Evaluation of Synergistic Effect Of

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Synergistic Effect Of Open Access Original Article Synergistic Effect of Thujaorientalis Pak Armed Forces Med J 2020; 70 (4): 975-82 EVALUATION OF SYNERGISTIC EFFECT OF THUJAORIENTALIS WITH CIPROFLOXACIN AGAINST ESCHERICHIA COLI Hajra Mateen, Rizwan Faisal*, Syeda Huma Khizar, Syed Hamid Habib** KMU Institute of Medical Sciences, Kohat Pakistan, *Rehman Medical College, Peshawar Pakistan, **Khyber Medical University, Peshawar Pakistan ABSTRACT Objectives: To determine the antimicrobial effect of Thujaorientalis (TO) and ciprofloxacin alone against Escherichia Coli (E.Coli). To compare the combined antimicrobial effect of TO and ciprofloxacin against E. Coli. Study Design: Laboratory experimental study. Place and Duration of Study: This in vitro study was performed at Khyber Girls Medical College, Peshawar, from Jan to Jul 2018. Methodology: Antibacterial activity of TO extracts alone and in combination with ciprofloxacin against E.Coli was evaluated by using disc-diffusion and minimum inhibitory concentration method. E. coli clinical strains were collected from Rehman Medical Institute and Northwest General Hospital Peshawar, and American Type Culture Collection [ATCC] strains (number 23922) of these bacteria were collected from Agriculture University Peshawar. The organisms were tested six times with crude extract and fractionation with different solvents such as n-hexane, chloroform, ethyl acetate and butanol at concentrations of 1, 4, 8, 12, 16, 20, 24, 30 and 36 mg/ml. The mean minimum inhibitory concentration and fractional inhibitory concentration index were obtained to report the synergism. The data was analysed using SPSS version 21. Results: Antibacterial activity of different fractions of plant was interpreted as synergy, indifference and antagonism against E.Coli. Fractional inhibitory concentration index for E.Coli ranged from 3 to 1.05, which showed antagonism and indifferent effect of combination of plant extract with ciprofloxacin. Conclusion: Synergism between TO and ciprofloxacin was shown against E.Coli by disc diffusion method while no synergistic effects were found through minimum inhibitory concentration. Keywords: Ciprofloxacin, Drug antagonism, Drug synergism, Escherichia Coli, Fractional inhibitory concentration index, Minimum inhibitory concentration, Thuja orientalis. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. INTRODUCTION with prolong use of antimicrobial agents is very One of the major causes of death in under alarming situation for both underdeveloped and developed countries is infectious diseases. Allo- developed countries. Therefore, alternative strate- pathic medicines basically play an important role gies are thought to combat this problem. This in reducing burden of infectious diseases by their situation makes the alternate way of therapeutic ability to treat diseases efficiently. However, resi- use of plants extracts as an ancient remedy5. Plant stance is produced with prolong usage of these extracts being new may not have the problem of drugs due to which their effectiveness is dec- microbial resistance. The usage of plant extract as reased1,2. The bacterial resistance is a great threat medicine for different diseases has become wide to the public health; and different types of anti- spread because it is realized that the effectiveness biotics, including the major last resort drugs are of traditional medicine has more efficacy com- 6 now becoming ineffective3. Antimicrobial drug pared to synthetic drugs . The rationalization of resistance in bacteria is frequently reported from using medicinal plants combined with the exis- all over the world4. Drug resistance associated ting antimicrobial agents may help in overcoming the bacterial resistance. Furthermore, recently Correspondence: Dr Hajra Mateen, Pharmacology Dept, KMU in year 2014 it has been reported by Brighenti Institute of Medical Sciences, Kohat Pakistan and Lairungruang in their separate studies that Received: 24 Jun 2019; revised received: 01 May 2020; accepted: 08 May drug synergism can be achieved by mixing 2020 975 Synergistic Effect of Thujaorientalis Pak Armed Forces Med J 2020; 70 (4): 975-82 antimicrobial agents with plant extracts to yield Bacterial Collection the desirable results6,7. Clinical strains were collected from Rehman Prehistorically medicinal plants were used as Medical Institute (RMI) and Northwest General traditional medicine that have been playing signi- Hospital Peshawar and ATCC strain number ficant role to heal human diseases and disorders. 