A Glimpse Into the Molecular Entrails of Endoderm Formation

Total Page:16

File Type:pdf, Size:1020Kb

A Glimpse Into the Molecular Entrails of Endoderm Formation Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW A glimpse into the molecular entrails of endoderm formation Didier Y.R. Stainier Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, University of California, San Francisco, San Francisco, California 94143-0448, USA During organogenesis, the endoderm forms the epithelial some temporal distinction, I refer to cells as progenitors lining of the primitive gut tube from which the alimen- prior to the onset of gastrulation, and precursors during tary canal and associated organs, such as the liver and gastrulation stages. Finally, because the endoderm and pancreas, develop. Despite the physiological importance mesoderm often originate from the same, or adjacent, of these organs, our knowledge of the genes regulating regions of the embryo, a recurring theme of this review endoderm development has been limited. In the past few will be the analysis of how the embryo segregates these years, we have witnessed a rapid pace of discoveries re- two germ layers. garding the initial formation of this germ layer. Because the insights have come from studies in several model Endoderm formation in C. elegans systems, I have chosen to discuss endoderm formation not only in vertebrate model systems but also in Cae- The entire endoderm in C. elegans, that is, the 20 cells norhabditis elegans, Drosophila, sea urchins, and ascid- that constitute the intestine, originates from the E blas- ians. These studies reveal a high degree of conservation tomere at the 8-cell stage (Fig. 1A) (Sulston et al. 1983). E in some of the transcriptional regulators of endoderm itself is a daughter of EMS and the sister of MS, which differentiation, but seemingly more divergence in the in- gives rise to much of the mesoderm. Endoderm forma- tercellular signaling events leading to formation of this tion in C. elegans is under the control of a number of tissue. For example, transcription factors of the Gata and maternal proteins, including SKN-1, a bZIP/homeodo- Forkhead families are implicated in endoderm develop- main transcription factor that is required for both E and ment across the phyla. On the other hand, a role for MS development (Bowerman et al. 1992). SKN-1 directly TGF-␤, and more specifically Nodal, signaling, which is regulates the expression of two redundant GATA-type critical for endoderm formation in zebrafish, mouse, and transcription factor genes, med-1 and med-2, which like Xenopus, appears to be vertebrate specific. The studies skn-1 are necessary for EMS differentiation (Maduro et on vertebrate endoderm formation also suggest that we al. 2001). In addition, ectopic expression of either MED-1 have now gathered sufficient information to attempt to or MED-2 can induce mesendodermal differentiation in coax mammalian stem cells towards the endodermal lin- non-EMS cells (Maduro et al. 2001). eage. Downstream of MED-1 and MED-2, lie END-1 and END-3, another pair of redundant GATA factors. Losing both END-1 and END-3 results in the loss of endoderm Definition of the endoderm (Zhu et al. 1997). In fact, the ‘endodermal’ phenotype of these mutants is very similar to that seen in skn-1 and The endoderm is classically defined as the innermost med-1,2 mutants in that the E blastomere is converted to layer of the three Metazoan “germ layers” and as such it a C-like mesoectodermal progenitor. (The C blastomere, gives rise to the inner lining of the gut and its associated which is a daughter of P2, gives rise primarily to epider- organs. However, the term “endoderm” has also been mis and muscle.) Shortly after the time E is born and coopted for other developing structures such as some of end-1 and end-3 become activated, two additional the extraembryonic tissues in mammalian embryos. Un- GATA factors, ELT-2 and ELT-7 become expressed til the time when the nomenclature is adequately re- (Fukushige et al. 1998). Loss of ELT-2 alone leads to de- vised, the classically defined embryonic endoderm is of- generation of the gut, whereas loss of ELT-7 alone does ten referred to as “definitive endoderm” and these are not appear to have any phenotype. However, ELT-2 and the cells whose formation, or initial differentiation, I ELT-7 again appear to function redundantly in gut devel- will cover in this review. In addition and to establish opment as removal of both has a more profound effect on gut differentiation than removal of ELT-2 alone and ab- rogates transcription of many gut-specific genes. Ectopic E-MAIL [email protected]; FAX (415) 476-3892. Article and publication are at http://www.genesdev.org/cgi/doi/10.1101/ expression of any of these endoderm specific GATA fac- gad.974902. tors (END-1, END-3, ELT-2, or ELT-7) is sufficient to GENES & DEVELOPMENT 