In Search of No Neutrinos Antonio Palazzo - Low-Energy Neutrinos to Cite This Article: Giorgio Gratta and Naoko Kurahashi 2010 Phys

Total Page:16

File Type:pdf, Size:1020Kb

In Search of No Neutrinos Antonio Palazzo - Low-Energy Neutrinos to Cite This Article: Giorgio Gratta and Naoko Kurahashi 2010 Phys Physics World FEATURE Related content - Sterile Neutrinos In search of no neutrinos Antonio Palazzo - Low-energy neutrinos To cite this article: Giorgio Gratta and Naoko Kurahashi 2010 Phys. World 23 (04) 27 Livia Ludhova - Atmospheric neutrinos Thomas K. Gaisser View the article online for updates and enhancements. This content was downloaded from IP address 171.66.161.130 on 28/07/2020 at 21:08 physicsworld.com Feature: Neutrinos Photolibrary In search of no neutrinos Neutrinos were first observed almost 60 years ago by observing beta decay. Giorgio Gratta and Naoko Kurahashi explain why physicists are now on the lookout for an exceedingly rare variation of this process in which no neutrinos are created As you sit down to relax and read this article, take a mass. But in the last 20 years, researchers at several moment to consider that more than 10 million neut- underground neutrino detectors around the world rinos created in the Big Bang are traversing your body showed that in fact these particles, which come in at any one time. These tiny subatomic particles have three different types or “flavours”, do have masses – been travelling across the universe for the last 13 bil- albeit very small ones. However, their technique, Giorgio Gratta lion years, carrying the fingerprints of the primordial which relies on a sophisticated type of interferometry, is a professor of cosmic explosion. As they course through your body is only able to determine the mass differences between physics in the department of physics they will ignore it, because – challengingly for anyone the three types of neutrino, leaving their absolute and Naoko Kurahashi wishing to study these particles experimentally – the masses unmeasured. is a postgraduate probability of neutrinos interacting with matter is so For many years it has been known that there might student in the minute that they can cross entire planets or stars with- be a way to probe the absolute mass of neutrinos: by department of applied out being disturbed. measuring the half-life of a very rare nuclear process physics, both at First postulated in 1930 by Wolfgang Pauli and even- known as neutrinoless double beta decay. This decay Stanford University, tually observed by Frederick Reines and Clyde Cowan can only occur if the quantum nature of neutrinos is of US, e-mail gratta@ in 1953, neutrinos were originally thought to have no a novel type, in which the distinction between particles stanford.edu 27 Physics World April 2010 Feature: Neutrinos physicsworld.com 1 A handy explanation 2 Double beta decay e observer what the observer sees momentum momentum e e spin spin left-handed left-handed ν e ν e e observer what the observer sees e e e momentum momentum ν ν e ν e e spin spin e ν e left-handed right-handed N Nν N Nν time time In the upper part of the figure, the handedness of a particle of finite mass is shown as seen by an observer in a reference frame that is at rest with respect to the page. Illustrations (top) and Feynman diagrams (bottom) showing (left) two-neutrino In the lower part of the figure, the same particle is analysed from the point of view double beta decay and (right) zero-neutrino double beta decay. In the Feynman of an observer travelling at a faster speed, in such a way as to overtake the particle. diagrams, the blue arrows represent the nucleus that is decaying, while the other In this reference frame the momentum of the particle appears to be flipped arrows represent particles that are emitted. Lines without an arrowhead that backwards with respect to the previous case, while the direction of the spin does connect two vertices represent “virtual” particles that cannot be seen or detected. not change. This shows that for a non-relativistic particle, the handedness depends N, nucleus before decay; N´, nucleus after decay; e, electron; νe, electron neutrino; on the choice of reference frame. ෆνe, electron antineutrino. and antiparticles is somewhat blurred. years after the first experimental observation of neut- But this is no pipe dream – hidden deep in under- rinos – found that these particles are always emitted ground sites around the world are a number of large with left-handedness, which means that a particle’s detectors that seek to observe this extremely uncom- spin is oriented in the opposite direction to its mo - mon decay. These experiments, which are now start- mentum. Given that the only way to probe a neutrino ing up, could soon not only provide values for the is to make it interact with something, handedness, like neutrino masses, but also reveal that neutrinos are any other