Critical Contingency Eva's for 3D-Printed Planetary Habitats

Total Page:16

File Type:pdf, Size:1020Kb

Critical Contingency Eva's for 3D-Printed Planetary Habitats University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2020 Critical Contingency Eva’s For 3D-Printed Planetary Habitats James Robert Stoffel Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Stoffel, James Robert, "Critical Contingency Eva’s For 3D-Printed Planetary Habitats" (2020). Theses and Dissertations. 3124. https://commons.und.edu/theses/3124 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. CRITICAL CONTINGENCY EVA’S FOR 3D-PRINTED PLANETARY HABITATS By James Robert Stoffel Bachelor of Science, Aeronautics Astronautics Engineering, University of Washington, 2008 Bachelor of Science, Physics, University of Washington, 2008 A Thesis of the University of North Dakota In partial fulfillment of the requirements For the degree of Master of Science Grand Forks, North Dakota May 2020 2020 James Robert Stoffel ii This thesis, submitted by James Stoffel in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved. _______________________________________ Dr. Pablo De Leon, Department of Space Studies, UND Ph.D. Committee Chair _______________________________________ Dr. Michael Dodge Department of Space Studies, UND Member, Ph.D. Committee _______________________________________ Dr. Timothy Young Department of Physics & Astrophysics, UND Member, Ph.D. Committee This thesis is being submitted by the appointed advisory committee as having met all the requirements of the School of Graduate Studies at the University of North Dakota and is hereby approved. _______________________________________ Dr. Chris Nelson Dean of the School of Graduate Studies _______________________________________ Date iii PERMISSION Title Critical Contingency EVA’s for 3D-Printed Planetary Habitats Department Space Studies Degree Master of Science In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies. It is understood that any copying or publication or other use of this thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis. James Robert Stoffel May 1, 2020 iv TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................................ 5 LIST OF FIGURES ........................................................................................................................ 8 LIST OF TABLES ........................................................................................................................ 12 ACKNOWLEDGEMENTS .......................................................................................................... 13 ABSTRACT .................................................................................................................................. 15 CHAPTER 1: INTRODUCTION ................................................................................................... 1 PROBLEM STATEMENT ....................................................................................................................... 1 BACKGROUND ...................................................................................................................................... 2 STATEMENT OF RESEARCH ............................................................................................................... 3 CHAPTER 2: LITERATURE REVIEW ........................................................................................ 4 CONVENTIONAL CONCRETE MANUFACTURING AND CONSTRUCTION................................ 4 CONCRETE CONSTRUCTION .......................................................................................................... 4 MASONRY CONSTRUCTION ........................................................................................................... 5 COMMON CAUSES OF DAMAGE TO CONCRETE ....................................................................... 6 COMMON CAUSES OF DAMAGE TO MASONRY ...................................................................... 13 EVALUATION OF REPAIR METHODS NEEDED ............................................................................ 15 IDENTIFYING FAILURE MODES .................................................................................................. 16 CONCRETE AND MASONRY REPAIR METHODS ......................................................................... 16 MODERN ADDITIVE MANUFACTURING AND CONSTRUCTION .............................................. 18 RAPID PROTOTYPING (RP) ........................................................................................................... 18 DIRECT DIGITAL MANUFACTURING (DDM) ............................................................................ 18 LAYERED MANUFACTURING (LM) ............................................................................................ 18 ADDITIVE MANUFACTURING (AM): 3D PRINTING TECHNOLOGIES...................................... 