16:893–907 © 2002 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/02 $5.00; www.genesdev.org 893 Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Stainier Figure 1. Early cell lineage of the Caenorhabditis elegans embryo and fate maps of the Drosophila, sea urchin, Xenopus, zebrafish and mouse embryos showing the position of the mesodermal (red) and endodermal (yellow) progenitors. (A)InC. elegans,the mesendodermal progenitor EMS divides to give rise to MS, the mesodermal progenitor, and E, the endodermal progenitor. Prior to this division, P2 sends EMS a Wnt signal (encoded by mom-2) which leads to a decrease in POP-1 function in E, allowing endoderm formation. (B)InDrosophila, endodermal tissues originate from the poles of the blastoderm embryo. Note that both the foregut and hindgut are thought to be ectodermal (blue). (C) In sea urchin, the mesoderm lies vegetal to the endoderm so that during gastrulation, the mesoderm invaginates first followed by the endoderm. By the end of gastrulation, the endoderm forms the archenteron or primitive gut. (D)InXenopus, as in ascidians, most of the endoderm derives from the most vegetal aspect of the late blastula stage embryo. The suprablastoporal endoderm is not shown in this simplified drawing. (E) In zebrafish, the endoderm lies close to the margin at the late blastula stage. Mesodermal and endodermal progenitors are interspersed in this region while further away from the margin only mesodermal progenitors are present. (F) In mouse figure adapted from Wells and Melton (1999), gastrulation begins when mesodermal and endodermal progenitors start migrating through the primitive streak. After passing through the streak, the endodermal precursors and some mesodermal precursors, including those that will give rise to the notochord, migrate along the midline in an anterior direction. Other populations of mesodermal cells migrate more laterally. (PGCs) Primordial germ cells; (An) animal pole; (Veg) vegetal pole; (A) anterior; (P) posterior. promote widespread gut formation throughout the em- is essential for differentiation of the five different cell bryo (Zhu et al. 1998; J. Rothman, pers. comm.). Yet types of the pharynx (Mango et al. 1994; Horner et al. another GATA factor, ELT-4, is expressed later in gut 1998), its role in gut differentiation is not known. The development, though its function is unknown (J. Mc- presence of GATA sites within its promoter suggests Ghee, pers. comm.). Thus a network of GATA factors that at least part of pha-4 expression is regulated by that act in redundant pairs functions to regulate endo- member(s) of the GATA network (Kalb et al. 1998). derm formation and gut development in C. elegans.In The segregation of mesoderm and endoderm, which fact, of the 11 GATA factors in C. elegans, seven are happens when EMS divides, is regulated by a Wnt signal involved in endoderm development. that originates from P2, a cell adjacent to EMS (Fig. 1A). In addition to these GATA factors, a large number of Mutations that lead to the transformation of E to MS other transcription factors are specifically expressed in (More of MS, MOM), or the transformation of MS to E the endoderm. These include a Forkhead-domain tran- (Posterior Pharynx Deleted, POP) have been identified scription factor, PHA-4, which is expressed throughout and found to encode components of convergent Wnt and the intestine (Azzaria et al. 1996; Horner et al. 1998; Kalb MAP kinase signaling cascades (for review, see Thorpe et et al. 1998) and at higher levels throughout the pharynx, al. 2000). These signals allow endoderm development to the anterior organ of the digestive tract. Although PHA-4 occur. For example, mom-2 encodes the Wnt protein 894 GENES & DEVELOPMENT Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Endoderm formation necessary for endoderm formation (Thorpe et al. 1997), primordia suggesting that it regulates this process. In whereas pop-1 encodes a Tcf homolog that inhibits en- fact, analysis of fork head function in the secretory cells doderm formation (Lin et al. 1995). Additional compo- of the Drosophila salivary gland shows that it is required nents of this pathway include WRM-1, a ␤-catenin ho- for constriction of the apical surface membrane (Myat molog necessary for endoderm formation (Rocheleau et and Andrew 2000), a process necessary for cell invagina- al. 1999), and MOM-4, a MAP3K also necessary for en- tion. Another gene expressed in the Drosophila midgut doderm formation (Meneghini et al. 1999; Shin et al. is hepatocyte nuclear factor 4 (HNF4), which encodes a 1999). A model of how this Wnt–MAPK signaling path- member of the steroid hormone receptor superfamily way integrates with the MED transcription factors to and, as its name indicates, has been associated with en- positively regulate the expression of the endoderm-speci- doderm development in vertebrates (Zhong et al.