23922 were obtained from Agriculture University Thujaorientalis (More Pankh) is one such plants Peshawar. which is being used since long because of its Disc Diffusion Susceptibility Assay medicinal value. In traditional medicine Thujao- This was a method which indicated the rientalis (TO) is used for treatment of different susceptibility of the organism to the tested anti- diseases like bronchial catarrh, enuresis, uterine biotic by clear zone of inhibited growth around carcinomas, and rheumatism8. It is also effective the filter paper discs. The nutrient agar medium in the treatment of psoriasis, amenorrhea, cystitis plates was allowed to solidify for about 24-48 and worm infestation. In addition, it has mollus- hrs at 37°C to check sterility. The bacteria were cicidal and nematicidal activity9. streaked on plates in Laminar flow hood. For Escherichia coli (E.coli) is a gram negative making the discs, Whatman filter paper No.1 (6 organism which is responsible for various bacte- mm) was used which was sterilized in autoclave. rial infections. They are developing resistance Crude extract solutions and solutions of fractions against flouroquinolones and other antibiotics at different concentrations i.e. 1, 4, 8, 12, 16, 20, which is becoming a problem. Research studies 24, 30 mg/ml were prepared in 5% DMSO. Sterile show that TO has great activity against Staphylo- coccus aureus, E.Coli, Bacillus subtilis and Agrobac- terium tumefaiens10. Therefore, looking at the mul- tiple uses of TO and the importance of synergism we aimed to evaluate the synergistic effects of this compound in combination with ciprofloxacin against in vitro samples of E. coli. METHODOLOGY Plant Material Fresh plant leaves of Thujaoriental is weigh- ting 13kg were collected from Bagh-e-Naran, Hayatabad, Peshawar. The plant specimen was identified by taxonomist in Botany department, University of Peshawar and a specimen was Figure: Plant extraction and fractionation process. placed there in the herbarium with voucher number Bot-224/2016. The sample was dried 6 mm discs were impregnated with 50 µl of the for 7 days and soaked in methanol. The filtered extract and placed on the surface of agar plates methanolic solution was dried under vacuum inoculated with microbial culture. Ciprofloxacin pressure below 45°C in rotatory evaporator. The (5 µg/disc) served as positive control and DMSO semi-solid extract was collected in a glass vial 6 µl served as negative control. Inoculated plates and divided into two parts. One part was the were then incubated at 37°C for 18-24 hrs. methanolic extract (E1) andthe second part was The next day zones of inhibition were measured used for refractionation with different solvents in mm around the discs. Reference table used to such as N-hexane (E2), chloroform (E3), ethyl- interpret bacteria as sensitive (S), intermediate or acetate (E4), butanol (E5) and aqueous extract resistant (R) according to clinical and laboratory (E6). standard institute (CLSI) guidelines of National 976 Synergistic Effect of Thujaorientalis Pak Armed Forces Med J 2020; 70 (4): 975-82 Committee for Clinical Laboratory Standards ned to report the synergism. The antibacterial (NCCLS)11. activity was interpreted as one of the following Minimum Inhibitory Concentration (MIC) categories; synergy; indifference; additive effect or antagonism12. It was the lowest concentration of an anti- microbial agent that prevents visible growth of Formula to Determine Synergy (MIC and FIC) a microorganism in an agar or broth dilution MICA in susceptibility test. Combination FIC*A = MIC Table: Interpretation and Zone of Diameter (mm) MICB in Interpretation and Zone of Diameter Combination FICB = (mm) MIC Bacteria B Sensitive Resistant Intermediate Where A and B are the two antimicrobial (S) (R) under investigation. Escherichia ≥21 16-20 ≤15 coli FICI = FICA + FICB Sum of FICI Calculated McFarland 0.5 Barium Sulphate Turbidity Mean FICI = Standard Number of FICI Calculated Interpretation 0.5 McFarland standard was prepared by adding 0.05 ml of barium chloride dihydrate Synergy = mean FICI <0.5, (BaCl2) to 9.95 ml of sulphuric acid (1%H2SO4) Partial Synergy/Addition = mean FICI >0.5 <1.0, with constant mixing. Bacterial colonies were Indifference = mean FICI >1 - <2.0, transferred to 3-4 ml of sterile normal saline Antagonism = mean FICI >2.0. solution. This inoculum was then matched with 0.5 McFarland standard11. RESULTS 96-Well Microdilution Tray Antimicrobial activities of TO fractions were observed in this study alone and in combination 96-well plates were loaded with 100 µl (0.1 with ciprofloxacin against E.coli. The results of ml) of two fold dilutions of extracts into each M.C.E (E1) fraction against E.coli (clinical and well. The extracts were serially diluted two fold ATTC 25922 strains) alone and with