property, can only be defined in the context their own antiparticles. of an interaction. In fact, weak-force interactions are the only method by which we can “measure” the What we know and what we do not know handedness of the neutrino, and so neutrino handed- Neutrinos make up three of the 12 known fundamental ness was incorporated into the Standard Model of matter particles, which cannot be divided into more particle physics – the ul timate rule book for how fun- parts. The neutrinos (“little neutral ones” in Italian) damental particles in teract with one another – by have no charge and fall into the category of “leptons”, requiring that only left-handed neutrinos and right- along with the much more massive charged electron, handed antineut rinos participate in interactions muon and tau leptons. When a neutrino is produced, involving the weak force. it exists in one of its three flavours as an electron-, The implications of the fact that neutrinos are left- muon- or tau-neutrino – depending on the charged handed and antineutrinos are right-handed are far lepton with which it was simultaneously created. more profound than they may at first appear. As fig- The remaining six elementary matter particles are ure 1 shows, the handedness of a particle can change quarks. Both quarks and charged leptons experience sign by moving from one reference frame to another. the electromagnetic force, and quarks also feel the In this scenario there is no way to assign an “absolute” strong force. These forces cause the particles to inter- handedness to the particle – unless the particle is mass- act frequently with other matter particles. But having less. If the mass of the particle is zero, then, according no charge, neutrinos can only feel the weak and gra - to special relativity, the particle will move at the speed vitational forces, and hence interact very little with of light and no reference frame will be able to overtake matter. Around this simple fact revolve many of the dif- it and see it. In this case, the handedness is an absolute ficulties of experimental neutrino physics. As an ex - property of the particle. Neutrinos were therefore ample, the mean free path in lead for neutrinos with “coded” in the Standard Model as particles with zero energies similar to those produced in nuclear reactors mass and fixed handedness, and for a long time no bet- Neutrino is about a third of a light-year. ter measurement was able to challenge this assertion. Neutrino detectors therefore need to be huge and But such a challenge did come, and showed us that detectors need run for a long time for researchers to stand a chance we were wrong. Neutrinos do in fact have mass. This to be huge of ob serving their prey. Combined with the tricky was discovered by observing the strange phenomenon and run for a task of building a detector that is not swamped by of “neutrino oscillation”, which involves neutrinos long time for an overwhelming background from other types of changing between their three different flavours as they researchers to nuclear radiation, this makes neutrino detection propagate through space (see box opposite). But the extremely challenging, and the data we have collected problem with neutrino oscillation, big breakthrough stand a chance preciously scarce. though it was, is that it tells us nothing about the ab- of observing A groundbreaking experiment carried out by Maur - solute masses of the neutrinos, only the mass differ- their prey ice Goldhaber and collaborators in 1957 – only four ences between the different flavours. 28 Physics World April 2010 physicsworld.com Feature: Neutrinos Enter the massive Majorana particle Neutrino oscillations and why they imply mass In nuclear physics the simplest phenomenon involving neutrinos is “beta decay”, a process within a nucleus in which a neutron decays into a proton, an electron and 1.2 an electron antineutrino. This type of nuclear decay is very common and it is responsible for much natural and 1.0 artificial radioactivity. Figure 2 shows a more exotic process in which the 0.8 beta decay repeats itself twice, in such a way that the state in between the two decays cannot be seen or meas- 0.6 ured. This “double beta decay” process can occur in two 0.4 survival probability distinct ways. Two-neutrino double beta decay is a con- Adapted from the KamLAND Collaboration ventional process in that the Standard Model predicts its existence and it does not violate any of the known 0.2 laws of physics. This is not the case, however, for zero- 0 neutrino (or neutrinoless) double beta decay, which 10 20 30 40 50 60 70 80 90 100 violates a number of physical laws enshrined in the L /E (km per MeV) Standard Model. If this decay were discovered experi- 0 mentally, it would reveal some unknown physics that Often in physics, the most sensitive measurements are obtained by interferometry – the Standard Model is currently unable to describe.