Recommended publications
  • 3 Embryology and Development
    BIOL 6505 − INTRODUCTION TO FETAL MEDICINE 3. EMBRYOLOGY AND DEVELOPMENT Arlet G. Kurkchubasche, M.D. INTRODUCTION Embryology – the field of study that pertains to the developing organism/human Basic embryology –usually taught in the chronologic sequence of events. These events are the basis for understanding the congenital anomalies that we encounter in the fetus, and help explain the relationships to other organ system concerns. Below is a synopsis of some of the critical steps in embryogenesis from the anatomic rather than molecular basis. These concepts will be more intuitive and evident in conjunction with diagrams and animated sequences. This text is a synopsis of material provided in Langman’s Medical Embryology, 9th ed. First week – ovulation to fertilization to implantation Fertilization restores 1) the diploid number of chromosomes, 2) determines the chromosomal sex and 3) initiates cleavage. Cleavage of the fertilized ovum results in mitotic divisions generating blastomeres that form a 16-cell morula. The dense morula develops a central cavity and now forms the blastocyst, which restructures into 2 components. The inner cell mass forms the embryoblast and outer cell mass the trophoblast. Consequences for fetal management: Variances in cleavage, i.e. splitting of the zygote at various stages/locations - leads to monozygotic twinning with various relationships of the fetal membranes. Cleavage at later weeks will lead to conjoined twinning. Second week: the week of twos – marked by bilaminar germ disc formation. Commences with blastocyst partially embedded in endometrial stroma Trophoblast forms – 1) cytotrophoblast – mitotic cells that coalesce to form 2) syncytiotrophoblast – erodes into maternal tissues, forms lacunae which are critical to development of the uteroplacental circulation.
    [Show full text]
  • The Rotated Hypoblast of the Chicken Embryo Does Not Initiate an Ectopic Axis in the Epiblast
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 10733-10737, November 1995 Developmental Biology The rotated hypoblast of the chicken embryo does not initiate an ectopic axis in the epiblast ODED KHANER Department of Cell and Animal Biology, The Hebrew University, Jerusalem, Israel 91904 Communicated by John Gerhart, University of California, Berkeley, CA, July 14, 1995 ABSTRACT In the amniotes, two unique layers of cells, of the hypoblast and that the orientation of the streak and axis the epiblast and the hypoblast, constitute the embryo at the can be predicted from the polarity of the stage XIII epiblast. blastula stage. All the tissues of the adult will derive from the Still it was thought that the polarity of the epiblast is sufficient epiblast, whereas hypoblast cells will form extraembryonic for axial development in experimental situations, although in yolk sac endoderm. During gastrulation, the endoderm and normal development the polarity of the hypoblast is dominant the mesoderm of the embryo arise from the primitive streak, (5, 6). These reports (1-3, 5, 6), taken together, would imply which is an epiblast structure through which cells enter the that cells of the hypoblast not only have the ability to change interior. Previous investigations by others have led to the the fate of competent cells in the epiblast to initiate an ectopic conclusion that the avian hypoblast, when rotated with regard axis, but also have the ability to repress the formation of the to the epiblast, has inductive properties that can change the original axis in committed cells of the epiblast. At the same fate of competent cells in the epiblast to form an ectopic time, the results showed that the epiblast is not wholly depen- embryonic axis.