Recommended publications
  • Intravenous Palonosetron Increases the Incidence of Qtc Prolongation During Sevoflurane General Anesthesia for Laparotomy
    Korean J Anesthesiol 2013 November 65(5): 397-402 Clinical Research Article http://dx.doi.org/10.4097/kjae.2013.65.5.397 Intravenous palonosetron increases the incidence of QTc prolongation during sevoflurane general anesthesia for laparotomy Jeong Jin Min, Yongjae Yoo, Tae Kyong Kim, and Jung-Man Lee Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea Background: Palonosetron is a recently introduced 5-hydroxytryptamine-3 (5-HT3) receptor antagonist useful for postoperative nausea and vomiting prophylaxis. However, 5-HT3 receptor antagonists increase the corrected QT (QTc) interval in patients who undergo general anesthesia. This retrospective study was performed to evaluate whether palono- setron would induce a QTc prolongation in patients undergoing general anesthesia with sevoflurane. Methods: We reviewed a database of 81 patients who underwent general anesthesia with sevoflurane. We divided the records into palonosetron (n = 41) and control (n = 40) groups according to the use of intraoperative palonosetron, and analyzed the electrocardiographic data before anesthesia and 30, 60, 90, and 120 min after skin incision. Changes in the QTc interval from baseline, mean blood pressure, heart rate, body temperature, and sevoflurane concentrations at each time point were compared between the two groups. Results: The QTc intervals at skin incision, and 30, 60, 90, and 120 min after the skin incision during general anesthesia were significantly longer than those at baseline in the two groups (P < 0.001). The changes in the QTc intervals were not different between the two groups (P = 0.41). However, six patients in the palonosetron group showed a QTc interval > 500 ms 30 min after skin incision, whereas no patient did in the control group (P = 0.01).
    [Show full text]
  • Antibacterial Effect of Sevoflurane and Isoflurane Ángel Martínez-Monsalve3 María Dolores Crespo- Sánchez1
    Original María Martínez-Serrano1 Manuel Gerónimo-Pardo2 Antibacterial effect of sevoflurane and isoflurane Ángel Martínez-Monsalve3 María Dolores Crespo- Sánchez1 1Servicio de Microbiología y Parasitología. Complejo Hospitalario Universitario de Albacete. 2Servicio de Anestesiología y Reanimación. Complejo Hospitalario Universitario de Albacete. 3Servicio de Cirugía Vascular. Complejo Hospitalario Universitario de Albacete. ABSTRACT property in vivo. This might then allow these agents to be con- sidered as rescue treatment against multidrug resistant patho- Introduction. Multidrug resistant bacteria are increasing gens, including a topical use in infected wounds. worldwide and therapeutic options are limited. Some anaes- Key words: Sevoflurane, Isoflurane, Anaesthetics, Inhala- thetics have shown antibacterial activity before. In this study, tion, Anti-Infective Agents. we have investigated the antibacterial effect of the halogen- ated anaesthetic agents sevoflurane and isoflurane against a range of resistant pathogens. Actividad antibacteriana de sevoflurano e Methods. Two experiments were conducted. In the first, isoflurano bacterial suspensions of both ATCC and resistant strains of Staphylococcus aureus, Escherichia coli and Pseudomonas RESUMEN aeruginosa were exposed to liquid sevoflurane and isoflurane during 15, 30 and 60 minutes. In the second experiment clinical Introducción. Las bacterias multirresistentes están au- resistant strains of E. coli, Klebsiella pneumoniae, Enterobac- mentando en todo el mundo y las opciones terapéuticas son ter cloacae, P. aeruginosa, Acinetobacter baumannii, S. aureus, limitadas. Algunos anestésicos han mostrado actividad an- and Enterococcus faecium were studied. Previously inoculated tibacteriana previamente. En este estudio hemos investigado agar plates were irrigated with the halogenated anaesthet- dicha actividad en los anestésicos halogenados sevoflurano e ic agents and these were left to evaporate before the plates isoflurano frente a un grupo de patógenos resistentes.
