D. Kipp1, N
Manuscript Click here to download Manuscript InSight Landing Site Paper v9 Rev.docx Click here to view linked References Selection of the InSight Landing Site M. Golombek1, D. Kipp1, N. Warner1,2, I. J. Daubar1, R. Fergason3, R. Kirk3, R. Beyer4, A. Huertas1, S. Piqueux1, N. E. Putzig5, B. A. Campbell6, G. A. Morgan6, C. Charalambous7, W. T. Pike7, K. Gwinner8, F. Calef1, D. Kass1, M. Mischna1, J. Ashley1, C. Bloom1,9, N. Wigton1,10, T. Hare3, C. Schwartz1, H. Gengl1, L. Redmond1,11, M. Trautman1,12, J. Sweeney2, C. Grima11, I. B. Smith5, E. Sklyanskiy1, M. Lisano1, J. Benardino1, S. Smrekar1, P. Lognonné13, W. B. Banerdt1 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 2State University of New York at Geneseo, Department of Geological Sciences, 1 College Circle, Geneseo, NY 14454 3Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Dr., Flagstaff, AZ 86001 4Sagan Center at the SETI Institute and NASA Ames Research Center, Moffett Field, CA 94035 5Southwest Research Institute, Boulder, CO 80302; Now at Planetary Science Institute, Lakewood, CO 80401 6Smithsonian Institution, NASM CEPS, 6th at Independence SW, Washington, DC, 20560 7Department of Electrical and Electronic Engineering, Imperial College, South Kensington Campus, London 8German Aerospace Center (DLR), Institute of Planetary Research, 12489 Berlin, Germany 9Occidental College, Los Angeles, CA; Now at Central Washington University, Ellensburg, WA 98926 10Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 11Institute for Geophysics, University of Texas, Austin, TX 78712 12MS GIS Program, University of Redlands, 1200 E. Colton Ave., Redlands, CA 92373-0999 13Institut Physique du Globe de Paris, Paris Cité, Université Paris Sorbonne, France Diderot Submitted to Space Science Reviews, Special InSight Issue v. -
Mars Exploration: an Overview of Indian and International Mars Missions Nayamavalsa Scariah1, Dr
Taurian Innovative Journal/Volume 1/ Issue 1 Mars exploration: An overview of Indian and International Mars Missions NayamaValsa Scariah1, Dr. Mili Ghosh2, Dr.A.P.Krishna3 Birla Institute of Technology, Mesra, Ranchi Abstract- Mars is the fourth planet from the sun. It is 1. Introduction also known as red planet because of its iron oxide content. There are lots of missions have been launched to Mars is also known as red planet, because of the mars for better understanding of our neighboring planet. reddish iron oxide prevalent on its surface gives it a There are lots of unmanned spacecraft including reddish appearance. It is the fourth planet from sun. orbiters, landers and rovers have been launched into mars since early 1960. Sputnik was the first satellite The term sol is used to define duration of solar day on launched in 1957 by Soviet Union. After seven failure Mars. A mean Martian solar day or sol is 24 hours 39 missions to Mars, Mariner 4 was the first satellite which minutes and 34.244 seconds. Many space missions to reached the Martian orbiter successfully. The Viking 1 Mars have been planned and launched for Mars was the first lander reached on Mars on 1975. India exploration (Table:1) but most of them failed without successfully launched a spacecraft, Mangalyan (Mars completing the task specially in early attempts th Orbiter Mission) on 5 November, 2013, with five whereas some NASA missions were very payloads to Mars. India was the first nation to successful(such as the twin Mars Exploration Rovers, successfully reach Mars on its first attempt. -
Appendix 1: Venus Missions
Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M. -
North Polar Region of Mars: Advances in Stratigraphy, Structure, and Erosional Modification
Icarus 196 (2008) 318–358 www.elsevier.com/locate/icarus North polar region of Mars: Advances in stratigraphy, structure, and erosional modification Kenneth L. Tanaka a,∗, J. Alexis P. Rodriguez b, James A. Skinner Jr. a,MaryC.Bourkeb, Corey M. Fortezzo a,c, Kenneth E. Herkenhoff a, Eric J. Kolb d, Chris H. Okubo e a US Geological Survey, Flagstaff, AZ 86001, USA b Planetary Science Institute, Tucson, AZ 85719, USA c Northern Arizona University, Flagstaff, AZ 86011, USA d Google, Inc., Mountain View, CA 94043, USA e Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA Received 5 June 2007; revised 24 January 2008 Available online 29 February 2008 Abstract We have remapped the geology of the north polar plateau on Mars, Planum Boreum, and the surrounding plains of Vastitas Borealis using altimetry and image data along with thematic maps resulting from observations made by the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter spacecraft. New and revised geographic and geologic terminologies assist with effectively discussing the various features of this region. We identify 7 geologic units making up Planum Boreum and at least 3 for the circumpolar plains, which collectively span the entire Amazonian Period. The Planum Boreum units resolve at least 6 distinct depositional and 5 erosional episodes. The first major stage of activity includes the Early Amazonian (∼3 to 1 Ga) deposition (and subsequent erosion) of the thick (locally exceeding 1000 m) and evenly- layered Rupes Tenuis unit (ABrt), which ultimately formed approximately half of the base of Planum Boreum. As previously suggested, this unit may be sourced by materials derived from the nearby Scandia region, and we interpret that it may correlate with the deposits that regionally underlie pedestal craters in the surrounding lowland plains. -