    [Show full text]
  • Defects of Embryonic Organogenesis Resulting from Targeted Disruption of the N-Myc Gene in the Mouse
    Development 117, 1445-1455 (1993) 1445 Printed in Great Britain © The Company of Biologists Limited 1993 Defects of embryonic organogenesis resulting from targeted disruption of the N-myc gene in the mouse Shoji Sawai1, Akihiko Shimono1, Yoshio Wakamatsu1, Cynthia Palmes1, Kazunori Hanaoka2 and Hisato Kondoh1,* 1Department of Molecular Biology, School of Science, Nagoya University, Nagoya 464-01, Japan 2Division of Animal Models for Human Disease, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187, Japan *Author for correspondence SUMMARY The highest expression of the N-myc gene occurs during death of the embryos. Analyses indicated that the embryonic organogenesis in the mouse ontogeny, with mutant limbs failed to develop distal structures and the the peak of expression around embryonic day 9.5. development of bronchi from the trachea was defective Homozygous N-myc-deficient mice, produced by germ- in the lungs. The latter defect was largely corrected by line transmission of a disrupted allele in ES cells, devel- addition of fetal calf serum to the culture medium, sug- oped normally to day 10.5, indicating dispensability of gesting that an activity missing in the mutant lung was N-myc expression in the earlier period, but later accu- replenished by a component of the serum. The pheno- mulated organogenic abnormalities and died around type of N-myc-deficient mutant embryos indicated day 11.5. The most notable abnormalities were found in requirement of the N-myc function in many instances of the limb bud, visceral organs (lung, stomach, liver and tissue interactions in organogenesis and also in cell- heart) and the central/peripheral nervous systems, and autonomous regulation of tissue maturation.
    [Show full text]
  • Pluripotency Factors Regulate Definitive Endoderm Specification Through Eomesodermin
    Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Pluripotency factors regulate definitive endoderm specification through eomesodermin Adrian Kee Keong Teo,1,2 Sebastian J. Arnold,3 Matthew W.B. Trotter,1 Stephanie Brown,1 Lay Teng Ang,1 Zhenzhi Chng,1,2 Elizabeth J. Robertson,4 N. Ray Dunn,2,5 and Ludovic Vallier1,5,6 1Laboratory for Regenerative Medicine, University of Cambridge, Cambridge CB2 0SZ, United Kingdom; 2Institute of Medical Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138648; 3Renal Department, Centre for Clinical Research, University Medical Centre, 79106 Freiburg, Germany; 4Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom Understanding the molecular mechanisms controlling early cell fate decisions in mammals is a major objective toward the development of robust methods for the differentiation of human pluripotent stem cells into clinically relevant cell types. Here, we used human embryonic stem cells and mouse epiblast stem cells to study specification of definitive endoderm in vitro. Using a combination of whole-genome expression and chromatin immunoprecipitation (ChIP) deep sequencing (ChIP-seq) analyses, we established an hierarchy of transcription factors regulating endoderm specification. Importantly, the pluripotency factors NANOG, OCT4, and SOX2 have an essential function in this network by actively directing differentiation. Indeed, these transcription factors control the expression of EOMESODERMIN (EOMES), which marks the onset of endoderm specification. In turn, EOMES interacts with SMAD2/3 to initiate the transcriptional network governing endoderm formation. Together, these results provide for the first time a comprehensive molecular model connecting the transition from pluripotency to endoderm specification during mammalian development.
