4 Mammalian Embryology and Organogenesis

Total Page:16

File Type:pdf, Size:1020Kb

4 Mammalian Embryology and Organogenesis Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 4. Mammalian embryology and organogenesis Werneburg, Ingmar ; Spiekman, Stephan N F Abstract: 4.1 Historical introduction : The origin of the human being is one of the major philosophical questions. One way of answering it is through an ontogenetic and evolutionary approach. Theories about the developmental origin in the mother’s womb were first documented by Greek scholars in the 5th century BC (Breidbach 2015). Being dependent on the success of reproduction, fertility has triggered human thinking for a much longer period of human evolution as is documented in the art of the Paleolithic, the Mesolithic, the Neolithic, and later phases of human cultural evolution (Fig. 4.1). Fertility was manifested by the representation of stout mother goddesses with a demonstrative focus on their hips and breasts (Fig. 4.1 C) and by the presentation of erect penises in men (Fig. 4.1 G). In some cases, the process of birth was depicted as a key event of life (Fig. 4.1 D). Birth, pregnancy, and lactation of other vertebrate species were also of interest to ancient cultures and were illustrated, particularly, among species that played an important role in everyday life, such as prey and domesticated, mostly mammalian, animals (Fig. 4.1 A and I). Fertility rites, including hierogamy (Fig. 4.1 H) and sodomy (Fig. 4.1 J), are thought to have played a major role in prehistoric cults and were meant to increase the number of offspring and to guarantee their health (Frazer 1922, Campbell 1960). These attempts to understand and to influence our own development culminated in the artificial representation of homunculi in the Renaissance age,in which a human was “created” by alchemists in a jar. The mental construct of a test-tube baby (Fig. 4.1 K) was a symbol for the development of the human mind itself, which alchemists tried to raise to a higher level of cognition (Gebelein 1996, Wiesing 2004). The historical representation of homunculi also corresponds to the ideas of preformationists in the 17th century that the human being is fully present as a miniature in the male’s sperm and only has to unfold to progress through embryological development to a fully formed human (Fig. 4.1 F; Hartsoeker 1694). With the rise of evolutionary thinking (Bell et al. 2010), a broad scientific discourse about the unique anatomy and development of mammalian species emerged. Mammalian embryology received particular attention in comparative anatomy and physiology because of its relevance in understanding our own biological history (Haeckel 1874,1877, Keibel 1906). Recent scientific approaches try to manipulate the early embryology of mammals, including man,to prevent diseases (Gilbert 2006) or to select for particular forms through domestication (Clutton-Brock 1999). Experimental biological studies mainly focus on model organisms that are easy to breed, have a large number of offspring, and have short reproductive cycles. For placental embryology, the house mouse Mus musculus is most often used (Cook 1965, Green 1968, Theiler 1989, Hedrich 2012). Among marsupials, the opossum Monodelphis domestica and the wallaby Macropus eugenii are two of the most important model organisms (e.g., Smith 2002, Hickford et al. 2009, Keyte and Smith 2009, Rousmaniere et al. 2010). However, recent studies have highlighted the value of nonmodel organisms for testing the taxonomic applicability of experimental studies, and more evolutionary questions are being asked that require extensive knowledge of non-model organisms all over the tree of life (Butler and Juurlink 1987, Jenner and Wills 2007, Milinkovitch and Tzika 2007, Tzika and Milinkovitch 2008), including mammals (Werneburg et al. 2013). The aim of the present chapter is to provide a general overview of the main developmental differences among the three major mammalian groups, to characterize mammals among amniotes, and to present some crucial aspects of the anatomy and physiology of mammalian embryogenesis. We cover different aspects of embryology in a chronological order. We first discuss particular attributes of monotremes, followed