Serving Data to the Lunatic Fringe: the Evolution of HPC Storage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Base Performance for Beegfs with Data Protection
BeeGFS Data Integrity Improvements without impacting Performance Presenter: Dr. M. K. Jibbe Technical Director , NetApp ESG Presenter: Joey Parnell 1 SW2019 StorageArchitect, Developer Conference. NetApp © 2019 NetApp ESG Inc. NetApp Proprietary All Rights Reserved. Current Problem • Lustre has been a common choice in the HPC market for years but the acquisition of the Lustre intellectual property by storage provider in 2018 has created a challenge for users that want to avoid vendor lock-in. • Parallel file system needs are expanding beyond HPC, but most lack enterprise reliability • Any BeeGFS configuration does Lack Data protection at different locations: • Storage Client and servers do not have cache protection in the event of kernel panics, software crashes or power loss. Potential issues are: • Data cached in the BeeGFS client itself • Data cached at the underlying filesystem layer in the storage server (XFS, ZFS, ext4, etc.) • Data cached by the OS kernel itself underneath the filesystem in the storage server Goal of the Team (Remove Competitor and Expand Market Reach of BeeGFS) Parallel File system Improve solution resiliency to ensure data integrity by ML BeeGFS Swim lane identifying potential component faults that could lead to BeeGFS IB and FC data loss and changing system design to handle the fault Address known Market without any data integrity challenges. Opportunity Simple solution and support 2 2 2019 Storage Developer Conference. © 2019 NetApp Inc. NetApp Proprietary All Rights Reserved. Data Integrity & Availability expectations in HPC (Provide Enterprise Reliability with E-series Storage – BeeGFS) However, . The market we serve goes beyond the HPC scratch file system use cases . -
Spring 2014 • Vol
Editorial is published two times a year by The GAUSS Centre Editorial for Supercomputing (HLRS, LRZ, JSC) Welcome to this new issue of inside, tive of the German Research Society the journal on Innovative Supercomput- (DFG) start to create interesting re- Publishers ing in Germany published by the Gauss sults as is shown in our project section. Centre for Supercomputing (GCS). In Prof. Dr. A. Bode | Prof. Dr. Dr. Th. Lippert | Prof. Dr.-Ing. Dr. h.c. Dr. h.c. M. M. Resch this issue, there is a clear focus on With respect to hardware GCS is con- Editor applications. While the race for ever tinuously following its roadmap. New faster systems is accelerated by the systems will become available at HLRS F. Rainer Klank, HLRS [email protected] challenge to build an Exascale system in 2014 and at LRZ in 2015. System within a reasonable power budget, the shipment for HLRS is planned to start Design increased sustained performance allows on August 8 with a chance to start Linda Weinmann, HLRS [email protected] for the solution of ever more complex general operation as early as October Sebastian Zeeden, HLRS [email protected] problems. The range of applications 2014. We will report on further Pia Heusel, HLRS [email protected] presented is impressive covering a progress. variety of different fields. As usual, this issue includes informa- GCS has been a strong player in PRACE tion about events in supercomputing over the last years. In 2015 will con- in Germany over the last months and tinue to provide access to leading edge gives an outlook of workshops in the systems for all European researchers field. -
Data Integration and Analysis 10 Distributed Data Storage
1 SCIENCE PASSION TECHNOLOGY Data Integration and Analysis 10 Distributed Data Storage Matthias Boehm Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management Last update: Dec 11, 2020 2 Announcements/Org . #1 Video Recording . Link in TeachCenter & TUbe (lectures will be public) . Optional attendance (independent of COVID) . #2 COVID‐19 Restrictions (HS i5) . Corona Traffic Light: RED ORANGE (Dec 07) . Webex lectures revaluated over holidays . #3 Projects and Exercises . 34x SystemDS projects, 11x exercise projects . Final kickoff discussions last week . #4 Course Evaluation . Evaluation period: Dec 15 – Jan 31 . Exam date: TBD, but likely end of January 706.520 Data Integration and Large‐Scale Analysis – 10 Distributed Data Storage Matthias Boehm, Graz University of Technology, WS 2020/21 3 Course Outline Part B: Large‐Scale Data Management and Analysis 12 Distributed Stream 13 Distributed Machine Processing [Jan 15] Learning Systems [Jan 22] 11 Distributed Data‐Parallel Computation [Jan 08] Compute/ Storage 10 Distributed Data Storage [Dec 11] 09 Cloud Resource Management and Scheduling [Dec 04] Infra 08 Cloud Computing Fundamentals [Nov 27] 706.520 Data Integration and Large‐Scale Analysis – 10 Distributed Data Storage Matthias Boehm, Graz University of Technology, WS 2020/21 4 Agenda . Motivation and Terminology . Object Stores and Distributed File Systems . Key‐Value Stores and Cloud DBMS 706.520 Data Integration and Large‐Scale Analysis – 10 Distributed Data Storage Matthias Boehm, Graz University of Technology, WS 2020/21 5 Motivation and Terminology 706.520 Data Integration and Large‐Scale Analysis – 10 Distributed Data Storage Matthias Boehm, Graz University of Technology, WS 2020/21 Motivation and Terminology 6 Overview Distributed Data Storage Global . -