    [Show full text]
  • Embryology BOLK’S COMPANIONS FOR‑THE STUDY of MEDICINE
    Embryology BOLK’S COMPANIONS FOR‑THE STUDY OF MEDICINE EMBRYOLOGY Early development from a phenomenological point of view Guus van der Bie MD We would be interested to hear your opinion about this publication. You can let us know at http:// www.kingfishergroup.nl/ questionnaire/ About the Louis Bolk Institute The Louis Bolk Institute has conducted scientific research to further the development of organic and sustainable agriculture, nutrition, and health care since 1976. Its basic tenet is that nature is the source of knowledge about life. The Institute plays a pioneering role in its field through national and international collaboration by using experiential knowledge and by considering data as part of a greater whole. Through its groundbreaking research, the Institute seeks to contribute to a healthy future for people, animals, and the environment. For the Companions the Institute works together with the Kingfisher Foundation. Publication number: GVO 01 ISBN 90-74021-29-8 Price 10 € (excl. postage) KvK 41197208 Triodos Bank 212185764 IBAN: NL77 TRIO 0212185764 BIC code/Swift code: TRIONL 2U For credit card payment visit our website at www.louisbolk.nl/companions For further information: Louis Bolk Institute Hoofdstraat 24 NL 3972 LA Driebergen, Netherlands Tel: (++31) (0) 343 - 523860 Fax: (++31) (0) 343 - 515611 www.louisbolk.nl [email protected] Colofon: © Guus van der Bie MD, 2001, reprint 2011 Translation: Christa van Tellingen and Sherry Wildfeuer Design: Fingerprint.nl Cover painting: Leonardo da Vinci BOLK FOR THE STUDY OF MEDICINE Embryology ’S COMPANIONS Early Development from a Phenomenological Point of view Guus van der Bie MD About the author Guus van der Bie MD (1945) worked from 1967 to Education, a project of the Louis Bolk Instituut to 1976 as a lecturer at the Department of Medical produce a complement to the current biomedical Anatomy and Embryology at Utrecht State scientific approach of the human being.
    [Show full text]
  • Integrin-Mediated Attachment of the Blastoderm to the Vitelline Envelope Impacts Gastrulation of Insects
    bioRxiv preprint doi: https://doi.org/10.1101/421701; this version posted October 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Integrin-mediated attachment of the blastoderm to the vitelline envelope impacts gastrulation of insects Stefan Münster1,2,3,4, Akanksha Jain1*, Alexander Mietke1,2,3,5*, Anastasios Pavlopoulos6, Stephan W. Grill1,3,4 □ & Pavel Tomancak1,3□ 1Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany; 2Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany; 3Center for Systems Biology, Dresden, Germany; 4Biotechnology Center and 5Chair of Scientific Computing for Systems Biology, Technical University Dresden, Germany; 6Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA *These authors contributed equally. □ To whom correspondence shall be addressed: [email protected] & [email protected] Abstract During gastrulation, physical forces reshape the simple embryonic tissue to form a complex body plan of multicellular organisms1. These forces often cause large-scale asymmetric movements of the embryonic tissue2,3. In many embryos, the tissue undergoing gastrulation movements is surrounded by a rigid protective shell4,5. While it is well recognized that gastrulation movements depend on forces generated by tissue-intrinsic contractility6,7, it is not known if interactions between the tissue and the protective shell provide additional forces that impact gastrulation. Here we show that a particular part of the blastoderm tissue of the red flour beetle Tribolium castaneum tightly adheres in a temporally coordinated manner to the vitelline envelope surrounding the embryo.