Recommended publications
  • Mesons Modeled Using Only Electrons and Positrons with Relativistic Onium Theory Ray Fleming [email protected]
    All mesons modeled using only electrons and positrons with relativistic onium theory Ray Fleming [email protected] All mesons were investigated to determine if they can be modeled with the onium model discovered by Milne, Feynman, and Sternglass with only electrons and positrons. They discovered the relativistic positronium solution has the mass of a neutral pion and the relativistic onium mass increases in steps of me/α and me/2α per particle which is consistent with known mass quantization. Any pair of particles or resonances can orbit relativistically and particles and resonances can collocate to form increasingly complex resonances. Pions are positronium, kaons are pionium, D mesons are kaonium, and B mesons are Donium in the onium model. Baryons, which are addressed in another paper, have a non-relativistic nucleon combined with mesons. The results of this meson analysis shows that the compo- sition, charge, and mass of all mesons can be accurately modeled. Of the 220 mesons mod- eled, 170 mass estimates are within 5 MeV/c2 and masses of 111 of 121 D, B, charmonium, and bottomonium mesons are estimated to within 0.2% relative error. Since all mesons can be modeled using only electrons and positrons, quarks and quark theory are unnecessary. 1. Introduction 2. Method This paper is a report on an investigation to find Sternglass and Browne realized that a neutral pion whether mesons can be modeled as combinations of (π0), as a relativistic electron-positron pair, can orbit a only electrons and positrons using onium theory. A non-relativistic particle or resonance in what Browne companion paper on baryons is also available.
    [Show full text]
  • Catholic Christian Christian
    Religious Scientists (From the Vatican Observatory Website) https://www.vofoundation.org/faith-and-science/religious-scientists/ Many scientists are religious people—men and women of faith—believers in God. This section features some of the religious scientists who appear in different entries on these Faith and Science pages. Some of these scientists are well-known, others less so. Many are Catholic, many are not. Most are Christian, but some are not. Some of these scientists of faith have lived saintly lives. Many scientists who are faith-full tend to describe science as an effort to understand the works of God and thus to grow closer to God. Quite a few describe their work in science almost as a duty they have to seek to improve the lives of their fellow human beings through greater understanding of the world around them. But the people featured here are featured because they are scientists, not because they are saints (even when they are, in fact, saints). Scientists tend to be creative, independent-minded and confident of their ideas. We also maintain a longer listing of scientists of faith who may or may not be discussed on these Faith and Science pages—click here for that listing. Agnesi, Maria Gaetana (1718-1799) Catholic Christian A child prodigy who obtained education and acclaim for her abilities in math and physics, as well as support from Pope Benedict XIV, Agnesi would write an early calculus textbook. She later abandoned her work in mathematics and physics and chose a life of service to those in need. Click here for Vatican Observatory Faith and Science entries about Maria Gaetana Agnesi.
