Renewable Energy in District Heating and Cooling: a Sector Roadmap for Remap, International Renewable Energy Agency, Abu Dhabi

Total Page:16

File Type:pdf, Size:1020Kb

Renewable Energy in District Heating and Cooling: a Sector Roadmap for Remap, International Renewable Energy Agency, Abu Dhabi RENEWABLE ENERGY IN DISTRICT HEATING AND COOLING A SECTOR ROADMAP FOR REMAP – A SECTOR ROADMAP – A SECTOR FOR REMAP DISTRICT HEATING AND COOLING AND HEATING DISTRICT RENEWABLE ENERGY IN ENERGY RENEWABLE A A Renewable Energy R oadmap March 2017 Copyright © IRENA 2017 Unless otherwise stated, this publication and material featured herein are the property of the International Renewable Energy Agency (IRENA) and are subject to copyright by IRENA. Material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that all such material is clearly attributed to IRENA. Material contained in this publication attributed to third parties may be subject to third-party copyright and separate terms of use and restrictions. ISBN 978-92-9260-016-7 (print) ISBN 978-92-9260-017-4 (web) AboutIRENA The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that supports countries in their transition to a sustainable energy future and serves as the principal platform for international co-operation, a centre of excellence, and a repository of policy, technology, resource and fi nancial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. Acknowledgements Contributions during the analysis and review were provided by Stefan Holler (Hochschule für Angewandte Wissenschaft und Kunst Hildesheim/Holzminden/Göttingen), Henrik Lund (Aalborg University), Ahmed Abdulla Al Nowais (Tabreed) and Xianli Zhu (UNEP DTU Partnership). IRENA colleagues Francisco Boshell, Dolf Gielen, Takatsune Ito, Gayathri Prakash and Nicholas Wagner and UNIGE colleagues Jérôme Faessler, Gregory Giuliani, Matteo Lupi and Andrea Moscariello also provided valuable comments. IRENA is grateful for the generous support of the Federal Republic of Germany, which made the publication of this report a reality. Authors: Martin Christoph Soini, Meinrad Christophe Bürer, David Parra Mendoza, Martin Kumar Patel (UNIGE), Jasper Rigter and Deger Saygin (IRENA) For further information or to provide feedback, please contact the REmap team: [email protected] Citation IRENA (2017), Renewable Energy in District Heating and Cooling: A Sector Roadmap for REmap, International Renewable Energy Agency, Abu Dhabi. wwwirenaorgremap Disclaimer This publication and the material featured herein are provided “as is”� All reasonable precautions have been taken by IRENA to verify the reliability of the material featured in this publication� Neither IRENA nor any of its offi cials, agents, data or other third-party content providers or licensors provides any warranty, including as to the accuracy, completeness or fi tness for a particular purpose or use of such material, or regarding the non-infringement of third-party rights, and they accept no responsibility or liability with regard to the use of this publication and the material featured therein� The information contained herein does not necessarily represent the views of the Members of IRENA, nor is it an endorsement of any project, product or service provider� The designations employed and the presentation of material herein do not imply the expression of any opinion on the part of IRENA concerning the legal status of any region, country, territory, city or area or of its authorities, or concerning the delimitation of frontiers or boundaries� CONTENTS FIGURES ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� III TABLES ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������V BOXES ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������V ABBREVIATIONS ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������VI EXECUTIVE SUMMARY �������������������������������������������������������������������������������������������������������������������������������������������������������������������1 1� INTRODUCTION TO REMAP ������������������������������������������������������������������������������������������������������������������������������������������������� 9 1�1 IRENA’s REmap programme��������������������������������������������������������������������������������������������������������������������������������������� 9 1�2 Role of district heating and cooling ������������������������������������������������������������������������������������������������������������������������� 9 1�3 Approach ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 9 2� RENEWABLE DISTRICT HEATING AND COOLING TODAY ������������������������������������������������������������������������������������12 2�1 Drivers ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������13 2�2 Current role �����������������������������������������������������������������������������������������������������������������������������������������������������������������������16 2�3 Case studies: lessons learned �����������������������������������������������������������������������������������������������������������������������������������23 3� POTENTIAL