The Makings of a Champion Or, Wind Innovation for Sale: the Wind Industry in the U.S

Total Page:16

File Type:pdf, Size:1020Kb

The Makings of a Champion Or, Wind Innovation for Sale: the Wind Industry in the U.S 1 The Makings of a Champion or, Wind Innovation for Sale: The Wind Industry in the U.S. 1980-2010 Matt G. Hopkins University of Massachusetts Lowell 2011 2 INTRODUCTION Long before GE or Clipper were spreading turbines around the country a handful of companies, government agencies, and academicians were inventing the wind industry from which GE is today generating billions in revenue and a strong global presence. The roots of the industry are international, and there is not a clear central person, group, or collection of companies that can be said to have provided a clear origin. Rather, many actively pursued wind power at the same time even though the outcomes of these efforts were different for every country. In addition, the mere suggestion to use wind as an electric energy source dates all the way back to the late 19th century, and some of the first experiments followed shortly thereafter. The use of wind by society is also an ancient practice most clearly symbolized by the Sail and the Windmill or Windpump. Hence there is little necessarily “new” about the idea of using wind as an energy source, though we can credit the last several decades as clearly ushering in the clear arrival of a new industry which provides a glance at what has potential to user in a revolution in the design and execution of energy infrastructure around the world. Such revelutions have provided the basis for mass economic This paper argues that despite its uneven performance the United States nevertheless succeeded in establishing a wind energy industry in the decades following the 1980s. Core technologies for wind turbines were advanced during the industry's formative years and U.S. based wind companies competed successfully against incumbent energy technologies and foreign suppliers of turbines. The early U.S. wind industry accomplished this within a rapidly changing energy and research policy context that took shape in the late seventies and morphed continually throughout the 1980s and 1990s, climaxing with the decision to deregulate energy markets in the 1990s. These changes began to restructure the entire energy infrastructure in the U.S. and altered the competitive landscape, starting a search for profits within a highly competitive market for energy. Early mistakes of the wind industry and a loss of policy support cost the U.S. a decade of development before it began a rapid ascent marked by the rise of General Electric as a major wind turbine supplier, after a string of bankruptcies in the mid 1990s destroyed the leading U.S. wind company and Enron, having acquired another, collapsed under its own corruption. The early wind energy pioneers of the U.S., who answered the call for energy security in an environmentally damaged world doubly faced a changing policy environment and the imperative to compete with incumbent technologies that had lower average costs. The advent of wind energy meant not only that development of wind resources had to occur, but also that a cost effective and technically advanced manufacturer had to emerge to compete with an international supply chain. The irony behind the task for the U.S. was that all incumbent energy technologies were still in fact enjoying actively subsidized R&D and other costs by the government. Amidst the wreckage of the changes taking hold, General Electric became quite suddenly in the early 2000s the world's 4th largest wind manufacturer in the world, a position it improved upon but which has yet to answer to competitive challenges from abroad. This pathway is far removed from the technological path suggested by the late 1970s, when large aerospace companies were selected to lead the U.S.'s charge into the wind industry. 3 PART I. GROWTH OF GLOBAL AND NATIONAL WIND POWER At the end of 2010 the Global Wind Energy Council (GWEC) estimated that approximately 194.39 GWs of installed wind capacity existed in the world. Not more than 0.01 GWs existed in 1980. Just 5 of the 73 countries developing wind resources have developed in excess of 10 GWs. This list includes the United States, China, India, Germany, and Spain. Together these countries represented approximately 74 percent of all the wind capacity in the world in 2010, suggesting by extension that these are also the largest markets for wind power in the world. According to Pernick et al. (2011), Wind Power was a $4 billion dollar global market in 2000 (p.4). By 2009 it peaked at $63.5 billion before succumbing to sour economic markets. It was $60.5 billion in 2010 (p.4). Until the early 1990s, world wind power development was overwhelmingly a result of U.S. development activities, but the