by marsupials and lastly placental mammals. We also focus on the developmental peculiaritiesin humans. Finally, we summarize some discussions on the potential relationships between life history parameters and evolutionary patterns. The selection of topics is mainly anatomically oriented and reflects our personal morphological interest. It does not aim to represent an in-depth review of all aspects of mammalian embryology, nor does it aim to be complete. As new data, we present a reconstruction of the ancestral developmental sequence of external organ characters for Placentalia, which is based on a phylogenetic comparison of about 80 tetrapod species. DOI: https://doi.org/10.1515/9783110341553-004 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-165594 Book Section Published Version Originally published at: Werneburg, Ingmar; Spiekman, Stephan N F (2018). 4. Mammalian embryology and organogenesis. In: Zachos, Frank; Asher, Robert. Mammalian Evolution, Diversity and Systematics. Berlin: Walter de Gruyter, 59-116. DOI: https://doi.org/10.1515/9783110341553-004 2 Ingmar Werneburg, Stephan N. F. Spiekman 4 Mammalian embryology and organogenesis 4.1 Historical introduction anatomy and physiology because of its relevance in understanding our own biological history (Haeckel 1874, The origin of the human being is one of the major philo- 1877, Keibel 1906). sophical questions. One way of answering it is through an Recent scientific approaches try to manipulate the ontogenetic and evolutionary approach. Theories about early embryology of mammals, including man, to prevent the developmental origin in the mother’s womb were diseases (Gilbert 2006) or to select for particular forms first documented by Greek scholars in the 5th century through domestication (Clutton-Brock 1999). Experimen- BC (Breidbach 2015). Being dependent on the success of tal biological studies mainly focus on model organisms reproduction, fertility has triggered human thinking for a that are easy to breed, have a large number of offspring, much longer period of human evolution as is documented and have short reproductive cycles. For placental embry- in the art of the Paleolithic, the Mesolithic, the Neolithic, ology, the house mouse Mus musculus is most often used and later phases of human cultural evolution (Fig. 4.1). (Cook 1965, Green 1968, Theiler 1989, Hedrich 2012). Fertility was manifested by the representation of stout Among marsupials, the opossum Monodelphis domestica mother goddesses with a demonstrative focus on their hips and the wallaby Macropus eugenii are two of the most and breasts (Fig. 4.1 C) and by the presentation of erect important model organisms (e.g., Smith 2002, Hickford et penises in men (Fig. 4.1 G). In some cases, the process of al. 2009, Keyte and Smith 2009, Rousmaniere et al. 2010). birth was depicted as a key event of life (Fig. 4.1 D). Birth, However, recent studies have highlighted the value of non- pregnancy, and lactation of other vertebrate species were model organisms for testing the taxonomic applicability also of interest to ancient cultures and were illustrated, of experimental studies, and more evolutionary ques- particularly, among species that played an important role tions are being asked that require extensive knowledge in everyday life, such as prey and domesticated, mostly of non-model organisms all over the tree of life (Butler mammalian, animals (Fig. 4.1 A and I). Fertility rites, and Juurlink 1987, Jenner and Wills 2007, Milinkovitch including hierogamy (Fig. 4.1 H) and sodomy (Fig. 4.1 J), and Tzika 2007, Tzika and Milinkovitch 2008), including are thought to have played a major role in prehistoric cults mammals (Werneburg et al. 2013). and were meant to increase the number of offspring and to The aim of the present chapter is to provide a general guarantee their health (Frazer 1922, Campbell 1960). overview of the main developmental differences among the These attempts to understand and to influence our three major mammalian groups, to characterize mammals own development culminated in the artificial representa- among amniotes, and to present some crucial aspects of tion of homunculi in the Renaissance age, in which a the anatomy and physiology of mammalian embryogene- human was “created” by alchemists in a jar. The mental sis. We cover different aspects of embryology in a chron- construct of a test-tube baby (Fig. 4.1 K) was a symbol for ological order. We first discuss particular attributes of the development of the human mind itself, which alche- monotremes, followed by marsupials and lastly placental mists tried to raise to a higher level of cognition (Gebe- mammals. We also focus on the developmental peculiar- lein 1996, Wiesing 2004). The historical representation ities in humans. Finally, we summarize some discussions of homunculi also corresponds to the ideas of preforma- on the potential relationships between life history param- tionists in the 17th century that the human being is fully eters and evolutionary patterns. The selection of topics is present as a miniature in the male’s sperm and only has mainly anatomically oriented and reflects our personal to unfold to progress through embryological development morphological interest. It does not aim to represent an to a fully formed human
Recommended publications
  • 3 Embryology and Development
    BIOL 6505 − INTRODUCTION TO FETAL MEDICINE 3. EMBRYOLOGY AND DEVELOPMENT Arlet G. Kurkchubasche, M.D. INTRODUCTION Embryology – the field of study that pertains to the developing organism/human Basic embryology –usually taught in the chronologic sequence of events. These events are the basis for understanding the congenital anomalies that we encounter in the fetus, and help explain the relationships to other organ system concerns. Below is a synopsis of some of the critical steps in embryogenesis from the anatomic rather than molecular basis. These concepts will be more intuitive and evident in conjunction with diagrams and animated sequences. This text is a synopsis of material provided in Langman’s Medical Embryology, 9th ed. First week – ovulation to fertilization to implantation Fertilization restores 1) the diploid number of chromosomes, 2) determines the chromosomal sex and 3) initiates cleavage. Cleavage of the fertilized ovum results in mitotic divisions generating blastomeres that form a 16-cell morula. The dense morula develops a central cavity and now forms the blastocyst, which restructures into 2 components. The inner cell mass forms the embryoblast and outer cell mass the trophoblast. Consequences for fetal management: Variances in cleavage, i.e. splitting of the zygote at various stages/locations - leads to monozygotic twinning with various relationships of the fetal membranes. Cleavage at later weeks will lead to conjoined twinning. Second week: the week of twos – marked by bilaminar germ disc formation. Commences with blastocyst partially embedded in endometrial stroma Trophoblast forms – 1) cytotrophoblast – mitotic cells that coalesce to form 2) syncytiotrophoblast – erodes into maternal tissues, forms lacunae which are critical to development of the uteroplacental circulation.
    [Show full text]
  • Reptile-Like Physiology in Early Jurassic Stem-Mammals
    bioRxiv preprint doi: https://doi.org/10.1101/785360; this version posted October 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Reptile-like physiology in Early Jurassic stem-mammals Authors: Elis Newham1*, Pamela G. Gill2,3*, Philippa Brewer3, Michael J. Benton2, Vincent Fernandez4,5, Neil J. Gostling6, David Haberthür7, Jukka Jernvall8, Tuomas Kankanpää9, Aki 5 Kallonen10, Charles Navarro2, Alexandra Pacureanu5, Berit Zeller-Plumhoff11, Kelly Richards12, Kate Robson-Brown13, Philipp Schneider14, Heikki Suhonen10, Paul Tafforeau5, Katherine Williams14, & Ian J. Corfe8*. Affiliations: 10 1School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK. 2School of Earth Sciences, University of Bristol, Bristol, UK. 3Earth Science Department, The Natural History Museum, London, UK. 4Core Research Laboratories, The Natural History Museum, London, UK. 5European Synchrotron Radiation Facility, Grenoble, France. 15 6School of Biological Sciences, University of Southampton, Southampton, UK. 7Institute of Anatomy, University of Bern, Bern, Switzerland. 8Institute of Biotechnology, University of Helsinki, Helsinki, Finland. 9Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland. 10Department of Physics, University of Helsinki, Helsinki, Finland. 20 11Helmholtz-Zentrum Geesthacht, Zentrum für Material-und Küstenforschung GmbH Germany. 12Oxford University Museum of Natural History, Oxford, OX1 3PW, UK. 1 bioRxiv preprint doi: https://doi.org/10.1101/785360; this version posted October 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 13Department of Anthropology and Archaeology, University of Bristol, Bristol, UK. 14Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