FOR RENEWABLE DISTRICT HEATING AND COOLING UP TO 2030 ��������������������������������������31 3�1 Reference Case �������������������������������������������������������������������������������������������������������������������������������������������������������������� 32 3�2 Availability of renewable resources for district heating and cooling �������������������������������������������������������35 3�3 Cost of renewable district heating and cooling ������������������������������������������������������������������������������������������������36 3�4 REmap ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 40 3�5 Structural Shift ���������������������������������������������������������������������������������������������������������������������������������������������������������������43 3�6 Costs, benefits and investment needs������������������������������������������������������������������������������������������������������������������46 4� SYNERGIES BETWEEN VARIABLE RENEWABLE POWER AND DISTRICT HEATING AND COOLING ���������������������������������������������������������������������������������������������������������������������50 5� BARRIERS AND OPPORTUNITIES TO RENEWABLE DISTRICT HEATING AND COOLING ���������������������52 5�1 General barriers and opportunities ������������������������������������������������������������������������������������������������������������������������53 5�2 Barriers and opportunities in specific city contexts ��������������������������������������������������������������������������������������� 60 6. CONCLUSIONS �������������������������������������������������������������������������������������������������������������������������������������������������������������������������63 REFERENCES ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������65 A sector roadmap for REmap i ANNEXES ANNEX 1: APPROACH AND METHODS �������������������������������������������������������������������������������������������������������������������������78 ANNEX 2: TECHNICAL PROPERTIES OF DISTRICT ENERGY SYSTEMS ���������������������������������������������������������82 ANNEX 3: AVAILABILITY OF RESOURCES ������������������������������������������������������������������������������������������������������������������84 ANNEX 4: FUEL COSTS ��������������������������������������������������������������������������������������������������������������������������������������������������������85 ANNEX 5: DETAILED COMPOSITION OF REMAP, STRUCTURAL SHIFT AND LEVELISED COSTS OF HEATING AND COOLING BY COUNTRY ���������������������������������������86 ii RENEWABLE ENERGY IN DISTRICT HEATING AND COOLING Figures Figure ES1: Current share of final annual heating and cooling demand met by DHC, 2014 �����������������������������2 Figure ES2: Breakdown of fuel use in DHC systems worldwide, 2014 �����������������������������������������������������������������������3 Figure ES3: Share of DHC generated using renewable heat ����������������������������������������������������������������������������������������� 4 Figure ES4: Additional costs and benefits of REmap options �������������������������������������������������������������������������������������� 6 Figure 1: Key factors influencing potential for renewable DHC with REmap....................................................11 Figure 2: Share of heat and cooling
Recommended publications
  • Microgeneration Potential in New Zealand
    Prepared for Parliamentary Commissioner for the Environment Microgeneration Potential in New Zealand A Study of Small-scale Energy Generation Potential by East Harbour Management Services ISBN: 1-877274-33-X May 2006 Microgeneration Potential in New Zealand East Harbour Executive summary The study of the New Zealand’s potential for micro electricity generation technologies (defined as local generation for local use) in the period up to 2035 shows that a total of approximately 580GWh per annum is possible within current Government policies. If electricity demand modifiers (solar water heating, passive solar design, and energy efficiency) are included, there is approximately an additional 15,800GWh per annum available. In total, around 16,400GWh of electricity can be either generated on-site, or avoided by adopting microgeneration of energy services. The study has considered every technology that the authors are aware of. However, sifting the technologies reduced the list to those most likely to be adopted to a measurable scale during the period of the study. The definition of micro electricity generation technologies includes • those that generate electricity to meet local on-site energy services, and • those that convert energy resources directly into local energy services, such as the supply of hot water or space heating, without the intermediate need for electricity. The study has considered the potential uptake of each technology within each of the periods to 2010, 2020, and 2035. It also covers residential energy services and those services for small- to medium-sized enterprises (SMEs) that can be obtained by on-site generation of electricity or substitution of electricity.