loss of policy support from the mid 1980s to the early 1990s caused wind power development to shift overseas to Europe (especially Germany) and eventually to Asia (especially China). The U.S. represented close to 100 percent of all wind energy production in the world during the period of 1980-1987 before eroding to a low point of perhaps 14 percent in 2004. Correspondingly Europe, with the leadership of Germany in particular but also Spain, Italy, France, Denmark, the UK, Portugal, the Netherlands, Sweden, Ireland and others arose as aggressive adopters of the technology. In many European countries wind now represents as much as 20 percent of the total amount of energy generation, wherein the U.S. wind represents only about 2 percent of total energy generation (Flowers, 2010).1 Regionally, Europe leads world wind power development with about 86.08 GW or 44 percent of the world's existing wind capacity in 2010. As figure 1 illustrates below, world wind power development has tended to be a result of activities in the U.S., Germany, Spain and now China and India. Figure 2 illustrates the change in development leadership, as understood by wind capacity installed.2 During the last several decades, global competition for wind energy markets has seen countries leapfrogging each other several times already in terms of the amount of wind capacity installed. As illustrated in figure 3 below, the U.S. led the world in installed wind capacity in the early years between 1981 to around 1997, before Germany took the lead between 1997 to 2007. The U.S. then again dominated the world in installed wind capacity briefly in 2008 and 2009, only to be surpassed by China in 2010. China's dramatic rise to the top of the charts suggests a possible shift in wind industry momentum. In just four years, China has managed to approximately double its installed wind capacity every year, reaching 42 GWs in 2010 from just 1 GW in 2005. It should be viewed as a stunning ascent which eclipsed the best attempt by the U.S. so far to add to its own wind capacity, which was approximately 10 GWs in 2009. Only a handful of countries have so far managed to add much over 1 GW of wind capacity on an annual basis, though the U.S., China, and Germany began adding capacity at this rate around 1999. As figure 3 below illustrates, net annual additions of wind capacity have grown most rapidly in China while the U.S. has not managed a consistent growth trajectory despite 1 These are estimations per Flower's report: Denmark 20.5%, Portugal 14%, Spain 13.9%, Ireland 11.5%, Germany 8.1%, Greece 4.1%, Netherlands 4%, UK 3.2%, Italy 3%, India 2.9%, Austria 2.7% 2 Obviously installed wind capacity is not necessarily a good proxy for understanding wind manufacturing leadership or leadership in wind energy development activities. However, my research has tended to show that countries leading in wind capacity installations have tended also to have dominant shares of wind turbines supplied by domestic wind manufacturers. This is true for GE in the U.S., and Enercon for Germany. It is likely true for China as well. Government incentives and a strong domestic market for development (typically also a result of government support) has tended to aid the emergence of a strong domestic manufacturer. showing an appetite similar to China's in recent years. 200,000 180,000 160,000 140,000 s att 120,000 Fig 1. Installed Global Wind Capacity 1980-2010, Megawatts aW 100,000 eg M U.S. 80,000 4,000 3,500 Spain 3,000 60,000 2,500 2,000 40,000 1,500 1,000 Germany 20,000 India 500 0 Source: Earth Policy Institute,0 Global Wind Energy Council 45,000 1980 China 40,000 1995 Rest of World 35,000 1982 Fig. 2 Installed Capacity of the U.S., Germany, and China 1980 - 2010 s 30,000 att 1996 1984 aW 25,000 eg 20,000 1997 1986 M 15,000 10,000 1998 1988 5,000 China U.S. 1999 1990 Germany 0 Source: Earth Policy Institute, Global Wind Energy Council 2000 1992 1980 1994 2001 1982 2002 1984 2003 1986 4 2004 1988 2005 1990 2006 1992 2007 1994 2008 1996 2009 1998 2010 2000 2002 2004 2006 2008 2010 5 Figure 3: Net Annual Wind Capacity Additions (MWs) 1999-2010 18,000 16,000 Net Addition U.S. 14,000 Net Addition Germany 12,000 Net Addition China s t t 10,000 a W a 8,000 g e M 6,000 4,000 2,000 0 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Source: Earth Policy Institute, Global Wind Energy Council The National Market for Wind in the United States Wind energy has, despite a turbulent past, survived in the United States as an increasingly important form of renewable energy.
Recommended publications
  • Active Load Control Techniques for Wind Turbines
    SANDIA REPORT SAND2008-4809 Unlimited Release Printed July 2008 Active Load Control Techniques for Wind Turbines Dale Berg, Scott J. Johnson, C.P. “Case” van Dam Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from U.S.