    [Show full text]
  • Defects of Embryonic Organogenesis Resulting from Targeted Disruption of the N-Myc Gene in the Mouse
    Development 117, 1445-1455 (1993) 1445 Printed in Great Britain © The Company of Biologists Limited 1993 Defects of embryonic organogenesis resulting from targeted disruption of the N-myc gene in the mouse Shoji Sawai1, Akihiko Shimono1, Yoshio Wakamatsu1, Cynthia Palmes1, Kazunori Hanaoka2 and Hisato Kondoh1,* 1Department of Molecular Biology, School of Science, Nagoya University, Nagoya 464-01, Japan 2Division of Animal Models for Human Disease, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187, Japan *Author for correspondence SUMMARY The highest expression of the N-myc gene occurs during death of the embryos. Analyses indicated that the embryonic organogenesis in the mouse ontogeny, with mutant limbs failed to develop distal structures and the the peak of expression around embryonic day 9.5. development of bronchi from the trachea was defective Homozygous N-myc-deficient mice, produced by germ- in the lungs. The latter defect was largely corrected by line transmission of a disrupted allele in ES cells, devel- addition of fetal calf serum to the culture medium, sug- oped normally to day 10.5, indicating dispensability of gesting that an activity missing in the mutant lung was N-myc expression in the earlier period, but later accu- replenished by a component of the serum. The pheno- mulated organogenic abnormalities and died around type of N-myc-deficient mutant embryos indicated day 11.5. The most notable abnormalities were found in requirement of the N-myc function in many instances of the limb bud, visceral organs (lung, stomach, liver and tissue interactions in organogenesis and also in cell- heart) and the central/peripheral nervous systems, and autonomous regulation of tissue maturation.
    [Show full text]
  • EQUINE CONCEPTUS DEVELOPMENT – a MINI REVIEW Maria Gaivão 1, Tom Stout
    Gaivão & Stout Equine conceptus development – a mini review EQUINE CONCEPTUS DEVELOPMENT – A MINI REVIEW DESENVOLVIMENTO DO CONCEPTO DE EQUINO – MINI REVISÃO Maria Gaivão 1, Tom Stout 2 1 - CICV – Faculdade de Medicina Veterinária; ULHT – Universidade Lusófona de Humanidades e Tecnologias; [email protected] 2 - Utrecht University, Department of Equine Sciences, Section of Reproduction, The Netherlands. Abstract: Many aspects of early embryonic development in the horse are unusual or unique; this is of scientific interest and, in some cases, considerable practical significance. During early development the number of different cell types increases rapidly and the organization of these increasingly differentiated cells becomes increasingly intricate as a result of various inter-related processes that occur step-wise or simultaneously in different parts of the conceptus (i.e., the embryo proper and its associated membranes and fluid). Equine conceptus development is of practical interest for many reasons. Most significantly, following a high rate of successful fertilization (71-96%) (Ball, 1988), as many as 30-40% of developing embryos fail to survive beyond the first two weeks of gestation (Ball, 1988), the time at which gastrulation begins. Indeed, despite considerable progress in the development of treatments for common causes of sub-fertility and of assisted reproductive techniques to enhance reproductive efficiency, the need to monitor and rebreed mares that lose a pregnancy or the failure to produce a foal, remain sources of considerable economic loss to the equine breeding industry. Of course, the potential causes of early embryonic death are numerous and varied (e.g. persistent mating induced endometritis, endometrial gland insufficiency, cervical incompetence, corpus luteum (CL) failure, chromosomal, genetic and other unknown factors (LeBlanc, 2004).