    [Show full text]
  • Consider Installing a Condensing Economizer, Energy Tips
    ADVANCED MANUFACTURING OFFICE Energy Tips: STEAM Steam Tip Sheet #26A Consider Installing a Condensing Economizer Suggested Actions The key to a successful waste heat recovery project is optimizing the use of the recovered energy. By installing a condensing economizer, companies can im- ■■ Determine your boiler capacity, prove overall heat recovery and steam system efficiency by up to 10%. Many average steam production, boiler applications can benefit from this additional heat recovery, such as district combustion efficiency, stack gas heating systems, wallboard production facilities, greenhouses, food processing temperature, annual hours of plants, pulp and paper mills, textile plants, and hospitals. Condensing economiz- operation, and annual fuel ers require site-specific engineering and design, and a thorough understanding of consumption. the effect they will have on the existing steam system and water chemistry. ■■ Identify in-plant uses for heated Use this tip sheet and its companion, Considerations When Selecting a water, such as boiler makeup Condensing Economizer, to learn about these efficiency improvements. water heating, preheating, or A conventional feedwater economizer reduces steam boiler fuel requirements domestic hot water or process by transferring heat from the flue gas to the boiler feedwater. For natural gas-fired water heating requirements. boilers, the lowest temperature to which flue gas can be cooled is about 250°F ■■ Determine the thermal to prevent condensation and possible stack or stack liner corrosion. requirements that can be met The condensing economizer improves waste heat recovery by cooling the flue through installation of a gas below its dew point, which is about 135°F for products of combustion of condensing economizer.
    [Show full text]
  • An Overview of the State of Microgeneration Technologies in the UK
    An overview of the state of microgeneration technologies in the UK Nick Kelly Energy Systems Research Unit Mechanical Engineering University of Strathclyde Glasgow Drivers for Deployment • the UK is a signatory to the Kyoto protocol committing the country to 12.5% cuts in GHG emissions • EU 20-20-20 – reduction in EU greenhouse gas emissions of at least 20% below 1990 levels; 20% of all energy consumption to come from renewable resources; 20% reduction in primary energy use compared with projected levels, to be achieved by improving energy efficiency. • UK Climate Change Act 2008 – self-imposed target “to ensure that the net UK carbon account for the year 2050 is at least 80% lower than the 1990 baseline.” – 5-year ‘carbon budgets’ and caps, carbon trading scheme, renewable transport fuel obligation • Energy Act 2008 – enabling legislation for CCS investment, smart metering, offshore transmission, renewables obligation extended to 2037, renewable heat incentive, feed-in-tariff • Energy Act 2010 – further CCS legislation • plus more legislation in the pipeline .. Where we are in 2010 • in the UK there is very significant growth in large-scale renewable generation – 8GW of capacity in 2009 (up 18% from 2008) – Scotland 31% of electricity from renewable sources 2010 • Microgeneration lags far behind – 120,000 solar thermal installations [600 GWh production] – 25,000 PV installations [26.5 Mwe capacity] – 28 MWe capacity of CHP (<100kWe) – 14,000 SWECS installations 28.7 MWe capacity of small wind systems – 8000 GSHP systems Enabling Microgeneration
    [Show full text]
  • Ergebnisbericht
    Langfristige Sicherung von Versorgung und Mobilität im Landkreis Wesermarsch Modellvorhaben des Bundesministeriums für Verkehr und digitale Infrastruktur ERGEBNISBERICHT BMVI-Modellvorhaben „Versorgung & Mobilität“ Modellregion Wesermarsch Das Modellvorhaben „Langfristige Sicherung von Versorgung und Mobilität in ländlichen Räumen“ für die Modellregion Landkreis Wesermarsch wurde gefördert mit Mitteln des Bundesministeriums für Verkehr und digitale Infrastruktur Zuwendungsempfänger: Landkreis Wesermarsch Fördermittelverwaltung: BBSR Bundesinstitut für Bau-, Stadt- und Raumforschung Projektnummer: SWD 10.08.90-15.113 Thema: Modellvorhaben „Versorgung & Mobilität“ (MoVo VerMob) Projektlaufzeit: 1.1.2016 – 15.9.2018 Verfasser: Landkreis Wesermarsch FD 91 – Büro des Landrates Meike Lücke Poggenburger Str. 