    [Show full text]
  • Antibacterial Activity and Mechanisms of Essential Oil from Citrus Medica L
    molecules Article Antibacterial Activity and Mechanisms of Essential Oil from Citrus medica L. var. sarcodactylis Ze-Hua Li 1,2, Ming Cai 2,*, Yuan-Shuai Liu 3, Pei-Long Sun 2,* and Shao-Lei Luo 2 1 College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; [email protected] 2 Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; [email protected] 3 Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong; [email protected] * Correspondence: [email protected] (P.-L.S.); [email protected] (M.C.); Tel.: +86-0571-88320388 (P.-L.S.); +86-0571-88320345 (M.C.) Academic Editor: Francesca Mancianti Received: 29 March 2019; Accepted: 18 April 2019; Published: 22 April 2019 Abstract: In this work, antibacterial activity of finger citron essential oil (FCEO, Citrus medica L. var. sarcodactylis) and its mechanism against food-borne bacteria were evaluated. A total of 28 components in the oil were identified by gas chromatography-mass spectrometry, in which limonene (45.36%), γ-terpinene (21.23%), and dodecanoic acid (7.52%) were three main components. For in vitro antibacterial tests, FCEO exhibited moderately antibacterial activity against common food-borne bacteria: Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Micrococcus luteus. It showed a better bactericidal effect on Gram-positive bacteria than Gram-negative. Mechanisms of the antibacterial action were investigated by observing changes of bacteria morphology according to scanning electron microscopy, time-kill analysis, and permeability of cell and membrane integrity. Morphology of tested bacteria was changed and damaged more seriously with increased concentration and exposure time of FCEO.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0296.191 A1 PATEL Et Al
    US 20140296.191A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0296.191 A1 PATEL et al. (43) Pub. Date: Oct. 2, 2014 (54) COMPOSITIONS OF PHARMACEUTICAL (52) U.S. Cl. ACTIVES CONTAINING DETHYLENE CPC ............... A61K 47/10 (2013.01); A61 K9/0019 GLYCOL MONOETHYLETHER OR OTHER (2013.01); A61 K9/0048 (2013.01); A61 K ALKYL DERVATIVES 45/06 (2013.01) USPC ........... 514/167: 514/177; 514/178: 514/450; (71) Applicant: THEMIS MEDICARE LIMITED, 514/334: 514/226.5: 514/449; 514/338; Mumbai (IN) 514/256; 514/570; 514/179; 514/174: 514/533; (72) Inventors: Dinesh Shantilal PATEL, Mumbai (IN); 514/629; 514/619 Sachin Dinesh PATEL, Mumbai (IN); Shashikant Prabhudas KURANI, Mumbai (IN); Madhavlal Govindlal (57) ABSTRACT PATEL, Mumbai (IN) (73) Assignee: THEMIS MEDICARE LIMITED, The present invention relates to pharmaceutical compositions Mumbai (IN) of various pharmaceutical actives, especially lyophilic and hydrophilic actives containing Diethylene glycol monoethyl (21) Appl. No.: 14/242,973 ether or other alkyl derivatives thereofas a primary vehicle and/or to pharmaceutical compositions utilizing Diethylene (22) Filed: Apr. 2, 2014 glycol monoethyl ether or other alkyl derivatives thereofas a primary vehicle or as a solvent system in preparation of Such (30) Foreign Application Priority Data pharmaceutical compositions. The pharmaceutical composi Apr. 2, 2013 (IN) ......................... 1287/MUMA2013 tions of the present invention are safe, non-toxic, exhibits enhanced physical stability compared to conventional formu Publication Classification lations containing such pharmaceutical actives and are Suit able for use as injectables for intravenous and intramuscular (51) Int. Cl. administration, as well as for use as a preformed solution/ A647/ (2006.01) liquid for filling in and preparation of capsules, tablets, nasal A6 IK 45/06 (2006.01) sprays, gargles, dermal applications, gels, topicals, liquid oral A6 IK9/00 (2006.01) dosage forms and other dosage forms.