    [Show full text]
  • B2.IV Nuclear and Particle Physics
    B2.IV Nuclear and Particle Physics A.J. Barr February 13, 2014 ii Contents 1 Introduction 1 2 Nuclear 3 2.1 Structure of matter and energy scales . 3 2.2 Binding Energy . 4 2.2.1 Semi-empirical mass formula . 4 2.3 Decays and reactions . 8 2.3.1 Alpha Decays . 10 2.3.2 Beta decays . 13 2.4 Nuclear Scattering . 18 2.4.1 Cross sections . 18 2.4.2 Resonances and the Breit-Wigner formula . 19 2.4.3 Nuclear scattering and form factors . 22 2.5 Key points . 24 Appendices 25 2.A Natural units . 25 2.B Tools . 26 2.B.1 Decays and the Fermi Golden Rule . 26 2.B.2 Density of states . 26 2.B.3 Fermi G.R. example . 27 2.B.4 Lifetimes and decays . 27 2.B.5 The flux factor . 28 2.B.6 Luminosity . 28 2.C Shell Model § ............................. 29 2.D Gamma decays § ............................ 29 3 Hadrons 33 3.1 Introduction . 33 3.1.1 Pions . 33 3.1.2 Baryon number conservation . 34 3.1.3 Delta baryons . 35 3.2 Linear Accelerators . 36 iii CONTENTS CONTENTS 3.3 Symmetries . 36 3.3.1 Baryons . 37 3.3.2 Mesons . 37 3.3.3 Quark flow diagrams . 38 3.3.4 Strangeness . 39 3.3.5 Pseudoscalar octet . 40 3.3.6 Baryon octet . 40 3.4 Colour . 41 3.5 Heavier quarks . 43 3.6 Charmonium . 45 3.7 Hadron decays . 47 Appendices 48 3.A Isospin § ................................ 49 3.B Discovery of the Omega § ......................
    [Show full text]
  • Ions, Protons, and Photons As Signatures of Monopoles
    universe Article Ions, Protons, and Photons as Signatures of Monopoles Vicente Vento Departamento de Física Teórica-IFIC, Universidad de Valencia-CSIC, 46100 Burjassot (Valencia), Spain; [email protected] Received: 8 October 2018; Accepted: 1 November 2018; Published: 7 November 2018 Abstract: Magnetic monopoles have been a subject of interest since Dirac established the relationship between the existence of monopoles and charge quantization. The Dirac quantization condition bestows the monopole with a huge magnetic charge. The aim of this study was to determine whether this huge magnetic charge allows monopoles to be detected by the scattering of charged ions and protons on matter where they might be bound. We also analyze if this charge favors monopolium (monopole–antimonopole) annihilation into many photons over two photon decays. 1. Introduction The theoretical justification for the existence of classical magnetic poles, hereafter called monopoles, is that they add symmetry to Maxwell’s equations and explain charge quantization. Dirac showed that the mere existence of a monopole in the universe could offer an explanation of the discrete nature of the electric charge. His analysis leads to the Dirac Quantization Condition (DQC) [1,2] eg = N/2, N = 1, 2, ..., (1) where e is the electron charge, g the monopole magnetic charge, and we use natural units h¯ = c = 1 = 4p#0. Monopoles have been a subject of experimental interest since Dirac first proposed them in 1931. In Dirac’s formulation, monopoles are assumed to exist as point-like particles and quantum mechanical consistency conditions lead to establish the value of their magnetic charge. Because of of the large magnetic charge as a consequence of Equation (1), monopoles can bind in matter [3].
    [Show full text]
  • STRANGE MESON SPECTROSCOPY in Km and K$ at 11 Gev/C and CHERENKOV RING IMAGING at SLD *
    SLAC-409 UC-414 (E/I) STRANGE MESON SPECTROSCOPY IN Km AND K$ AT 11 GeV/c AND CHERENKOV RING IMAGING AT SLD * Youngjoon Kwon Stanford Linear Accelerator Center Stanford University Stanford, CA 94309 January 1993 Prepared for the Department of Energy uncer contract number DE-AC03-76SF005 15 Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. * Ph.D. thesis ii Abstract This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (GRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part I: The CIUD system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e+e- collisions at ,/Z = mzo. By measuring the angles of emission of the Cherenkov photons inside liquid and gaseous radiators, r/K/p separation will be achieved up to N 30 GeV/c. The signals from CRID are read in three coordinates, one of which is measured by charge-division technique. To obtain a N 1% spatial resolution in the charge- division, low-noise CRID preamplifier prototypes were developed and tested re- sulting in < 1000 electrons noise for an average photoelectron signal with 2 x lo5 gain. To help ensure the long-term stability of CRID operation at high efficiency, a comprehensive monitoring and control system was developed. This system contin- uously monitors and/or controls various operating quantities such as temperatures, pressures, and flows, mixing and purity of the various fluids.