15 26919 Brake in Kooperation mit: IGES Institut GmbH Christoph Gipp, René Kämpfer Friedrichstraße 180 10117 Berlin unter Einbeziehung des lokalspezifischen Wissens regionaler Akteurinnen und Akteure Schlussredaktion und Layout-Anpassung: Landkreis Wesermarsch, Meike Lücke Die textliche Darlegung erfolgt unter weitestgehender Berücksichtigung geschlechtergerechter Sprache. Die Autoren sind für die Darlegung der von ihnen verfassten Inhalte verantwortlich. Die Kapitel und Teilkapitel, die in maßgeblicher Autorenschaft des Institutes IGES GmbH liegen, sind im Inhaltsverzeichnis mit einem Asterisken * gekennzeichnet. Brake, Oktober 2018 2 BMVI-Modellvorhaben „Versorgung & Mobilität“ Modellregion Wesermarsch INHALTSVERZEICHNIS A PROJEKTZIELE
    [Show full text]
  • Geothermal Energy
    Geothermal energy Adele Manzella CNR - Institute of Geosciences and Earth Resources Via Moruzzi 1 – 56124 PISA, Italy [email protected] Geothermal Energy Pros Cons Research What is How is used frontiers Status and perspectives What is the source of geothermal energy? What part is used? What is Geothermal Energy IGG – Institute of Geosciences and Earth Resources National Research Council of Italy WHAT is Geothermal energy Geothermal Energy The basis of geothermal energy is the From Greek gêo (earth) e immense heat content of the earth’s thermòs (heat) interior: the Earth is slowly cooling down. Since billions of years the heat in the Earth Crust is constantly supplied by Heat inside the Earth the decay of natural radioactive isotopes or the cooling of hot, shallow magmatic ~ 30 °C/km bodies. > 1000 °C > 3000 °C The resource is vast and ubiquitous and > 5000 °C has a corresponding large potential for utilization. WHAT is Geothermal energy Temperature in the ground has a daily (few cm) and seasonal (few meters) fluctuations, becoming essentially constant and equal to the average air temperature at about 18-20 m depth. Below this depth, it essentially increases with depth (geothermal gradient). Shallow geothermal: exploits the underground constant T= average air T The resource is vast and ubiquitous and has a corresponding large potential for Deep geothermal: exploits the utilization. underground heat at T>> air T WHAT is Geothermal energy The temperature increase with depth, as well as volcanoes, geysers, hot springs etc., are in a sense the visible or tangible expression of the heat in the interior of the Earth, but this heat also engenders other phenomena that are less discernable by man, but of such magnitude that the Earth has been compared to an immense "thermal engine”.
    [Show full text]
  • Overview of Chiller Compressors
    Overview of Chiller Compressors Course No: M04-027 Credit: 4 PDH A. Bhatia Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 07677 P: (877) 322-5800 [email protected] OVERVIEW OF CHILLER COMPRESSORS Overview In HVAC industry, the refrigeration machine that produces chilled water is referred to as a “Chiller”. A chiller package operates either on the principles of vapor compression or vapor absorption. The vapor compression system uses mechanical energy in the form of electric motor to drive the cooling cycle whereas absorption chillers use heat to drive the process. The vapor compression chiller system, which is far more prominent in commercial buildings, consists of four major components: the compressor, evaporator, condenser and expansion device all packaged as a single unit. The classification of vapor compression chiller packages is generally by the type of compressor: centrifugal, reciprocating, and screw being the major ones. Chillers are the largest consumer of energy in a commercial building and it is therefore important to understand the relative benefits and limitations of various types in order to make the right economic decisions in chiller installation and operation. This course will talk about the type of compressor used in the water cooled chiller. The course is divided into 3 parts: Part - I: Types of Chiller Compressors Part – II: Comparison of Chiller Compressors Part –III: Economic Evaluation of Chiller Systems PART I - TYPES OF CHILLER COMPRESSORS Most cooling systems, from residential air conditioners to large commercial and industrial chillers, employ the refrigeration process known as the vapor compression cycle. At the heart of the vapor compression cycle is the mechanical compressor.