    [Show full text]
  • Jp Xvii the Japanese Pharmacopoeia
    JP XVII THE JAPANESE PHARMACOPOEIA SEVENTEENTH EDITION Official from April 1, 2016 English Version THE MINISTRY OF HEALTH, LABOUR AND WELFARE Notice: This English Version of the Japanese Pharmacopoeia is published for the convenience of users unfamiliar with the Japanese language. When and if any discrepancy arises between the Japanese original and its English translation, the former is authentic. The Ministry of Health, Labour and Welfare Ministerial Notification No. 64 Pursuant to Paragraph 1, Article 41 of the Law on Securing Quality, Efficacy and Safety of Products including Pharmaceuticals and Medical Devices (Law No. 145, 1960), the Japanese Pharmacopoeia (Ministerial Notification No. 65, 2011), which has been established as follows*, shall be applied on April 1, 2016. However, in the case of drugs which are listed in the Pharmacopoeia (hereinafter referred to as ``previ- ous Pharmacopoeia'') [limited to those listed in the Japanese Pharmacopoeia whose standards are changed in accordance with this notification (hereinafter referred to as ``new Pharmacopoeia'')] and have been approved as of April 1, 2016 as prescribed under Paragraph 1, Article 14 of the same law [including drugs the Minister of Health, Labour and Welfare specifies (the Ministry of Health and Welfare Ministerial Notification No. 104, 1994) as of March 31, 2016 as those exempted from marketing approval pursuant to Paragraph 1, Article 14 of the Same Law (hereinafter referred to as ``drugs exempted from approval'')], the Name and Standards established in the previous Pharmacopoeia (limited to part of the Name and Standards for the drugs concerned) may be accepted to conform to the Name and Standards established in the new Pharmacopoeia before and on September 30, 2017.
    [Show full text]
  • 2016 Medicines in Development for Rare Diseases a LIST of ORPHAN DRUGS in the PIPELINE
    2016 Medicines in Development for Rare Diseases A LIST OF ORPHAN DRUGS IN THE PIPELINE Autoimmune Diseases Product Name Sponsor Official FDA Designation* Development Status Actemra® Genentech treatment of systemic sclerosis Phase III tocilizumab South San Francisco, CA www.gene.com Adempas® Bayer HealthCare Pharmaceuticals treatment of systemic sclerosis Phase II riociguat Whippany, NJ www.pharma.bayer.com ARA 290 Araim Pharmaceuticals treatment of neuropathic pain in patients Phase II Tarrytown, NY with sarcoidosis www.ariampharma.com ARG201 arGentis Pharmaceuticals treatment of diffuse systemic sclerosis Phase II (type 1 native bovine skin Collierville, TN www.argentisrx.com collagen) BYM338 Novartis Pharmaceuticals treatment of inclusion body myositis Phase III (bimagrumab) East Hanover, NJ www.novartis.com CCX168 ChemoCentryx treatment of anti-neutrophil cytoplasmic Phase II (5a receptor antagonist) Mountain View, CA auto-antibodies associated vasculitides www.chemocentryx.com (granulomatosis with polyangitis or Wegener's granulomatosis), microscopic polyangitis, and Churg-Strauss syndrome * This designation is issued by the FDA's Office of Orphan Products Development while the drug is still in development. The designation makes the sponsor of the drug eligible for entitlements under the Orphan Drug Act of 1983. The entitlements include seven years of marketing exclusivity following FDA approval of the drug for the designated use. Medicines in Development: Rare Diseases | 2016 1 Autoimmune Diseases Product Name Sponsor Official FDA
    [Show full text]
  • Paincomp® Thresholds V04.14.2021 Copyright © 2020 Aegis Sciences