    [Show full text]
  • Lecture 2 - Energy and Momentum
    Lecture 2 - Energy and Momentum E. Daw February 16, 2012 1 Energy In discussing energy in a relativistic course, we start by consid- ering the behaviour of energy in the three regimes we worked with last time. In the first regime, the particle velocity v is much less than c, or more precisely β < 0:3. In this regime, the rest energy ER that the particle has by virtue of its non{zero rest mass is much greater than the kinetic energy T which it has by virtue of its kinetic energy. The rest energy is given by Einstein's famous equation, 2 ER = m0c (1) So, here is an example. An electron has a rest mass of 0:511 MeV=c2. What is it's rest energy?. The important thing here is to realise that there is no need to insert a factor of (3×108)2 to convert from rest mass in MeV=c2 to rest energy in MeV. The units are such that 0.511 is already an energy in MeV, and to get to a mass you would need to divide by c2, so the rest mass is (0:511 MeV)=c2, and all that is left to do is remove the brackets. If you divide by 9 × 1016 the answer is indeed a mass, but the units are eV m−2s2, and I'm sure you will appreciate why these units are horrible. Enough said about that. Now, what about kinetic energy? In the non{relativistic regime β < 0:3, the kinetic energy is significantly smaller than the rest 1 energy.
    [Show full text]
  • Melvin Schwartz 1932-2006
    MELVIN SCHWARTZ 1932-2006 A Biographical Memoir by N. P. SAMIOS AND P. YAMIN © 2012 The National Academy of Sciences Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. MELVIN SCHWARTZ Courtesy of Brookhaven National Laboratories. November 2, 1932–August 28, 2006 BY N. P. SAMIOS AND P. YAMIN MEL SCHWARTZ DIED ON August 28, 2006, in Twin Falls, Idaho. He was born on 1 November 2, 1932, in New York City. He grew up in the Great Depression, but with a sense of optimism and desire to use his mind for the betterment of human- kind. He entered the Bronx High School of Science in the fall of 1945. It was there that his interest in physics began and that he recognized the importance of interactions with peers in determining his sense of direction in life. One of his classmates and future colleagues recalled that “even then” he wanted a Nobel Prize. Mel noted: My interest in physics began at the age of 12 when I entered the Bronx High School of Science. The four years I spent there were certainly among the most exciting and stimulating in my life, mostly because of the interaction with the other students of similar background, interest, and ability. MELVIN SCHWARTZ MELVIN On Sunday afternoons he attended a school run by the secular and Zionist Yiddish and many others. As Mel commented, “This faculty [was] at this time unmatched by any in the world, largely Nationaler Arbeter Farband (Jewish National Workers Alliance).
    [Show full text]
  • 01Ii Beam Line
    STA N FO RD LIN EA R A C C ELERA TO R C EN TER Fall 2001, Vol. 31, No. 3 CONTENTS A PERIODICAL OF PARTICLE PHYSICS FALL 2001 VOL. 31, NUMBER 3 Guest Editor MICHAEL RIORDAN Editors RENE DONALDSON, BILL KIRK Contributing Editors GORDON FRASER JUDY JACKSON, AKIHIRO MAKI MICHAEL RIORDAN, PEDRO WALOSCHEK Editorial Advisory Board PATRICIA BURCHAT, DAVID BURKE LANCE DIXON, EDWARD HARTOUNI ABRAHAM SEIDEN, GEORGE SMOOT HERMAN WINICK Illustrations TERRY ANDERSON Distribution CRYSTAL TILGHMAN The Beam Line is published quarterly by the Stanford Linear Accelerator Center, Box 4349, Stanford, CA 94309. Telephone: (650) 926-2585. EMAIL: [email protected] FAX: (650) 926-4500 Issues of the Beam Line are accessible electroni- cally on the World Wide Web at http://www.slac. stanford.edu/pubs/beamline. SLAC is operated by Stanford University under contract with the U.S. Department of Energy. The opinions of the authors do not necessarily reflect the policies of the Stanford Linear Accelerator Center. Cover: The Sudbury Neutrino Observatory detects neutrinos from the sun. This interior view from beneath the detector shows the acrylic vessel containing 1000 tons of heavy water, surrounded by photomultiplier tubes. (Courtesy SNO Collaboration) Printed on recycled paper 2 FOREWORD 32 THE ENIGMATIC WORLD David O. Caldwell OF NEUTRINOS Trying to discern the patterns of neutrino masses and mixing. FEATURES Boris Kayser 42 THE K2K NEUTRINO 4 PAULI’S GHOST EXPERIMENT A seventy-year saga of the conception The world’s first long-baseline and discovery of neutrinos. neutrino experiment is beginning Michael Riordan to produce results. Koichiro Nishikawa & Jeffrey Wilkes 15 MINING SUNSHINE The first results from the Sudbury 50 WHATEVER HAPPENED Neutrino Observatory reveal TO HOT DARK MATTER? the “missing” solar neutrinos.