    [Show full text]
  • Introduction to Plant Embryology Dr
    Introduction to Plant embryology Dr. Pallavi J.N.L. College Khagaul Plant Embryology • Embryology is the study of structure and development of embryo, including the structure and development of male and female reproductive organs, fertilisation and similar other processes. • Father of Indian Plant empryology- Panchanan Maheshwari • Plant embryogenesis is a process that occurs after the fertilization of an ovule to produce a fully developed plant embryo. This is a pertinent stage in the plant life cycle that is followed by dormancy and germination. • The zygote produced after fertilization, must undergo various cellular divisions and differentiations to become a mature embryo. An end stage embryo has five major components including the shoot apical meristem, hypocotyl, root meristem, root cap, and cotyledons. Unlike animal embryogenesis, plant embryogenesis results in an immature form of the plant, lacking most structures like leaves, stems, and reproductive structures. • The Phanerogams (the flowering-plants) are also called spermatophytes (the seed bearing plants). These plants propagate mainly through seeds. The seed is a structure in which the embryo is enclosed. Adjacent to the embryo, foods are stored either inside the endosperm (albuminous) or in cotyledon (exalbuminous) for future use. Life cycle of flowering plants • Alternation between a dominant sporophytic generation and a highly reduced gametophytic generation. Dominant sporophytic generation is diploid and reduced gaThe normal sexual cycle (amphimixing) involves two important processes: • (i) Meiosis and • (ii) Fertilization • In meiosis also known as reduction division, a diploid sporophytic cell spore mother cell) • gets converted into four haploid gametophytic cells. (“2n” number of chromosomes becomes half i.e. “n” number of chromosome) gametophytic generation is haploid.
    [Show full text]
  • Animal Form & Function
    Animals Animal Form & Function By far, most diversity of bauplane (body forms). And most variations within bauplane. Animals are Animated “ANIMAL” ≠ MAMMAL — Fascinating Behaviors Animal Cells • Eukaryotic • No cell wall No plastids No central vacuole • Multicellular: – extensive specialization & differentiation – unique cell-cell junctions Heyer 1 Animals Animals Blastulation & Gastrulation • Motile • Early embryonic development in animals 3 In most animals, cleavage results in the formation of a multicellular stage called a 1 The zygote of an animal • Highly differentiated blastula. The blastula of many animals is a undergoes a succession of mitotic tissues cell divisions called cleavage. hollow ball of cells. Blastocoel • Intercellular junctions Cleavage Cleavage – tissue-specific cadherins 6 The endoderm of the archenteron develops into Eight-cell stage Blastula Cross section Zygote • Extracellular protein the the animal’s of blastula fibers digestive tract. Blastocoel Endoderm – collagen 5 The blind pouch formed by gastrulation, called Ectoderm • Diploid life cycle the archenteron, opens to the outside Gastrula Gastrulation via the blastopore. Blastopore 4 Most animals also undergo gastrulation, a • Blastula/gastrula rearrangement of the embryo in which one end of the embryo folds inward, expands, and eventually fills the embryo blastocoel, producing layers of embryonic tissues: the Figure 32.2 ectoderm (outer layer) and the endoderm (inner layer). Primary embryonic germ layers Primary embryonic germ layers • Diploblastic: two germ
    [Show full text]
  • Embryology BOLK’S COMPANIONS FOR‑THE STUDY of MEDICINE
    Embryology BOLK’S COMPANIONS FOR‑THE STUDY OF MEDICINE EMBRYOLOGY Early development from a phenomenological point of view Guus van der Bie MD We would be interested to hear your opinion about this publication. You can let us know at http:// www.kingfishergroup.nl/ questionnaire/ About the Louis Bolk Institute The Louis Bolk Institute has conducted scientific research to further the development of organic and sustainable agriculture, nutrition, and health care since 1976. Its basic tenet is that nature is the source of knowledge about life. The Institute plays a pioneering role in its field through national and international collaboration by using experiential knowledge and by considering data as part of a greater whole. Through its groundbreaking research, the Institute seeks to contribute to a healthy future for people, animals, and the environment. For the Companions the Institute works together with the Kingfisher Foundation. Publication number: GVO 01 ISBN 90-74021-29-8 Price 10 € (excl. postage) KvK 41197208 Triodos Bank 212185764 IBAN: NL77 TRIO 0212185764 BIC code/Swift code: TRIONL 2U For credit card payment visit our website at www.louisbolk.nl/companions For further information: Louis Bolk Institute Hoofdstraat 24 NL 3972 LA Driebergen, Netherlands Tel: (++31) (0) 343 - 523860 Fax: (++31) (0) 343 - 515611 www.louisbolk.nl [email protected] Colofon: © Guus van der Bie MD, 2001, reprint 2011 Translation: Christa van Tellingen and Sherry Wildfeuer Design: Fingerprint.nl Cover painting: Leonardo da Vinci BOLK FOR THE STUDY OF MEDICINE Embryology ’S COMPANIONS Early Development from a Phenomenological Point of view Guus van der Bie MD About the author Guus van der Bie MD (1945) worked from 1967 to Education, a project of the Louis Bolk Instituut to 1976 as a lecturer at the Department of Medical produce a complement to the current biomedical Anatomy and Embryology at Utrecht State scientific approach of the human being.