A New Model of the Crustal Magnetic Field of Mars Using MGS and MAVEN
RESEARCH ARTICLE A New Model of the Crustal Magnetic Field of Mars Using 10.1029/2018JE005854 MGS and MAVEN Key Points: 1 1 2 3 • MGS and MAVEN magnetic field Benoit Langlais , Erwan Thébault , Aymeric Houliez , Michael E. Purucker , 4 measurements are combined into a and Robert J. Lillis high-resolution magnetic field model • The new model extends up to SH 1Laboratoire de Planétologie et Géodynamique, Université de Nantes, Université d'Angers, CNRS, UMR 6112, Nantes, degree 134, corresponding to 160-km France, 2Observatoire Royal de Belgique, Uccle, Belgium, 3Planetary Magnetospheres Laboratory, NASA Goddard horizontal resolution at the Martian Space Flight Center, Greenbelt, MD, USA, 4Space Science Laboratory, University of California, Berkeley, CA, USA surface • It enables local studies, where geologic and magnetic features can be compared Abstract While devoid of an active magnetic dynamo field today, Mars possesses a remanent magnetic field that may reach several thousand nanoteslas locally. The exact origin and the events that have shaped the crustal magnetization remain largely enigmatic. Three magnetic field data sets from two spacecraft Supporting Information: • Supporting Information S1 collected over 13 cumulative years have sampled the Martian magnetic field over a range of altitudes •TableS1 from 90 up to 6,000 km: (a) Mars Global Surveyor (MGS) magnetometer (1997–2006), (b) MGS Electron Reflectometer (1999–2006), and (c) Mars Atmosphere and Volatile EvolutioN (MAVEN) magnetometer Correspondence to: (2014 to today). In this paper we combine these complementary data sets for the first time to build a new B. Langlais, model of the Martian internal magnetic field. This new model improves upon previous ones in several [email protected] aspects: comprehensive data coverage, refined data selection scheme, modified modeling scheme, discrete-to-continuous transformation of the model, and increased model resolution. -
Replace This Sentence with the Title of Your Abstract
GEOLOGY OF THE SOUTHERN UTOPIA PLANITIA HIGHLAND-LOWLAND BOUNDARY PLAIN: SECOND YEAR RESULTS AND THIRD YEAR PLAN. J. A. Skinner, Jr., K. L. Tanaka, and T. M. Hare. As- trogeology Team, U. S. Geological Survey, 2255 N. Gemini Drive, Flagstaff, AZ 86001 ([email protected]). Introduction: The southern Utopia highland- pographic uniqueness in order to provide context for lowland boundary (HLB) extends >1500 km westward consistent description. To assist in unit delineation and from Hyblaeus Dorsa to the topographic saddle that description for this map region, we recently submitted separates Isidis and Utopia Planitiae. It contains a nomenclature request to the IAU to uniquely identify bench-like platforms that contain depressions, pitted the region located between Nepenthes Mensae and cones (some organized into arcuate chains and thumb- Amenthes Cavi (Fig. 1). We proposed a name for the print terrain), isolated domes, buried circular depres- 275-km-wide, gently-sloping plain in order to high- sions, ring fractures, polygonal fractures, and other light its high-standing character, relative to the smooth locally- to regionally-dispersed landforms [1-2]. The plain located north of Amenthes Cavi. We also re- objective of this map project is to clarify the geologic quested names for three impact craters in Nepenthes evolution of the southern Utopia Planitia HLB by iden- Mensae and Planum (Fig. 1), each of which have tifying the geologic, structural, and stratigraphic rela- unique ejecta and rim morphologies. tionships of surface materials in MTMs 10237, 15237, 20237, 10242, 15242, 20242, 10247, 15247, and 20247. The project was originally awarded in April, 2007 and is in its final year of support. -
Elemental Analysis of Lunar Meteorites Using Laser-Induced Breakdown Spectroscopy