    [Show full text]
  • Glossary of Terms Absorption Line a Dark Line at a Particular Wavelength Superimposed Upon a Bright, Continuous Spectrum
    Glossary of terms absorption line A dark line at a particular wavelength superimposed upon a bright, continuous spectrum. Such a spectral line can be formed when electromag- netic radiation, while travelling on its way to an observer, meets a substance; if that substance can absorb energy at that particular wavelength then the observer sees an absorption line. Compare with emission line. accretion disk A disk of gas or dust orbiting a massive object such as a star, a stellar-mass black hole or an active galactic nucleus. An accretion disk plays an important role in the formation of a planetary system around a young star. An accretion disk around a supermassive black hole is thought to be the key mecha- nism powering an active galactic nucleus. active galactic nucleus (agn) A compact region at the center of a galaxy that emits vast amounts of electromagnetic radiation and fast-moving jets of particles; an agn can outshine the rest of the galaxy despite being hardly larger in volume than the Solar System. Various classes of agn exist, including quasars and Seyfert galaxies, but in each case the energy is believed to be generated as matter accretes onto a supermassive black hole. adaptive optics A technique used by large ground-based optical telescopes to remove the blurring affects caused by Earth’s atmosphere. Light from a guide star is used as a calibration source; a complicated system of software and hardware then deforms a small mirror to correct for atmospheric distortions. The mirror shape changes more quickly than the atmosphere itself fluctuates.
    [Show full text]
  • Foundation Document Manhattan Project National Historical Park Tennessee, New Mexico, Washington January 2017 Foundation Document
    NATIONAL PARK SERVICE • U.S. DEPARTMENT OF THE INTERIOR Foundation Document Manhattan Project National Historical Park Tennessee, New Mexico, Washington January 2017 Foundation Document MANHATTAN PROJECT NATIONAL HISTORICAL PARK Hanford Washington ! Los Alamos Oak Ridge New Mexico Tennessee ! ! North 0 700 Kilometers 0 700 Miles More detailed maps of each park location are provided in Appendix E. Manhattan Project National Historical Park Contents Mission of the National Park Service 1 Mission of the Department of Energy 2 Introduction 3 Part 1: Core Components 4 Brief Description of the Park. 4 Oak Ridge, Tennessee. 5 Los Alamos, New Mexico . 6 Hanford, Washington. 7 Park Management . 8 Visitor Access. 8 Brief History of the Manhattan Project . 8 Introduction . 8 Neutrons, Fission, and Chain Reactions . 8 The Atomic Bomb and the Manhattan Project . 9 Bomb Design . 11 The Trinity Test . 11 Hiroshima and Nagasaki, Japan . 12 From the Second World War to the Cold War. 13 Legacy . 14 Park Purpose . 15 Park Signifcance . 16 Fundamental Resources and Values . 18 Related Resources . 22 Interpretive Themes . 26 Part 2: Dynamic Components 27 Special Mandates and Administrative Commitments . 27 Special Mandates . 27 Administrative Commitments . 27 Assessment of Planning and Data Needs . 28 Analysis of Fundamental Resources and Values . 28 Identifcation of Key Issues and Associated Planning and Data Needs . 28 Planning and Data Needs . 31 Part 3: Contributors 36 Appendixes 38 Appendix A: Enabling Legislation for Manhattan Project National Historical Park. 38 Appendix B: Inventory of Administrative Commitments . 43 Appendix C: Fundamental Resources and Values Analysis Tables. 48 Appendix D: Traditionally Associated Tribes . 87 Appendix E: Department of Energy Sites within Manhattan Project National Historical Park .