    [Show full text]
  • District Heating System, Which Is More Efficient Than
    Supported by ECOHEATCOOL Work package 3 Guidelines for assessing the efficiency of district heating and district cooling systems This report is published by Euroheat & Power whose aim is to inform about district heating and cooling as efficient and environmentally benign energy solutions that make use of resources that otherwise would be wasted, delivering reliable and comfortable heating and cooling in return. The present guidelines have been developed with a view to benchmarking individual systems and enabling comparison with alternative heating/cooling options. This report is the report of Ecoheatcool Work Package 3 The project is co-financed by EU Intelligent Energy Europe Programme. The project time schedule is January 2005-December 2006. The sole responsibility for the content of this report lies with the authors. It does not necessarily reflect the opinion of the European Communities. The European Commission is not responsible for any use that may be made of the information contained therein. Up-to-date information about Euroheat & Power can be found on the internet at www.euroheat.org More information on Ecoheatcool project is available at www.ecoheatcool.org © Ecoheatcool and Euroheat & Power 2005-2006 Euroheat & Power Avenue de Tervuren 300, 1150 Brussels Belgium Tel. +32 (0)2 740 21 10 Fax. +32 (0)2 740 21 19 Produced in the European Union ECOHEATCOOL The ECOHEATCOOL project structure Target area of EU28 + EFTA3 for heating and cooling Information resources: Output: IEA EB & ES Database Heating and cooling Housing statistics
    [Show full text]
  • NRS 058: Cost of Supply Methodology
    NRS 058(Int):2000 First edition reconfirmed Interim Rationalized User Specification COST OF SUPPLY METHODOLOGY FOR APPLICATION IN THE ELECTRICAL DISTRIBUTION INDUSTRY Preferred requirements for applications in the Electricity Distribution Industry N R S NRS 058(Int):2000 2 This Rationalized User Specification is issued by the NRS Project on behalf of the User Group given in the foreword and is not a standard as contemplated in the Standards Act, 1993 (Act 29 of 1993). Rationalized user specifications allow user organizations to define the performance and quality requirements of relevant equipment. Rationalized user specifications may, after a certain application period, be introduced as national standards. Amendments issued since publication Amdt No . Date Text affected Correspondence to be directed to Printed copies obtainable from South African Bureau of Standards South African Bureau of Standards (Electrotechnical Standards) Private Bag X191 Private Bag X191 Pretoria 0001 Pretoria 0001 Telephone: (012) 428-7911 Fax: (012) 344-1568 E-mail: [email protected] Website: http://www.sabs.co.za COPYRIGHT RESERVED Printed on behalf of the NRS Project in the Republic of South Africa by the South African Bureau of Standards 1 Dr Lategan Road, Groenkloof, Pretoria 1 NRS 058(Int):2000 Contents Page Foreword ................................................................................................................................ 3 Introduction............................................................................................................................
    [Show full text]
  • Fifth-Generation District Heating and Cooling Substations: Demand Response with Artificial Neural Network-Based Model Predictive Control
    energies Article Fifth-Generation District Heating and Cooling Substations: Demand Response with Artificial Neural Network-Based Model Predictive Control Simone Buffa 1,*, Anton Soppelsa 1 , Mauro Pipiciello 1, Gregor Henze 2,3,4 and Roberto Fedrizzi 1 1 Eurac Research, Institute for Renewable Energy, Viale Druso 1, 39100 Bolzano, Italy; [email protected] (A.S.); [email protected] (M.P.); [email protected] (R.F.) 2 Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309-0428, USA; [email protected] 3 National Renewable Energy Laboratory, Golden, CO 80401, USA 4 Renewable and Sustainable Energy Institute, Boulder, CO 80309, USA * Correspondence: simone.buff[email protected]; Tel.: +39-0471-055636 Received: 16 July 2020; Accepted: 11 August 2020; Published: 21 August 2020 Abstract: District heating and cooling (DHC) is considered one of the most sustainable technologies to meet the heating and cooling demands of buildings in urban areas. The fifth-generation district heating and cooling (5GDHC) concept, often referred to as ambient loops, is a novel solution emerging in Europe and has become a widely discussed topic in current energy system research. 5GDHC systems operate at a temperature close to the ground and include electrically driven heat pumps and associated thermal energy storage in a building-sited energy transfer station (ETS) to satisfy user comfort. This work presents new strategies for improving the operation of these energy transfer stations by means of a model predictive control (MPC) method based on recurrent artificial neural networks. The results show that, under simple time-of-use utility rates, the advanced controller outperforms a rule-based controller for smart charging of the domestic hot water (DHW) thermal energy storage under specific boundary conditions.