    [Show full text]
  • T Help from Federal and State Agencies to Help Resolve the Problem but Were Ultimately Widely Condemned As Mass Slaughterers of Birds” (Windpoweringamerica.Gov, 2003)
    The Academic-Industry Research Network The Makings of a Champion or, Wind Innovation for Sale: The Wind Industry in the United States 1980-2011 AIR Working Paper #13-08/02 Matt HOPKINS Cambridge, Massachusetts August 2013 5/1/2013 © 2013 The Academic-Industry Research Network. All rights reserved. ii Table of Contents Page INTRODUCTION v PART I. GROWTH OF GLOBAL AND NATIONAL WIND POWER 1 The National Market for Wind in the United States................................................ 3 PART II. THE MAJOR PLAYERS / U.S. WIND POWER COMPANIES 7 The Global Leader: Vestas....................................................................................... 8 The U.S. Challenger: General Electric..................................................................... 9 The Battle for the U.S. Market................................................................................. 11 Market Foundations................................................................................................. 15 Technological Development: The Early Wind Pioneers.......................................... 17 Wind in the U.S. Power System............................................................................... 20 Market Development in the U.S.............................................................................. 22 The First Wind Rush................................................................................................ 23 Kenetech - Bad Management, Bad Timing, or Bad Support?.................................. 27 Zond Systems – Surprising
    [Show full text]
  • Unique Dynamometer Enables Rapid Advancement of Industry
    The Spectrum of innovati nClean Energy Innovation Unique Dynamometer Fundamental Science Market-Relevant Research Enables Rapid Advancement Systems Integration of Industry Leader Testing and Validation In the past decade, the National Renewable Energy Laboratory Commercialization (NREL) and newly formed wind turbine builder, Clipper Windpower Deployment Inc., forged a partnership based on rapid innovation. Over a four-year span, Clipper developed its Liberty Turbine using NREL’s unique wind turbine dynamometer, the only such facility in the world. It might Through deep technical expertise and an unmatched breadth of seem surprising that Clipper, begun in 2001, could move so quickly capabilities, NREL leads an integrated to viability, but Clipper’s roots go deep into NREL’s soil. Even so, the approach across the spectrum of renewable energy innovation. From project didn’t unfold without challenges. scientific discovery to accelerating market deployment, NREL works in Two decades before launching Clipper, its founder, James Dehlsen, had started Zond, a partnership with private industry pioneering U.S. wind power firm. Zond worked closely with NREL, and once it was acquired by to drive the transformation of our nation’s energy systems. another firm in the late 1990s, Dehlsen was free to pursue his latest wind turbine innovations. His new idea was the Distributed Generation Drivetrain (DGD), which Dehlsen patented. The This case study illustrates NREL’s DGD concept offered to lower the cost and weight of the wind turbine nacelle by employing contributions in Market-Relevant a radical departure from the standard turbine gearboxes. In part, weight savings came from Research through Deployment. reduced component bulk, accomplished by eliminating much of the heavy copper that would typically be required for windings in the rotor.
    [Show full text]
  • Historical Trajectories and Corporate Competences in Wind Energy
    Historical Trajectories and Corporate Competences in Wind Energy Geoffrey Jones Loubna Bouamane Working Paper 11-112 Copyright © 2011 by Geoffrey Jones and Loubna Bouamane Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may not be reproduced without permission of the copyright holder. Copies of working papers are available from the author. Historical Trajectories and Corporate Competences in Wind Energy* Geoffrey Jones Loubna Bouamane Harvard Business School Harvard Business School May 2011 Abstract This working paper surveys the business history of the global wind energy turbine industry between the late nineteenth century and the present day. It examines the long- term prominence of firms headquartered in Denmark, the more fluctuating role of US- based firms, and the more recent growth of German, Spanish, Indian and Chinese firms. While natural resource endowment in wind has not been very significant in explaining the country of origin of leading firms, the existence of rural areas not supplied by grid electricity was an important motivation for early movers in both the US and Denmark. Public policy was the problem rather than the opportunity for wind entrepreneurs before 1980, but beginning with feed-in tariffs and other policy measures taken in California, policy mattered a great deal. However, Danish firms, building on inherited technological capabilities and benefitting from a small-scale and decentralized industrial structure, benefitted more from Californian public policies. The more recent growth of German, Spanish and Chinese firms reflected both home country subsidies for wind energy and strong local content policies, whilst successful firms pursued successful strategies to acquire technologies and develop their own capabilities.