Globalfs: a Strongly Consistent Multi-Site File System
GlobalFS: A Strongly Consistent Multi-Site File System Leandro Pacheco Raluca Halalai Valerio Schiavoni University of Lugano University of Neuchatelˆ University of Neuchatelˆ Fernando Pedone Etienne Riviere` Pascal Felber University of Lugano University of Neuchatelˆ University of Neuchatelˆ Abstract consistency, availability, and tolerance to partitions. Our goal is to ensure strongly consistent file system operations This paper introduces GlobalFS, a POSIX-compliant despite node failures, at the price of possibly reduced geographically distributed file system. GlobalFS builds availability in the event of a network partition. Weak on two fundamental building blocks, an atomic multicast consistency is suitable for domain-specific applications group communication abstraction and multiple instances of where programmers can anticipate and provide resolution a single-site data store. We define four execution modes and methods for conflicts, or work with last-writer-wins show how all file system operations can be implemented resolution methods. Our rationale is that for general-purpose with these modes while ensuring strong consistency and services such as a file system, strong consistency is more tolerating failures. We describe the GlobalFS prototype in appropriate as it is both more intuitive for the users and detail and report on an extensive performance assessment. does not require human intervention in case of conflicts. We have deployed GlobalFS across all EC2 regions and Strong consistency requires ordering commands across show that the system scales geographically, providing replicas, which needs coordination among nodes at performance comparable to other state-of-the-art distributed geographically distributed sites (i.e., regions). Designing file systems for local commands and allowing for strongly strongly consistent distributed systems that provide good consistent operations over the whole system. -
Using the Andrew File System on *BSD [email protected], Bsdcan, 2006 Why Another Network Filesystem
Using the Andrew File System on *BSD [email protected], BSDCan, 2006 why another network filesystem 1-slide history of Andrew File System user view admin view OpenAFS Arla AFS on OpenBSD, FreeBSD and NetBSD Filesharing on the Internet use FTP or link to HTTP file interface through WebDAV use insecure protocol over vpn History of AFS 1984: developed at Carnegie Mellon 1989: TransArc Corperation 1994: over to IBM 1997: Arla, aimed at Linux and BSD 2000: IBM releases source 2000: foundation of OpenAFS User view <1> global filesystem rooted at /afs /afs/cern.ch/... /afs/cmu.edu/... /afs/gorlaeus.net/users/h/hugo/... User view <2> authentication through Kerberos #>kinit <username> obtain krbtgt/<realm>@<realm> #>afslog obtain afs@<realm> #>cd /afs/<cell>/users/<username> User view <3> ACL (dir based) & Quota usage runs on Windows, OS X, Linux, Solaris ... and *BSD Admin view <1> <cell> <partition> <server> <volume> <volume> <server> <partition> Admin view <2> /afs/gorlaeus.net/users/h/hugo/presos/afs_slides.graffle gorlaeus.net /vicepa fwncafs1 users hugo h bram <server> /vicepb Admin view <2a> /afs/gorlaeus.net/users/h/hugo/presos/afs_slides.graffle gorlaeus.net /vicepa fwncafs1 users hugo /vicepa fwncafs2 h bram Admin view <3> servers require KeyFile ~= keytab procedure differs for Heimdal: ktutil copy MIT: asetkey add Admin view <4> entry in CellServDB >gorlaeus.net #my cell name 10.0.0.1 <dbserver host name> required on servers required on clients without DynRoot Admin view <5> File locking no databases on AFS (requires byte range locking) -
Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO
Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO..........................................................................................................................................1 Martin Hinner < [email protected]>, http://martin.hinner.info............................................................1 1. Introduction..........................................................................................................................................1 2. Volumes...............................................................................................................................................1 3. DOS FAT 12/16/32, VFAT.................................................................................................................2 4. High Performance FileSystem (HPFS)................................................................................................2 5. New Technology FileSystem (NTFS).................................................................................................2 6. Extended filesystems (Ext, Ext2, Ext3)...............................................................................................2 7. Macintosh Hierarchical Filesystem − HFS..........................................................................................3 8. ISO 9660 − CD−ROM filesystem.......................................................................................................3 9. Other filesystems.................................................................................................................................3 -