    [Show full text]
  • The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination
    | FLYBOOK DEVELOPMENT AND GROWTH The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination Adam C. Martin1 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 ORCID ID: 0000-0001-8060-2607 (A.C.M.) ABSTRACT A critical juncture in early development is the partitioning of cells that will adopt different fates into three germ layers: the ectoderm, the mesoderm, and the endoderm. This step is achieved through the internalization of specified cells from the outermost surface layer, through a process called gastrulation. In Drosophila, gastrulation is achieved through cell shape changes (i.e., apical constriction) that change tissue curvature and lead to the folding of a surface epithelium. Folding of embryonic tissue results in mesoderm and endoderm invagination, not as individual cells, but as collective tissue units. The tractability of Drosophila as a model system is best exemplified by how much we know about Drosophila gastrulation, from the signals that pattern the embryo to the molecular components that generate force, and how these components are organized to promote cell and tissue shape changes. For mesoderm invagination, graded signaling by the morphogen, Spätzle, sets up a gradient in transcriptional activity that leads to the expression of a secreted ligand (Folded gastrulation) and a transmembrane protein (T48). Together with the GPCR Mist, which is expressed in the mesoderm, and the GPCR Smog, which is expressed uniformly, these signals activate heterotrimeric G-protein and small Rho-family G-protein signaling to promote apical contractility and changes in cell and tissue shape. A notable feature of this signaling pathway is its intricate organization in both space and time.
    [Show full text]
  • Stages of Embryonic Development of the Zebrafish
    DEVELOPMENTAL DYNAMICS 2032553’10 (1995) Stages of Embryonic Development of the Zebrafish CHARLES B. KIMMEL, WILLIAM W. BALLARD, SETH R. KIMMEL, BONNIE ULLMANN, AND THOMAS F. SCHILLING Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254 (C.B.K., S.R.K., B.U., T.F.S.); Department of Biology, Dartmouth College, Hanover, NH 03755 (W.W.B.) ABSTRACT We describe a series of stages for Segmentation Period (10-24 h) 274 development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad peri- Pharyngula Period (24-48 h) 285 ods of embryogenesis-the zygote, cleavage, blas- Hatching Period (48-72 h) 298 tula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the Early Larval Period 303 changing spectrum of major developmental pro- Acknowledgments 303 cesses that occur during the first 3 days after fer- tilization, and we review some of what is known Glossary 303 about morphogenesis and other significant events that occur during each of the periods. Stages sub- References 309 divide the periods. Stages are named, not num- INTRODUCTION bered as in most other series, providing for flexi- A staging series is a tool that provides accuracy in bility and continued evolution of the staging series developmental studies. This is because different em- as we learn more about development in this spe- bryos, even together within a single clutch, develop at cies. The stages, and their names, are based on slightly different rates. We have seen asynchrony ap- morphological features, generally readily identi- pearing in the development of zebrafish, Danio fied by examination of the live embryo with the (Brachydanio) rerio, embryos fertilized simultaneously dissecting stereomicroscope.
    [Show full text]
  • Animal Phylum Poster Porifera
    Phylum PORIFERA CNIDARIA PLATYHELMINTHES ANNELIDA MOLLUSCA ECHINODERMATA ARTHROPODA CHORDATA Hexactinellida -- glass (siliceous) Anthozoa -- corals and sea Turbellaria -- free-living or symbiotic Polychaetes -- segmented Gastopods -- snails and slugs Asteroidea -- starfish Trilobitomorpha -- tribolites (extinct) Urochordata -- tunicates Groups sponges anemones flatworms (Dugusia) bristleworms Bivalves -- clams, scallops, mussels Echinoidea -- sea urchins, sand Chelicerata Cephalochordata -- lancelets (organisms studied in detail in Demospongia -- spongin or Hydrazoa -- hydras, some corals Trematoda -- flukes (parasitic) Oligochaetes -- earthworms (Lumbricus) Cephalopods -- squid, octopus, dollars Arachnida -- spiders, scorpions Mixini -- hagfish siliceous sponges Xiphosura -- horseshoe crabs Bio1AL are underlined) Cubozoa -- box jellyfish, sea