52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1729.pdf ELEMENTAL ANALYSIS OF LUNAR METEORITES USING LASER-INDUCED BREAKDOWN SPECTROSCOPY. A. J. Ogura1 ([email protected]), K. Yumoto1, Y. Cho1, T. Niihara2, S. Kameda3, and S. Sugita1, 1Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan, 2School of Engineering, The University of Tokyo, 3College of science, Rikkyo University. Introduction: Laser-induced breakdown chromite-spinel, olivine, and pyroxene as phenocrysts spectroscopy (LIBS) is an elemental analysis method in the dark groundmass [9]. NWA11474 is based on the spectra from plasma generated by focused characterized with gray groundmass and white laser pulses. In-situ measurements with LIBS have feldspathic clasts (Fig. 1). All samples were measured already been conducted on planetary missions taking in a vacuum chamber maintained at < 3 × 10-2 Pa. advantages of multiple capabilities of LIBS, such as Data acquisition. We used an Nd:YAG laser (1064 high-spatial resolution (hundreds of microns), rapid, nm, 2 Hz repetition rate, 30 mJ pulse energy). The laser and remote analysis without sample pretreatment (>3 m spot diameter was 800 �m. The spectra were obtained distance in minutes) [1]. Such examples include at a distance of 1 m with an exposure time of 50 ms. 5- ChemCam on NASA’s Curiosity rover [1], SuperCam 9 spots were measured per sample and 100 spectra were on the Perseverance rover [2], and China’s Tianwen-1 obtained per laser spot. The lunar meteorite NWA 479 rover [3]. was measured at light-toned phenocrysts and darker LIBS would be a powerful tool for lunar groundmass. -
Mars Exploration - a Story Fifty Years Long Giuseppe Pezzella and Antonio Viviani
Chapter Introductory Chapter: Mars Exploration - A Story Fifty Years Long Giuseppe Pezzella and Antonio Viviani 1. Introduction Mars has been a goal of exploration programs of the most important space agencies all over the world for decades. It is, in fact, the most investigated celestial body of the Solar System. Mars robotic exploration began in the 1960s of the twentieth century by means of several space probes sent by the United States (US) and the Soviet Union (USSR). In the recent past, also European, Japanese, and Indian spacecrafts reached Mars; while other countries, such as China and the United Arab Emirates, aim to send spacecraft toward the red planet in the next future. 1.1 Exploration aims The high number of mission explorations to Mars clearly points out the impor- tance of Mars within the Solar System. Thus, the question is: “Why this great interest in Mars exploration?” The interest in Mars is due to several practical, scientific, and strategic reasons. In the practical sense, Mars is the most accessible planet in the Solar System [1]. It is the second closest planet to Earth, besides Venus, averaging about 360 million kilometers apart between the furthest and closest points in its orbit. Earth and Mars feature great similarities. For instance, both planets rotate on an axis with quite the same rotation velocity and tilt angle. The length of a day on Earth is 24 h, while slightly longer on Mars at 24 h and 37 min. The tilt of Earth axis is 23.5 deg, and Mars tilts slightly more at 25.2 deg [2]. -
Explosive Lava‐Water Interactions in Elysium Planitia, Mars: Geologic and Thermodynamic Constraints on the Formation of the Tartarus Colles Cone Groups Christopher W
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, E09006, doi:10.1029/2009JE003546, 2010 Explosive lava‐water interactions in Elysium Planitia, Mars: Geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups Christopher W. Hamilton,1 Sarah A. Fagents,1 and Lionel Wilson2 Received 16 November 2009; revised 11 May 2010; accepted 3 June 2010; published 16 September 2010. [1] Volcanic rootless constructs (VRCs) are the products of explosive lava‐water interactions. VRCs are significant because they imply the presence of active lava and an underlying aqueous phase (e.g., groundwater or ice) at the time of their formation. Combined mapping of VRC locations, age‐dating of their host lava surfaces, and thermodynamic modeling of lava‐substrate interactions can therefore constrain where and when water has been present in volcanic regions. This information is valuable for identifying fossil hydrothermal systems and determining relationships between climate, near‐surface water abundance, and the potential development of habitable niches on Mars. We examined the western Tartarus Colles region (25–27°N, 170–171°E) in northeastern Elysium Planitia, Mars, and identified 167 VRC groups with a total area of ∼2000 km2. These VRCs preferentially occur where lava is ∼60 m thick. Crater size‐frequency relationships suggest the VRCs formed during the late to middle Amazonian. Modeling results suggest that at the time of VRC formation, near‐surface substrate was partially desiccated, but that the depth to the midlatitude ice table was ]42 m. This ground ice stability zone is consistent with climate models that predict intermediate obliquity (∼35°) between 75 and 250 Ma, with obliquity excursions descending to ∼25–32°. -
Pre-Mission Insights on the Interior of Mars Suzanne E
Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1).