19 STEREOLITHOGRAPHY (SLA) ...................................................................................................... 19 DIGITAL LIGHT PROCESSING (DLP) ........................................................................................... 20 FUSED DEPOSITION MODELLING (FDM) .................................................................................. 21 v SELECTIVE LASER SINTERING (SLS) & MELTING (SLM) ...................................................... 22 ELECTRON BEAM MELTING (EBM) ............................................................................................ 23 SAND PRINTING .............................................................................................................................. 24 BINDER JETTING (SAND, SILICA, CERAMIC, METAL POWDER) .......................................... 26 POWDER BED FUSION (PBF)......................................................................................................... 26 CONCRETE 3D PRINTING (3DPC) ................................................................................................. 27 COMMON CAUSES OF MANUFACTURING ISSUES WITH 3D-PRINTING ............................ 34 AM REPAIR METHODS ................................................................................................................... 40 CHAPTER 3: LUNAR AND MARTIAN ENVIRONMENTAL CONSTRAINTS .................... 40 LUNAR ENVIRONMENT .................................................................................................................... 41 MARTIAN ENVIRONMENT ................................................................................................................ 43 CHAPTER 4: CURRENT AM METHODS FOR LUNAR AND MARTIAN HABITATS ....... 44 CHAPTER 5: DOWN SELECTION OF REPAIR METHODS .................................................. 50 CHAPTER 6: METHODOLOGY ................................................................................................ 51 DESIGN OVERVIEW ............................................................................................................................ 51 HABITAT REPAIR METHODS ........................................................................................................... 54 REPAIR METHOD ONE (RM1) ....................................................................................................... 54 REPAIR METHOD TWO AND THREE (RM2 / RM3).................................................................... 56 REPAIR METHOD FOUR (RM4) ..................................................................................................... 57 REPAIR METHOD FIVE (RM5 / V2.0 REPAIR METHOD ONE) ................................................. 58 TEST FACILITIES AND HABITATION MOCKUPS ......................................................................... 59 LABORATORY 1G BENCHTOP PROTOTYPNIG, EVALUATION, AND TESTING................. 59 UND INFLATABLE LUNAR MARTIAN ANALOG HABITAT .................................................... 60 NASA EXTREME ENVIRONMENT MISSION OPERATIONS .................................................... 61 TEST SUBJECTS ................................................................................................................................... 63 INSTITUTIONAL REVEW BOARD CONSIDERATIONS ............................................................ 64 METRICS AND DATA ANALYSIS METHODOLOGY ..................................................................... 64 ACCEPTABILITY RATINGS ..........................................................................................................
Recommended publications
  • Habitation Module 26 July 2016 – NASA Advisory Council, Human Exploration and Operations Committee
    National Aeronautics and Space Administration Habitation Module 26 July 2016 – NASA Advisory Council, Human Exploration and Operations Committee Jason Crusan | Advanced Exploration Systems Director | NASA Headquarters 2 Human Exploration of Mars Is Hard Common Capability Needs Identified from Multiple Studies Days Reliable In-Space 800-1,100 44 min Transportation Total me crew is Maximum two- away from Earth – way communicaon for orbit missions all in 2me delay – 300 KW Micro-g and Radia2on Autonomous Opera2ons Total connuous transportaon power 130 t Heavy-LiA Mass 20-30 t Long Surface Stay Multiple Ability to 500 Days Launches per land large mission payloads Surface Operations Dust Toxicity and 100 km 11.2 km/s Long Range Explora2on Earth Entry Speed 20 t Oxygen produced for ascent to orbit - ISRU 3 The Habitation Development Challenge HABITATATION CAPABILITY Days 800-1,100 Habitation Systems – Total me crew is AES/ISS/STMD away from Earth – • Environmental Control & Life Support for orbit missions all in • Autonomous Systems Micro-g and Radia2on Integrated • EVA testing on ISS • Fire Safety • Radiation Protection Habitation Systems - Crew Health – HRP Long Surface Stay • Human Research 500 Days • Human Performance • Exercise PROVING GROUND Validation in cislunar space • Nutrition Habitation Capability– NextSTEP BAA / Int. Partners • Studies and ground prototypes of pressurized volumes 4 Specific Habitation Systems Objectives TODAY FUTURE Habitation The systems, tools, and protec:ons that allow Systems Elements humans to live and work