    [Show full text]
  • Relativistic Particle Orbits
    H. Kleinert, PATH INTEGRALS August 12, 2014 (/home/kleinert/kleinert/books/pathis/pthic19.tex) Agri non omnes frugiferi sunt Not all fields are fruitful Cicero (106 BC–43 BC), Tusc. Quaest., 2, 5, 13 19 Relativistic Particle Orbits Particles moving at large velocities near the speed of light are called relativistic particles. If such particles interact with each other or with an external potential, they exhibit quantum effects which cannot be described by fluctuations of a single particle orbit. Within short time intervals, additional particles or pairs of particles and antiparticles are created or annihilated, and the total number of particle orbits is no longer invariant. Ordinary quantum mechanics which always assumes a fixed number of particles cannot describe such processes. The associated path integral has the same problem since it is a sum over a given set of particle orbits. Thus, even if relativistic kinematics is properly incorporated, a path integral cannot yield an accurate description of relativistic particles. An extension becomes necessary which includes an arbitrary number of mutually linked and branching fluctuating orbits. Fortunately, there exists a more efficient way of dealing with relativistic particles. It is provided by quantum field theory. We have demonstrated in Section 7.14 that a grand-canonical ensemble of particle orbits can be described by a functional integral of a single fluctuating field. Branch points of newly created particle lines are accounted for by anharmonic terms in the field action. The calculation of their effects proceeds by perturbation theory which is systematically performed in terms of Feynman diagrams with calculation rules very similar to those in Section 3.18.
    [Show full text]
  • Sc Ence Celebrating the Neutrino Number 25 1997
    Los Alamos Sc ence Celebrating the Neutrino Number 25 1997 Celebrating the Neutrino . .1 The Evidence for Oscillations . .116 Bill Louis, Vern Sandberg, Gerry Garvey, Hywel White, Geoffrey Mills, and Rex Tayloe Reines-Cowan Experiments—Detecting the Poltergeist . .4 Neutrino oscillations are invoked as the explanation in experiments with solar, atmospheric, and accelerator- A compilation of papers and notes by Fred Reines and Clyde Cowan, Jr. produced (LSND) neutrinos. This summary of the experimental results for mixing angles and neutrino masses includes an interesting model that makes all three data sets consistent. The neutrino’s existence was inferred by Wolfgang Pauli in 1930, who feared that his clever construct might elude detection forever. Twenty-five years later, Fred Reines, Clyde Cowan, Jr., and a Los Alamos team detected the evasive particle. Their dedication to the chase and their innovative detection techniques set The Nature of Neutrinos in Muon Decay and Physics Beyond the Standard Model . .128 a precedent for all future neutrino experiments. Peter Herczeg Beta Decay and the Missing Energy . .7 Experiments that search for electron antineutrinos from m1-decay are sensitive not only to neutrino oscillations Fermi’s Theory of Beta Decay and Neutrino Processes . .8 but also to a class of muon decays that require leptonic interactions not present in the Standard Model. The author explores whether such decays could explain the observed excess of e1 events in the LSND experiments. The Oscillating Neutrino—An Introduction to Neutrino Masses and Mixing . .28 Exorcising Ghosts—In Pursuit of the Missing Solar Neutrinos . .136 Richard Slansky, Stuart Raby, Terry Goldman, and Gerry Garvey as told to Necia Grant Cooper Andrew Hime Today, the neutrino is at the center of particle physics as experimenters around the world explore the possibility that this tiny particle changes its identity just by moving between two points.
    [Show full text]