Towards Transparent Data Access with Context Awareness
Computer Science • 19(2) 2018 https://doi.org/10.7494/csci.2018.19.2.2844 Micha lWrzeszcz Renata G. S lota Jacek Kitowski TOWARDS TRANSPARENT DATA ACCESS WITH CONTEXT AWARENESS Abstract Open-data research is an important factor accelerating the production and analysis of scientific results as well as worldwide collaboration; still, very little dataEarly is being shared at scale. The aim of this bird article is to analyze existing data-access solutions along with their usage limitations. After analyzing the existing solutions and data-access stakeholder needs, the authors propose their own vision of a data-access model. Keywords distributed, transparent data access, distributed data storage, context awareness Citation Computer Science 19(2) 2018: 201{221 201 202 Micha Wrzeszcz, Jacek Kitowski, Renata S lota 1. Introduction Data access and management can be analyzed on several levels; from personal data to globally distributed shared data with different problems to be overcome by data access and management tools. The simplest case is access to local data; i.e., data stored on direct attached storage (DAS), where the focus is on providing the device drivers and solutions that use the hardware optimally. The next level is to provide data access for a group of users working for a single organization; e.g., provision of network attached storage (NAS). The problems en- countered in this case pertain to possible network failures, higher latencies [36], or the simultaneous work of many users influencing the quality of service [48, 59]. The balance of use of available storage systems to maintain QoS and cost effectiveness in an organization while request scheduling and resource allocation is also expected [28,56]. -
The Leading Parallel Cluster File System, Developed with a St Rong Focus on Perf Orm Ance and Designed for Very Ea Sy Inst All Ati on and Management
The Lead ing Para llel Clus ter File Syste m ww w.thinkpa rq.com ww w.beegfs.io UT BEEGFS ABO UT BEEGFS Wh at is Bee GFS System Archit ectu re BeeGFS (formerly FhGFS) is the leading parallel cluster file system, developed with a st rong focus on perf orm ance and designed for very ea sy inst all ati on and management. If I/O intensive workloads a re your p roblem, BeeGFS is the solution. Wh y use BeeGFS BeeGFS tr ansparentl y sp reads user data ac ross multiple servers. By inc reasing the number of servers and disks in the system, you can simply scale perf ormance and capacity of the file system to the level that you need, seamlessly f rom small clusters up to enterprise-class systems with thousands of nodes. Get The Most Out Of Your Data The flexibility, robustness, and outstanding performance of BeeGFS help our customers a round the globe to increa se prod uctivit y by delivering results faster and by enabli ng new data anal ysis met hod s that we re not possible without the advantages of BeeGFS. ASP ECTS KEY ASP ECTS Ma xim um Scala bili ty Ma xim um Flexibi lit y BeeGFS offers maximum performance and scalability on various BeeGFS supports a wide range of Linu x dist ribu ti on s such levels. It supports dist ribu te d fi le con te nts with flexible as RHEL/Fedora, SLES/OpenSuse or Debian/Ubuntu as well as a striping ac ross storage servers on a pe r-file or pe r-di rectory basis wide range of Linux ke rnels f rom ancient 2.6.18 up to the as well as dist ribu te d me tadat a. -
Maximizing the Performance of Scientific Data Transfer By
Maximizing the Performance of Scientific Data Transfer by Optimizing the Interface Between Parallel File Systems and Advanced Research Networks Nicholas Millsa,∗, F. Alex Feltusb, Walter B. Ligon IIIa aHolcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC bDepartment of Genetics and Biochemistry, Clemson University, Clemson, SC Abstract The large amount of time spent transferring experimental data in fields such as genomics is hampering the ability of scientists to generate new knowledge. Often, computer hardware is capable of faster transfers but sub-optimal transfer software and configurations are limiting performance. This work seeks to serve as a guide to identifying the optimal configuration for performing genomics data transfers. A wide variety of tests narrow in on the optimal data transfer parameters for parallel data streaming across Internet2 and between two CloudLab clusters loading real genomics data onto a parallel file system. The best throughput was found to occur with a configuration using GridFTP with at least 5 parallel TCP streams with a 16 MiB TCP socket buffer size to transfer to/from 4{8 BeeGFS parallel file system nodes connected by InfiniBand. Keywords: Software Defined Networking, High Throughput Computing, DNA sequence, Parallel Data Transfer, Parallel File System, Data Intensive Science 1. Introduction of over 2,500 human genomes from 26 populations have been determined (The 1000 Genomes Project [3]); genome Solving scientific problems on a high-performance com- sequences have been produced for 3,000 rice varieties from puting (HPC) cluster will happen faster by taking full ad- 89 countries (The 3000 Rice Genomes Project [4]). These vantage of specialized infrastructure such as parallel file raw datasets are but a few examples that aggregate into systems and advanced software-defined networks. -