    [Show full text]
  • The Potential Air Quality Impacts from Biomass Combustion
    AIR QUALITY EXPERT GROUP The Potential Air Quality Impacts from Biomass Combustion Prepared for: Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; and Department of the Environment in Northern Ireland AIR QUALITY EXPERT GROUP The Potential Air Quality Impacts from Biomass Combustion Prepared for: Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; and Department of the Environment in Northern Ireland This is a report from the Air Quality Expert Group to the Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; and Department of the Environment in Northern Ireland, on the potential air quality impacts from biomass combustion. The information contained within this report represents a review of the understanding and evidence available at the time of writing. © Crown copyright 2017 Front cover image credit: left – Jamie Hamel-Smith, middle – Katie Chase, right – Tom Rickhuss on Stocksnap.io. Used under Creative Commons. United Kingdom air quality information received from the automatic monitoring sites and forecasts may be accessed via the following media: Freephone Air Pollution Information 0800 556677 Service Internet http://uk-air.defra.gov.uk PB14465 Terms of reference The Air Quality Expert Group (AQEG) is an expert committee of the Department for Environment, Food and Rural Affairs (Defra) and considers current knowledge on air pollution and provides advice on such things as the levels, sources and characteristics of air pollutants in the UK. AQEG reports to Defra’s Chief Scientific Adviser, Defra Ministers, Scottish Ministers, the Welsh Government and the Department of the Environment in Northern Ireland (the Government and devolved administrations).
    [Show full text]
  • 4. Hvac and Refrigeration System
    4. HVAC AND REFRIGERATION SYSTEM Syllabus HVAC and Refrigeration System: Vapor compression refrigeration cycle, Refrigerants, Coefficient of performance, Capacity, Factors affecting Refrigeration and Air conditioning system performance and savings opportunities. Vapor absorption refrigeration system: Working principle, Types and comparison with vapor compression system, Saving potential 4.1 Introduction The Heating, Ventilation and Air Conditioning (HVAC) and refrigeration system transfers the heat energy from or to the products, or building environment. Energy in form of electricity or heat is used to power mechanical equipment designed to transfer heat from a colder, low-ener- gy level to a warmer, high-energy level. Refrigeration deals with the transfer of heat from a low temperature level at the heat source to a high temperature level at the heat sink by using a low boiling refrigerant. There are several heat transfer loops in refrigeration system as described below: Figure 4.1 Heat Transfer Loops In Refrigeration System In the Figure 4.1, thermal energy moves from left to right as it is extracted from the space and expelled into the outdoors through five loops of heat transfer: – Indoor air loop. In the leftmost loop, indoor air is driven by the supply air fan through a cool- ing coil, where it transfers its heat to chilled water. The cool air then cools the building space. – Chilled water loop. Driven by the chilled water pump, water returns from the cooling coil to the chiller’s evaporator to be re-cooled. – Refrigerant loop. Using a phase-change refrigerant, the chiller’s compressor pumps heat from the chilled water to the condenser water.
    [Show full text]
  • Bioenergy's Role in Balancing the Electricity Grid and Providing Storage Options – an EU Perspective
    Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Front cover information panel IEA Bioenergy: Task 41P6: 2017: 01 Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Antti Arasto, David Chiaramonti, Juha Kiviluoma, Eric van den Heuvel, Lars Waldheim, Kyriakos Maniatis, Kai Sipilä Copyright © 2017 IEA Bioenergy. All rights Reserved Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Foreword The global energy supply system is currently in transition from one that relies on polluting and depleting inputs to a system that relies on non-polluting and non-depleting inputs that are dominantly abundant and intermittent. Optimising the stability and cost-effectiveness of such a future system requires seamless integration and control of various energy inputs. The role of energy supply management is therefore expected to increase in the future to ensure that customers will continue to receive the desired quality of energy at the required time. The COP21 Paris Agreement gives momentum to renewables. The IPCC has reported that with current GHG emissions it will take 5 years before the carbon budget is used for +1,5C and 20 years for +2C. The IEA has recently published the Medium- Term Renewable Energy Market Report 2016, launched on 25.10.2016 in Singapore.
    [Show full text]