    PainComp® Thresholds V04.14.2021 Tests and thresholds employed vary depending on ordered profile Urine Analyte Initial Confirm Units Test Alprazolam (Xanax) 200 50 ng/mL Amitriptyline 10 ng/mL Amobarbital (Amytal) 200 200 ng/mL Amphetamine (Adzenys ER , Adderall XR) 500 250 ng/mL Aripiprazole (Abilify) 10 ng/mL Armodafinil (Nuvigil)/Modafinil (Provigil) 100 ng/mL Asenapine (Saphris) 10 ng/mL Atomoxetine (Strattera) 10 ng/mL Baclofen 500 ng/mL Benzodiazepines (Chlordiazepoxide, Clorazepate, 200 50 ng/mL Diazepam, Oxazepam, Temazepam) Brexpiprazole (Rexulti) 10 ng/mL Buprenorphine/Sublingual (Belbuca) 1 ng/mL Buprenorphine/Transdermal patch (Butrans) 1 ng/mL Bupropion (Aplenzin, Forfivo XL) 50 ng/mL Buspirone 25 ng/mL Butalbital 200 200 ng/mL Butorphanol 1 ng/mL Caffeine 15 mcg/mL Carbamazepine 50 ng/mL Cariprazine (Vraylar) 20 ng/mL Carisoprodol (Soma)/Meprobamate 200 ng/mL Chlorpromazine 10 ng/mL Chlorzoxazone 500 ng/mL Citalopram (Celexa)/Escitalopram (Lexapro) 50 ng/mL Clomipramine (Anafranil) 10 ng/mL Clonazepam (Klonopin) 200 50 ng/mL Clonidine (Kapvay) 50 ng/mL Clozapine (Clozaril, Fazaclo) 50 ng/mL Cocaine 100 50 ng/mL Codeine 200 100 ng/mL Cotinine/Nicotine metabolite (Habitrol, Nicoderm CQ) 125 ng/mL Cyclobenzaprine (Amrix) 10 ng/mL Dantrolene (Dantrium) 50 ng/mL Designer Benzodiazepines Adinazolam 5 ng/mL Bromazolam 1 ng/mL Clonazolam 1 ng/mL Copyright © 2020 Aegis Sciences Corporation All Rights Reserved PainComp® Thresholds V04.14.2021 Deschloroetizolam 1 ng/mL Diclazepam 1 ng/mL Etizolam 1 ng/mL Flualprazolam 1 ng/mL Flubromazepam
    [Show full text]
  • Bulk Drug Substances Nominated for Use in Compounding Under Section 503B of the Federal Food, Drug, and Cosmetic Act
    Updated June 07, 2021 Bulk Drug Substances Nominated for Use in Compounding Under Section 503B of the Federal Food, Drug, and Cosmetic Act Three categories of bulk drug substances: • Category 1: Bulk Drug Substances Under Evaluation • Category 2: Bulk Drug Substances that Raise Significant Safety Risks • Category 3: Bulk Drug Substances Nominated Without Adequate Support Updates to Categories of Substances Nominated for the 503B Bulk Drug Substances List1 • Add the following entry to category 2 due to serious safety concerns of mutagenicity, cytotoxicity, and possible carcinogenicity when quinacrine hydrochloride is used for intrauterine administration for non- surgical female sterilization: 2,3 o Quinacrine Hydrochloride for intrauterine administration • Revision to category 1 for clarity: o Modify the entry for “Quinacrine Hydrochloride” to “Quinacrine Hydrochloride (except for intrauterine administration).” • Revision to category 1 to correct a substance name error: o Correct the error in the substance name “DHEA (dehydroepiandosterone)” to “DHEA (dehydroepiandrosterone).” 1 For the purposes of the substance names in the categories, hydrated forms of the substance are included in the scope of the substance name. 2 Quinacrine HCl was previously reviewed in 2016 as part of FDA’s consideration of this bulk drug substance for inclusion on the 503A Bulks List. As part of this review, the Division of Bone, Reproductive and Urologic Products (DBRUP), now the Division of Urology, Obstetrics and Gynecology (DUOG), evaluated the nomination of quinacrine for intrauterine administration for non-surgical female sterilization and recommended that quinacrine should not be included on the 503A Bulks List for this use. This recommendation was based on the lack of information on efficacy comparable to other available methods of female sterilization and serious safety concerns of mutagenicity, cytotoxicity and possible carcinogenicity in use of quinacrine for this indication and route of administration.