wasps Cestoda -- tapeworms (parasitic) Hirudinea -- leeches nautilus Holothuroidea -- sea cucumbers Petromyzontida -- lamprey Mandibulata Calcarea -- calcareous sponges Scyphozoa -- jellyfish, sea nettles Monogenea -- parasitic flatworms Polyplacophora -- chitons Ophiuroidea -- brittle stars Chondrichtyes -- sharks, skates Crustacea -- crustaceans (shrimp, crayfish Scleropongiae -- coralline or Crinoidea -- sea lily, feather stars Actinipterygia -- ray-finned fish tropical reef sponges Hexapoda -- insects (cockroach, fruit fly) Sarcopterygia -- lobed-finned fish Myriapoda Amphibia (frog, newt) Chilopoda -- centipedes Diplopoda -- millipedes Reptilia (snake, turtle) Aves (chicken, hummingbird) Mammalia
    [Show full text]
  • Understanding Paraxial Mesoderm Development and Sclerotome Specification for Skeletal Repair Shoichiro Tani 1,2, Ung-Il Chung2,3, Shinsuke Ohba4 and Hironori Hojo2,3
    Tani et al. Experimental & Molecular Medicine (2020) 52:1166–1177 https://doi.org/10.1038/s12276-020-0482-1 Experimental & Molecular Medicine REVIEW ARTICLE Open Access Understanding paraxial mesoderm development and sclerotome specification for skeletal repair Shoichiro Tani 1,2, Ung-il Chung2,3, Shinsuke Ohba4 and Hironori Hojo2,3 Abstract Pluripotent stem cells (PSCs) are attractive regenerative therapy tools for skeletal tissues. However, a deep understanding of skeletal development is required in order to model this development with PSCs, and for the application of PSCs in clinical settings. Skeletal tissues originate from three types of cell populations: the paraxial mesoderm, lateral plate mesoderm, and neural crest. The paraxial mesoderm gives rise to the sclerotome mainly through somitogenesis. In this process, key developmental processes, including initiation of the segmentation clock, formation of the determination front, and the mesenchymal–epithelial transition, are sequentially coordinated. The sclerotome further forms vertebral columns and contributes to various other tissues, such as tendons, vessels (including the dorsal aorta), and even meninges. To understand the molecular mechanisms underlying these developmental processes, extensive studies have been conducted. These studies have demonstrated that a gradient of activities involving multiple signaling pathways specify the embryonic axis and induce cell-type-specific master transcription factors in a spatiotemporal manner. Moreover, applying the knowledge of mesoderm development, researchers have attempted to recapitulate the in vivo development processes in in vitro settings, using mouse and human PSCs. In this review, we summarize the state-of-the-art understanding of mesoderm development and in vitro modeling of mesoderm development using PSCs. We also discuss future perspectives on the use of PSCs to generate skeletal tissues for basic research and clinical applications.
    [Show full text]
  • Floral Ontogeny and Histogenesis in Leguminosae. Kittie Sue Derstine Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1988 Floral Ontogeny and Histogenesis in Leguminosae. Kittie Sue Derstine Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Derstine, Kittie Sue, "Floral Ontogeny and Histogenesis in Leguminosae." (1988). LSU Historical Dissertations and Theses. 4493. https://digitalcommons.lsu.edu/gradschool_disstheses/4493 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy.
    [Show full text]
  • Vertebrate Embryonic Cleavage Pattern Determination
    Chapter 4 Vertebrate Embryonic Cleavage Pattern Determination Andrew Hasley, Shawn Chavez, Michael Danilchik, Martin Wühr, and Francisco Pelegri Abstract The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate develop- ment. This chapter describes the early cleavage stages for species representing ray- finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these pat- terns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orien- tation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early devel- opment, as well as cytoskeletal specializations specific to early blastomeres A. Hasley • F. Pelegri (*) Laboratory of Genetics, University of Wisconsin—Madison, Genetics/Biotech Addition, Room 2424, 425-G Henry Mall, Madison, WI 53706, USA e-mail: [email protected] S. Chavez Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Physiology & Pharmacology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Obstetrics & Gynecology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA M.
    [Show full text]