Critical Contingency Eva's for 3D-Printed Planetary Habitats
Total Page:16
File Type:pdf, Size:1020Kb
University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2020 Critical Contingency Eva’s For 3D-Printed Planetary Habitats James Robert Stoffel Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Stoffel, James Robert, "Critical Contingency Eva’s For 3D-Printed Planetary Habitats" (2020). Theses and Dissertations. 3124. https://commons.und.edu/theses/3124 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. CRITICAL CONTINGENCY EVA’S FOR 3D-PRINTED PLANETARY HABITATS By James Robert Stoffel Bachelor of Science, Aeronautics Astronautics Engineering, University of Washington, 2008 Bachelor of Science, Physics, University of Washington, 2008 A Thesis of the University of North Dakota In partial fulfillment of the requirements For the degree of Master of Science Grand Forks, North Dakota May 2020 2020 James Robert Stoffel ii This thesis, submitted by James Stoffel in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved. _______________________________________ Dr. Pablo De Leon, Department of Space Studies, UND Ph.D. Committee Chair _______________________________________ Dr. Michael Dodge Department of Space Studies, UND Member, Ph.D. Committee _______________________________________ Dr. Timothy Young Department of Physics & Astrophysics, UND Member, Ph.D. Committee This thesis is being submitted by the appointed advisory committee as having met all the requirements of the School of Graduate Studies at the University of North Dakota and is hereby approved. _______________________________________ Dr. Chris Nelson Dean of the School of Graduate Studies _______________________________________ Date iii PERMISSION Title Critical Contingency EVA’s for 3D-Printed Planetary Habitats Department Space Studies Degree Master of Science In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies. It is understood that any copying or publication or other use of this thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis. James Robert Stoffel May 1, 2020 iv TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................................ 5 LIST OF FIGURES ........................................................................................................................ 8 LIST OF TABLES ........................................................................................................................ 12 ACKNOWLEDGEMENTS .......................................................................................................... 13 ABSTRACT .................................................................................................................................. 15 CHAPTER 1: INTRODUCTION ................................................................................................... 1 PROBLEM STATEMENT ....................................................................................................................... 1 BACKGROUND ...................................................................................................................................... 2 STATEMENT OF RESEARCH ............................................................................................................... 3 CHAPTER 2: LITERATURE REVIEW ........................................................................................ 4 CONVENTIONAL CONCRETE MANUFACTURING AND CONSTRUCTION................................ 4 CONCRETE CONSTRUCTION .......................................................................................................... 4 MASONRY CONSTRUCTION ........................................................................................................... 5 COMMON CAUSES OF DAMAGE TO CONCRETE ....................................................................... 6 COMMON CAUSES OF DAMAGE TO MASONRY ...................................................................... 13 EVALUATION OF REPAIR METHODS NEEDED ............................................................................ 15 IDENTIFYING FAILURE MODES .................................................................................................. 16 CONCRETE AND MASONRY REPAIR METHODS ......................................................................... 16 MODERN ADDITIVE MANUFACTURING AND CONSTRUCTION .............................................. 18 RAPID PROTOTYPING (RP) ........................................................................................................... 18 DIRECT DIGITAL MANUFACTURING (DDM) ............................................................................ 18 LAYERED MANUFACTURING (LM) ............................................................................................ 18 ADDITIVE MANUFACTURING (AM): 3D PRINTING TECHNOLOGIES...................................... 19 STEREOLITHOGRAPHY (SLA) ...................................................................................................... 19 DIGITAL LIGHT PROCESSING (DLP) ........................................................................................... 20 FUSED DEPOSITION MODELLING (FDM) .................................................................................. 21 v SELECTIVE LASER SINTERING (SLS) & MELTING (SLM) ...................................................... 22 ELECTRON BEAM MELTING (EBM) ............................................................................................ 23 SAND PRINTING .............................................................................................................................. 24 BINDER JETTING (SAND, SILICA, CERAMIC, METAL POWDER) .......................................... 26 POWDER BED FUSION (PBF)......................................................................................................... 26 CONCRETE 3D PRINTING (3DPC) ................................................................................................. 27 COMMON CAUSES OF MANUFACTURING ISSUES WITH 3D-PRINTING ............................ 34 AM REPAIR METHODS ................................................................................................................... 40 CHAPTER 3: LUNAR AND MARTIAN ENVIRONMENTAL CONSTRAINTS .................... 40 LUNAR ENVIRONMENT .................................................................................................................... 41 MARTIAN ENVIRONMENT ................................................................................................................ 43 CHAPTER 4: CURRENT AM METHODS FOR LUNAR AND MARTIAN HABITATS ....... 44 CHAPTER 5: DOWN SELECTION OF REPAIR METHODS .................................................. 50 CHAPTER 6: METHODOLOGY ................................................................................................ 51 DESIGN OVERVIEW ............................................................................................................................ 51 HABITAT REPAIR METHODS ........................................................................................................... 54 REPAIR METHOD ONE (RM1) ....................................................................................................... 54 REPAIR METHOD TWO AND THREE (RM2 / RM3).................................................................... 56 REPAIR METHOD FOUR (RM4) ..................................................................................................... 57 REPAIR METHOD FIVE (RM5 / V2.0 REPAIR METHOD ONE) ................................................. 58 TEST FACILITIES AND HABITATION MOCKUPS ......................................................................... 59 LABORATORY 1G BENCHTOP PROTOTYPNIG, EVALUATION, AND TESTING................. 59 UND INFLATABLE LUNAR MARTIAN ANALOG HABITAT .................................................... 60 NASA EXTREME ENVIRONMENT MISSION OPERATIONS .................................................... 61 TEST SUBJECTS ................................................................................................................................... 63 INSTITUTIONAL REVEW BOARD CONSIDERATIONS ............................................................ 64 METRICS AND DATA ANALYSIS METHODOLOGY ..................................................................... 64 ACCEPTABILITY RATINGS ..........................................................................................................