    [Show full text]
  • WHO Drug Information Vol
    WHO Drug Information Vol. 34, No. 2, 2020 WHO Drug Information Contents Publication News 143 Publication of the 54th report of the World Health Organization (WHO) Expert Committee on Specifications for Pharmaceutical Preparations (ECSPP) (WHO Technical Series, N° 1025) Consultation Documents 146 Points to consider on the different approaches – including HBEL – to establish carryover limits in cleaning validation for identification of contamination risks when manufacturing in shared facilities 164 World Health Organization/United Nations Population Fund recommendations for condom storage and shipping 170 World Health Organization/United Nations Population Fund Guidance on conducting post-market surveillance of condoms 179 World Health Organization/United Nations Population Fund Guidance on testing of male latex condoms 201 Good reliance practices in regulatory decision-making: high-level principles and recommendations 231 Guideline on data integrity ATC/DDD Classification 255 ATC/DDD Classification (Temporary) 261 ATC/DDD Classification (Final) International Nonproprietary Names (INN) 263 List No. 123 of Proposed International Nonproprietary Names (INN) for Pharmaceutical Substances Abbreviations and websites CHMP Committee for Medicinal Products for Human Use (EMA) EMA European Medicines Agency (www.ema.europa.eu) EU European Union FDA U.S. Food and Drug Administration (www.fda.gov) Health Canada Federal department responsible for health product regulation in Canada (www.hc-sc.gc.ca) HPRA Health Products Regulatory Authority, Ireland
    [Show full text]
  • 2003 AAZV Proceedings.Pdf
    COMPARISON OF ISOFLURANE AND SEVOFLURANE ANESTHESIA FOLLOWING PREMEDICATION WITH BUTORPHANOL IN THE GREEN IGUANA (Iguana iguana) Sonia M. Hernandez-Divers, D VM, Dipl ACZM,' * Juergen Schumacher, Dr.med. vet., Dipl ACZM,' Matt R. Read, DVM, MVSc, Dip1 ACVA,' Scott Stahl, D VM, AB VP (A~ian),~and Stephen Hernandez-Divers, B VetMed, DZooMed, MRCVS' 'Exotic Animal, Wildlge and Zoological Medicine, Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 USA; 'Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 3 7996 USA; 'Anesthesiology, Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 USA; 'Eastern Exotics Center, 4001 Legato Road, Fairfa, VA 22033 USA Abstract Twenty-three, male captive-bred green iguanas (Iguana iguana) weighing 0.5 1-0.67 kg were anesthetized to determine the effectiveness and the cardiopulmonary effects of butorphanol- sevoflurane and butorphanol-isoflurane. Baseline heart and respiratory rates were recorded on all animals prior to administration of intramuscular butorphanol (2 mgikg). Thirty minutes after premedication, the heart rate and respiratory rate of each iguana was recorded and 12 animals were induced with isoflurane (5% in 100% oxygen), and 11 were induced with sevoflurane (8% in 100% oxygen), via face mask. Following the loss of the righting reflex, each iguana was intubated and intermittent positive pressure ventilation (IPPV) was provided at 10-12 breathdmin with a small animal ventilator. Mean maintenance isoflurane and sevoflurane concentrations were 2% and 4%, respectively. Heart rate, functional oxygen hemoglobin saturation (SpO,), and end-tidal CO, concentrations were measured every 5 min.