    [Show full text]
  • Copyright by Alfire Sidik 2019
    Copyright by Alfire Sidik 2019 The Dissertation Committee for Alfire Sidik Certifies that this is the approved version of the following Dissertation: Genetic and Bioinformatic Approaches to Characterize Ethanol Teratogenesis. Committee: Johann K. Eberhart, Supervisor R. Adron Harris Vishwanath R. Iyer Christopher S. Sullivan John B. Wallingford Genetic and Bioinformatic Approaches to Characterize Ethanol Teratogenesis. by Alfire Sidik Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2019 Acknowledgements I first and foremost want to extend my deepest gratitude to my mentor, Dr. Johann K. Eberhart, without whom this dissertation would not be possible. Johann, thank you for your invaluable insight, patience, guidance, and unwavering encouragement. I am also extremely grateful to Mary Swartz. Mary, you truly are the glue that holds the lab together. I joined the lab with little-to-no wet lab and embryology experience and attribute a lot of what I learned to you. Thank you for always being receptive to my questions and for your valuable scientific advice. I would like to express my appreciation to all of my committee members for their constructive advice, suggestions, and professional guidance. I would especially like to thank Dr. Adron Harris. Adron, thank you for your compassion and support of me throughout the years. I’d like to thank all members of the lab, both past and present, who I’ve had the pleasure of working with. Thank you Neil McCarthy, Patrick McGurk, Ben Lovely, Anna Percy, Angie Martinez, Tim Kuka, Ranjeet Kar, Desire Buckley, Yohaan Fernandes, Scott Tucker, and Josh Everson.
    [Show full text]
  • Epigenetics Overview Kim Boekelheide Brown University
    Formative Center for the Evaluation of Environmental Impacts on Fetal Development Epigenetics Overview Kim Boekelheide Brown University I have funding from NIEHS, USEPA, and the American Chemistry Council. I am an occasional expert consultant for chemical and pharmaceutical companies, and own stock in CytoSolv, an early stage biotechnology company developing a wound healing therapeutic. Formative Center for the Evaluation of Environmental Impacts on Fetal Development Transgenerational Influences Later Life Outcomes Clinical Events and Susceptibilities • Growth Lifestyle, • Neurobehavior Nutrition & Social • Reproduction Stressors • Obesity • Cancer Developmental Exposures Developmental Environmental Chemicals Developmental Origins of Health and Disease Formative Center for the Evaluation of Environmental Impacts on Fetal Development http://embryology.med.unsw.edu.au/MolDev/epigenetic.htm http://embryology.med.unsw.edu.au/MolDev/epigenetic.htm Formative Center for the Evaluation of Environmental Impacts on Fetal Development Cartoon depicting the mechanism of miRNA transcription, processing, and regulatory activity. miRNA genes are transcribed by RNA polymerase II to form primary miRNA (pri-miRNA) molecules Greco S J , Rameshwar P PNAS 2007;104:15484-15489 ©2007 by National Academy of Sciences Formative Center for the Evaluation of Environmental Impacts on Fetal Development Formative Center for the Evaluation of Environmental Impacts on Fetal Development Female Adult Egg A active, B suppressed Imprinting Zygote Male Adult Sperm A suppressed,
    [Show full text]
  • Stages of Embryonic Development of the Zebrafish