    [Show full text]
  • Linkages from DOE's Wind Energy Program R&D to Commercial Renewable Power Generation
    Acknowledgements This report, which traces the connections from DOE wind energy R&D to downstream renewable commercial power generation, was prepared for the U.S. Department of Energy (DOE) under Purchase Order No. 718187 with Sandia National Laboratories, Albuquerque, New Mexico, USA. Sandia is operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. Gretchen Jordan, Principal Member of Technical Staff, Sandia National Laboratories, provided technical oversight of the project. Jeff Dowd of DOE’s Office of Energy Efficiency and Renewable Energy (EERE), Office of Planning, Budget and Analysis (OPBA) was the DOE Project Manager. Rosalie Ruegg of TIA Consulting, Inc. was principal researcher and author of the report. Patrick Thomas of 1790 Analytics LLC, report co-author, had primary responsibility for the patent analysis. Laura LaMonica of LaMonica Associates provided assistance with the publication citation analysis for Sandia National Laboratories’ wind energy publications. The authors extend appreciation to the following DOE staff who made valuable contributions to the study: Wind research staff of the National Renewable Energy Laboratory’s (NREL’s) National Wind Technology Center (NWTC), including Maureen Hand of the Research & Development Group for providing on-going liaison with DOE’s Wind Energy Program, and to the following for granting interviews and author assistance: Robert Thresher, former NWTC Director and now Research Fellow; Sandy Butterfield, Principal Engineer, Enabling Research Section; Walt Musial,
    [Show full text]
  • Marine and Hydrokinetic Energy Technology: Finding the Path to Commercialization
    MARINE AND HYDROKINETIC ENERGY TECHNOLOGY: FINDING THE PATH TO COMMERCIALIZATION HEARING BEFORE THE SUBCOMMITTEE ON ENERGY AND ENVIRONMENT COMMITTEE ON SCIENCE AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED ELEVENTH CONGRESS FIRST SESSION DECEMBER 3, 2009 Serial No. 111–67 Printed for the use of the Committee on Science and Technology ( Available via the World Wide Web: http://www.science.house.gov U.S. GOVERNMENT PRINTING OFFICE 53–690PDF WASHINGTON : 2010 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE AND TECHNOLOGY HON. BART GORDON, Tennessee, Chair JERRY F. COSTELLO, Illinois RALPH M. HALL, Texas EDDIE BERNICE JOHNSON, Texas F. JAMES SENSENBRENNER JR., LYNN C. WOOLSEY, California Wisconsin DAVID WU, Oregon LAMAR S. SMITH, Texas BRIAN BAIRD, Washington DANA ROHRABACHER, California BRAD MILLER, North Carolina ROSCOE G. BARTLETT, Maryland DANIEL LIPINSKI, Illinois VERNON J. EHLERS, Michigan GABRIELLE GIFFORDS, Arizona FRANK D. LUCAS, Oklahoma DONNA F. EDWARDS, Maryland JUDY BIGGERT, Illinois MARCIA L. FUDGE, Ohio W. TODD AKIN, Missouri BEN R. LUJA´ N, New Mexico RANDY NEUGEBAUER, Texas PAUL D. TONKO, New York BOB INGLIS, South Carolina PARKER GRIFFITH, Alabama MICHAEL T. MCCAUL, Texas JOHN GARAMENDI, California MARIO DIAZ-BALART, Florida STEVEN R. ROTHMAN, New Jersey BRIAN P. BILBRAY, California JIM MATHESON, Utah ADRIAN SMITH, Nebraska LINCOLN DAVIS, Tennessee PAUL C. BROUN, Georgia BEN CHANDLER, Kentucky PETE OLSON, Texas RUSS CARNAHAN, Missouri BARON P. HILL, Indiana HARRY E. MITCHELL, Arizona CHARLES A.
    [Show full text]
  • Active Load Control Techniques for Wind Turbines
    SANDIA REPORT SAND2008-4809 Unlimited Release Printed August 2008 Active Load Control Techniques for Wind Turbines Scott J. Johnson, C.P. “Case” van Dam and Dale E. Berg Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy.
    [Show full text]
  • CFD Analysis of Rotating Two-Bladed Flatback Wind Turbine Rotor
    SANDIA REPORT SAND2008-1688 Unlimited Release Printed April 2008 CFD Analysis of Rotating Two-Bladed Flatback Wind Turbine Rotor David D. Chao and C.P. “Case” van Dam Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy.