    [Show full text]
  • A Comparison of the Effect of Sevoflurane and Propofol on Ventricular Repolarisation After Preoperative Cefuroxime Infusion
    Hindawi BioMed Research International Volume 2019, Article ID 8978906, 6 pages https://doi.org/10.1155/2019/8978906 Research Article A Comparison of the Effect of Sevoflurane and Propofol on Ventricular Repolarisation after Preoperative Cefuroxime Infusion Yanqiu Liu,1 Hong Gao ,1 Guilong Wang ,2 Li An,1 Jing Yi,2 Xiaokui Fu,2 Chunlei Wen,2 and Zijun Wang2 1 Department of Anesthesiology, Te Afliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China 2Department of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou, China Correspondence should be addressed to Hong Gao; [email protected] Received 10 July 2018; Revised 11 December 2018; Accepted 13 December 2018; Published 2 January 2019 Academic Editor: Gianluca Di Bella Copyright © 2019 Yanqiu Liu et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Te aim of this study is to investigate the changes in QT, QTc, and Tp-e intervals and Tp-e/QT ratio on surface electrocardiogram (ECG) signals during anaesthesia induction using propofol or sevofurane afer preoperative cefuroxime infusion. Some 120 cases of gynaecological patients are randomly divided into propofol (P) and sevofurane (S) groups (n=60). Afer cefuroxime (1.5 g) was infused in the two groups of patients, propofol target controlled infusion (TCI) was conducted in the P group for 5 min to realise a plasma concentration of 4 �g/ml while patients in the S group inhaled anaesthesia by infusing 1.3 MAC sevofurane for 6 min. Te 12-lead ECGs were separately collected before infusing cefuroxime (T1), afer infusing cefuroxime (T2), and afer infusing propofol or sevofurane (T3) to measure QT and Tp-e intervals, calculate QTc and Tp-e/QT, and record MAP and HR.
    [Show full text]
  • Pocket Anesthesia Reference Card
    OBSTETRICS & OB EMERGENCIES OBSTETRICS & OB EMERGENCIES NEURAXIAL ANESTHESIA EMERGENCIES Pocket Anesthesia (Please see full OB pocket card for details) (Please see full OB pocket card for details) v 0.9 Key Points High Spinal & Total Spinal Hypertensive Disorders Urgent or Emergent C-Section & Emergent GA Reference Card •Uses: C/S, Gyn, Uro, Abdo & LE procedures Signs •Numbness, paresthesia, or weakness of UE’s Pre-Eclampsia: BP > 140/90 x2 ≥ 20 wks, proteinuria, +/- organ dysfunct. For all: Pre-induction checklist •High spinal is a significant cause of morbidity/mortality → see emergencies •Rapid unexpected rise of sensory block Card design by providers from many institutions including: •Consider delivery •Call for help, take AMPLE Hx, IV access, NaCit, pulse ox, LUD. •Monitor BP q1-5 min before, during, & after. Use standard monitors •SOB, apnea, bradycardia, hypotension, or nausea/vomiting •Prevent seizure: Mg 4-6 g IV over 15-20 min + 1-2 g/hr gtt for 24 hr post •Neuraxial preferred if time - plan determined by degree of urgency, •Ensure adequate IV access, vasoconstrictors & GA available •Loss of consciousness (LOC = total spinal), Cardiac arrest delivery (do NOT d/c in OR); (10 g IM load described if no PIV) communication w/OB team, resources, & pt. condition •Consider preloading with IVF (Avoid in pre-eclampsia) • •Tx severe HTN (SBP > 155, DBP > 105): 1st line: Labetalol IV, hydralazine IV, • If CS for fetal distress, ↑ O2 to baby: SPOILT-Stop oxytocin, Position-LUD, O2, IV fluid, Low Tx Call for help & code cart, inform team •Consider starting vasopressor support at time of placement •If cardiac arrest: start CPR, refer to ACLS protocol nifedipine PO and no IV (others okay if 1st line unavailable) BP (give pressor), Tocolytics (terbutaline 250 mcg subQ, +/-NTG SL spray 400 mcg x2) •Ensure aseptic technique for placement •Watch for Mg tox: ↓ DTRs, Resp/cardiac comp.
    [Show full text]