    DEVELOPMENTAL DYNAMICS 2032553’10 (1995) Stages of Embryonic Development of the Zebrafish CHARLES B. KIMMEL, WILLIAM W. BALLARD, SETH R. KIMMEL, BONNIE ULLMANN, AND THOMAS F. SCHILLING Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254 (C.B.K., S.R.K., B.U., T.F.S.); Department of Biology, Dartmouth College, Hanover, NH 03755 (W.W.B.) ABSTRACT We describe a series of stages for Segmentation Period (10-24 h) 274 development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad peri- Pharyngula Period (24-48 h) 285 ods of embryogenesis-the zygote, cleavage, blas- Hatching Period (48-72 h) 298 tula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the Early Larval Period 303 changing spectrum of major developmental pro- Acknowledgments 303 cesses that occur during the first 3 days after fer- tilization, and we review some of what is known Glossary 303 about morphogenesis and other significant events that occur during each of the periods. Stages sub- References 309 divide the periods. Stages are named, not num- INTRODUCTION bered as in most other series, providing for flexi- A staging series is a tool that provides accuracy in bility and continued evolution of the staging series developmental studies. This is because different em- as we learn more about development in this spe- bryos, even together within a single clutch, develop at cies. The stages, and their names, are based on slightly different rates. We have seen asynchrony ap- morphological features, generally readily identi- pearing in the development of zebrafish, Danio fied by examination of the live embryo with the (Brachydanio) rerio, embryos fertilized simultaneously dissecting stereomicroscope.
    [Show full text]
  • Vertebrate Embryonic Cleavage Pattern Determination
    Chapter 4 Vertebrate Embryonic Cleavage Pattern Determination Andrew Hasley, Shawn Chavez, Michael Danilchik, Martin Wühr, and Francisco Pelegri Abstract The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate develop- ment. This chapter describes the early cleavage stages for species representing ray- finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these pat- terns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orien- tation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early devel- opment, as well as cytoskeletal specializations specific to early blastomeres A. Hasley • F. Pelegri (*) Laboratory of Genetics, University of Wisconsin—Madison, Genetics/Biotech Addition, Room 2424, 425-G Henry Mall, Madison, WI 53706, USA e-mail: [email protected] S. Chavez Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Physiology & Pharmacology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Obstetrics & Gynecology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA M.
    [Show full text]
  • Human Anatomy Bio 11 Embryology “Chapter 3”
    Human Anatomy Bio 11 Embryology “chapter 3” Stages of development 1. “Pre-” really early embryonic period: fertilization (egg + sperm) forms the zygote gastrulation [~ first 3 weeks] 2. Embryonic period: neurulation organ formation [~ weeks 3-8] 3. Fetal period: growth and maturation [week 8 – birth ~ 40 weeks] Human life cycle MEIOSIS • compare to mitosis • disjunction & non-disjunction – aneuploidy e.g. Down syndrome = trisomy 21 • visit http://www.ivc.edu/faculty/kschmeidler/Pages /sc-mitosis-meiosis.pdf • and/or http://www.ivc.edu/faculty/kschmeidler/Pages /HumGen/mit-meiosis.pdf GAMETOGENESIS We will discuss, a bit, at the end of the semester. For now, suffice to say that mature males produce sperm and mature females produce ova (ovum; egg) all of which are gametes Gametes are haploid which means that each gamete contains half the full portion of DNA, compared to somatic cells = all the rest of our cells Fertilization restores the diploid state. Early embryonic stages blastocyst (blastula) 6 days of human embryo development http://www.sisuhospital.org/FET.php human early embryo development https://opentextbc.ca/anatomyandphysiology/chapter/28- 2-embryonic-development/ https://embryology.med.unsw.edu.au/embryology/images/thumb/d/dd/Model_human_blastocyst_development.jpg/600px-Model_human_blastocyst_development.jpg Good Sites To Visit • Schmeidler: http://www.ivc.edu/faculty/kschmeidler/Pages /sc_EMBRY-DEV.pdf • https://embryology.med.unsw.edu.au/embryol ogy/index.php/Week_1 • https://opentextbc.ca/anatomyandphysiology/c hapter/28-2-embryonic-development/
    [Show full text]