Understanding and Finding Crash-Consistency Bugs in Parallel File Systems Jinghan Sun, Chen Wang, Jian Huang, and Marc Snir University of Illinois at Urbana-Champaign
Understanding and Finding Crash-Consistency Bugs in Parallel File Systems Jinghan Sun, Chen Wang, Jian Huang, and Marc Snir University of Illinois at Urbana-Champaign Abstract directly applied to PFSes, due to the unique architecture of Parallel file systems (PFSes) and parallel I/O libraries have PFS, its workload characteristics, and the increased complex- been the backbone of high-performance computing (HPC) ity of HPC I/O stack. Specifically, files can be shared by all infrastructures for decades. However, their crash consistency processes in a parallel job, and I/O is performed through a bugs have not been extensively studied, and the corresponding variety of parallel I/O libraries which may have their own bug-finding or testing tools are lacking. In this paper, we first crash consistency implementation. A proper attribution of conduct a thorough bug study on the popular PFSes, such as application-level bugs to one layer or another in the I/O stack BeeGFS and OrangeFS, with a cross-stack approach that cov- depends on the "contract" between each layer. ers HPC I/O library, PFS, and interactions with local file sys- To further understand crash consistency bugs in parallel I/O, tems. The study results drive our design of a scalable testing we conduct a study with popular PFSes, including BeeGFS framework, named PFSCHECK. PFSCHECK is easy to use and OrangeFS. We manually create seven typical I/O work- with low performance overhead, as it can automatically gener- loads with the parallel I/O library HDF5 [5], and investigate ate test cases for triggering potential crash-consistency bugs, crash-consistency bugs across the I/O stack. -
Using On-Demand File Systems in HPC Environments
Using On-Demand File Systems in HPC Environments Mehmet Soysal, Marco Berghoff, Thorsten Zirwes, Marc-André Vef, Sebastian Oeste, André Brinkmann, Wolfgang E. Nagel, and Achim Streit Steinbuch Centre for Computing (SCC) / Scientific Computing and Simulation (SCS) KIT – The Research University in the Helmholtz Association www.kit.edu Overview Motivation Approach Related Work Use Cases and Results Remarks and Observations Conclusion & Future work 2/18 Wed, July 17, 2019 Mehmet Soysal – Using On-Demand File Systems in HPC Environments Steinbuch Centre for Computing (SCC) Motivation The I/O Subsystem (parallel FS) is a bottleneck in HPC Systems Bandwidth, metadata or latency Shared medium Applications interfere with each other New storage technologies (SSD, NVMe, NVRAM) 3/18 Wed, July 17, 2019 Mehmet Soysal – Using On-Demand File Systems in HPC Environments Steinbuch Centre for Computing (SCC) Motivation Proposed Solution Bring data closer to compute nodes On-demand file system (ODFS) node-local storage Tailor private ODFS Advantages Dedicated bandwidth / IOPS Independent to global file system Low latency due to SSD / NVMe / NVRAM No code changes needed to application 4/18 Wed, July 17, 2019 Mehmet Soysal – Using On-Demand File Systems in HPC Environments Steinbuch Centre for Computing (SCC) HPC: current file system usage App/Job 1 App/Job 2 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Global Parallel File System $HOME / $WORK / Scratch 5/18 Wed, July 17, 2019 Mehmet Soysal – Using On-Demand File Systems in HPC Environments Steinbuch Centre for -
A Persistent Storage Model for Extreme Computing Shuangyang Yang Louisiana State University and Agricultural and Mechanical College
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 A Persistent Storage Model for Extreme Computing Shuangyang Yang Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Computer Sciences Commons Recommended Citation Yang, Shuangyang, "A Persistent Storage Model for Extreme Computing" (2014). LSU Doctoral Dissertations. 2910. https://digitalcommons.lsu.edu/gradschool_dissertations/2910 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. A PERSISTENT STORAGE MODEL FOR EXTREME COMPUTING A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Computer Science by Shuangyang Yang B.S., Zhejiang University, 2006 M.S., University of Dayton, 2008 December 2014 Copyright © 2014 Shuangyang Yang All rights reserved ii Dedicated to my wife Miao Yu and our daughter Emily. iii Acknowledgments This dissertation would not be possible without several contributions. It is a great pleasure to thank Dr. Hartmut Kaiser @ Louisiana State University, Dr. Walter B. Ligon III @ Clemson University and Dr. Maciej Brodowicz @ Indiana University for their ongoing help and support. It is a pleasure also to thank Dr. Bijaya B. Karki, Dr. Konstantin Busch, Dr. Supratik Mukhopadhyay at Louisiana State University for being my committee members and Dr.