    [Show full text]
  • Marine and Hydrokinetic Energy Development Technical Support and General Environmental Studies
    PNNL-19081 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Marine and Hydrokinetic Energy Development Technical Support and General Environmental Studies Report on Outreach to Stakeholders for Fiscal Year 2009 AE Copping SH Geerlofs January 2010 PNNL-19081 Marine and Hydrokinetic Energy Development Technical Support and General Environmental Studies Report on Outreach to Stakeholders for Fiscal Year 2009 AE Copping SH Geerlofs January 2010 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Summary In response to the Energy Independence and Security Act (EISA) of 2007, the U.S. Department of Energy, Energy Efficiency and Renewable Energy (EERE) Waterpower Program Office developed a program on marine and hydrokinetic (MHK) energy development. During fiscal year 2009 (FY09) the EERE Waterpower Program provided support to Pacific Northwest National Laboratory (PNNL) to enable staff to interact with the MHK industry, regulators, and other stakeholders to learn more about the challenges of accelerating the MHK industry to a sustainable source of energy and to make connections among those groups. PNNL staff carried out a program of stakeholder outreach during FY09 to accomplish the following: Identify the breadth of individuals and groups with a stake in MHK development to understand which groups have the ability to affect the course and success of MHK industrial development. Develop an understanding of the key environmental and socioeconomic issues facing MHK development. Identify stakeholders who can provide information about key environmental issues and outcomes of MHK development. Develop and deliver unbiased information about MHK development for the interested public.
    [Show full text]
  • The Makings of a Champion Or, Wind Innovation for Sale: the Wind Industry in the United States 1980-2011
    The Makings of a Champion or, Wind Innovation for Sale: The Wind Industry in the United States 1980-2011 Matt G. Hopkins Center for Industrial Competitiveness University of Massachusetts Lowell and The Academic-Industry Research Network April 2012 i Acknowledgments This paper would not have been possible without the Ford Foundation's project on Financial Institutions for Innovation and Development. I am also grateful for the INET project on The Stock Market and Innovative Enterprise for supporting this work. Special thanks to Professor William Lazonick. His support and encouragement throughout this process will be remembered. This work is also for my family which has endured many conversations about renewable energy. Thank you to the faculty of RESD for preparing me for this work and inspiring it. I would also thank all the individuals, faculty members, government employees, and community members that have shared their thoughts or answered my questions. From them I caught bright glimpses of the rich and fascinating wind power history of the United States. Finally, to everyone out there who wonder why simple ideas take so long to come to life. ii Table of Contents Page INTRODUCTION v PART I. GROWTH OF GLOBAL AND NATIONAL WIND POWER 1 The National Market for Wind in the United States................................................ 3 PART II. THE MAJOR PLAYERS / U.S. WIND POWER COMPANIES 7 The Global Leader: Vestas....................................................................................... 8 The U.S. Challenger: General Electric....................................................................
    [Show full text]
  • The Makings of a Champion Or, Wind Innovation for Sale: the Wind Industry in the United States 1980-2011
    The Makings of a Champion or, Wind Innovation for Sale: The Wind Industry in the United States 1980-2011 Matt G. Hopkins University of Massachusetts Lowell 2012 i Acknowledgments This paper wouldn't be possible with the Ford Foundation's project on Financial Institutions for Innovation and Development. I am also grateful for the INET project on The Stock Market and Innovative Enterprise for supporting this work. Special thanks to Professor William Lazonick His support and encouragement throughout this process will be remembered. This work is also for my family which has endured many conversations about renewable energy. Thank you to the faculty of RESD for preparing me for this work and inspiring it. I would also thank all the individuals, faculty members, government employees, and community members that have shared their thoughts or answered my questions. From them I caught bright glimpses of the rich and fascinating wind power history of the United States. Finally, to everyone out there who wonder why simple ideas take so long to come to life. ii Table of Contents Page INTRODUCTION v PART I. GROWTH OF GLOBAL AND NATIONAL WIND POWER 1 The National Market for Wind in the United States................................................ 3 PART II. THE MAJOR PLAYERS / U.S. WIND POWER COMPANIES 7 The Global Leader: Vestas....................................................................................... 8 The U.S. Challenger: General Electric..................................................................... 9 The Battle for the U.S. Market................................................................................
    [Show full text]