    [Show full text]
  • 19660003720.Pdf
    Copy No. LUNAR NAVIGATION STUDY FINAL REPORT (June 1964 to May 1965) SUMMARY VOLUME BSR 1134 June 1965 Prepared for: George C. Marshall Space Flight Center Huntsville, Alabama under Contract No. NAS8- 11292 Authors : L. J. Abbeduto W.G. Green M. E. Amdursky T. F. King D.K. Breseke R.B. Odden J. T. Broadbent P.I. Pressel R. A. Gill T.T. Trexler H. C. Graboske C. Waite BENDIX SYSTEMS DIVISION OF THE BENDIX CORPORATION Ann Arbor, Michigan CONTENTS Page 1. INTRODUCTION 1 2. STUDY APPROACH 1 3. DEFINITIONS OF TYPICAL MISSIONS 2 4. NAVIGATION SYSTEM CONCEPTS 4 5. NAVIGATION TECHNIQUE SURVEY 4 5. 1 POSITION FIX 4 5.2 DEAD RECKONING 9 5.3 PILOTING 10 6. TYPICAL NAVIGATION REQUIREMENTS 11 7. NAVIGATION COMPONENT SURVEY 14 8. LUNAR PHYSICAL AND MISSION PARAMETERS 15 9. ERROR MODELS 18 10. POSITION FIX ERROR MODEL 19 11. INITIAL AZIMUTH ERROR MODEL 22 12. DEAD-RECKONING ERROR MODEL 23 13. ERROR MODEL DIAGRAM - CONCEPT 1 29 14. ERROR MODEL DIAGRAM - CONCEPT 2 29 15. ERROR MODEL DIAGRAM - CONCEPT 3 32 16. SUMMARY OF RESULTS 38 17. CONCLUSIONS AND RECOMMENDATIONS 36 ii ILLUSTRATIONS Figure Title Page 1 Block Diagram of Study Approach 2 2 Passive, Nongyro System Block Diagram 5 3 Inertial System Block Diagram 6 4 RF Technology System Block Diagram 7 5 Vehicle Position Error Ellipsoid 19 6 Astronomical Triangle 22 7 Star Azimuth Definition 23 8 Path Density Functions 24 9 Vehicle Path, Latitude and Longitude 26 10 Altitude vs Distance Traveled 27 11 System Error vs Time 28 12 Concept 1- Passive, Nongyro System Flow Diagram 30 13 Concept 2 - Inertial System
    [Show full text]
  • Internationale Raumstation ISS International Space Station ISS
    Internationale Raumstation ISS International Space Station ISS www.DLR.de Europäisches Labormodul COLUMBUS European laboratory module COLUMBUS US-Labormodul DESTINY japanisches Labormodul KIBO US laboratory module DESTINY Japanese laboratory module KIBO Russisches Cargo-Modul SaRja (Functional Cargo Block) Russian cargo module ZARYA 20. November 1998: (Functional Cargo Block) 24. Februar 2011: Start des ersten ISS-Moduls: Start des permanenten der Functional Cargo Block Logistikmoduls PMM (FGB) Sarja Leonardo November 20, 1998: February 24, 2011: launch of the first ISS module: launch of the logistic the Functional Cargo Block module PMM Leonardo (FGB) Zarya 12. juli 2000: 8. Februar 2010: Start des Service- und Wohn- Start des Aussichtsmoduls moduls Swesda Cupola July 12, 2000: February 8, 2011: launch of the observatory launch of the service and Russisches Service-Modul habitation module Zvezda module Cupola SwESDa Russian service module 10. November 2009: 7. Februar 2001: Europäisches Logistikmodul aTV-2 Start des amerikanischen ZvEZDA Start des russischen Docking- Labormoduls DESTINY (automated Transfer Vehicle) moduls POISK Mini-Research „johannes Kepler“ Module 2 February 7, 2001: 7. Februar 2008: 31. Mai 2008: launch of the American European logistics module ATv-2 November 10, 2009: Start des europäischen Start des zweiten Teils des laboratory module DESTINY (Automated Transfer vehicle) launch of the Russian docking Labormoduls japanischen Labormoduls “Johannes Kepler” module POISK Mini-Research COLUMBUS KIBO Pressurized Module (PM) Module 2 February 7, 2008: May 31, 2008: launch of the European launch of the second part of the research module Japanese laboratory module KIBO COLUMBUS Pressurized Module (PM) ISS ISS © NASA, ESA, DLR Forschung im All für die Menschen auf der Erde Research in Space for Mankind on Earth.
    [Show full text]
  • Space Station Freedom. a Foothold on the Future. INSTITUTION National Aeronautics and Space Administration, Washington, DC
    DOCUMENT RESUME ED 310 939 SE 050 885 AUTHOR David, Leonard TITLE Space Station Freedom. A Foothold on the Future. INSTITUTION National Aeronautics and Space Administration, Washington, DC. Office of Space Sta.:Ion. REPORT NO NP-107/10-88 PUB DATE 89 NOTE 49p.; Colored photographs and drawings may not reproduce well. PUB TYPE Reports - Descriptive (141) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS *Aerospace Technology; Engineering Technology; Planning; *Satellites (Aerospace); Science Materials; *Science Programs; *Scientific Research; *Space Exploration; *Space Sciences IDENTIFIERS *Space Station ABSTRACT This booklet describes the planning of the space station program. Sections included are: (1) "Introduction"; (2) "A New Era Begins" (discussing scientific experiments on the space station); (3) "Living in Space";(4) "Dreams Fulfilled" (summarizing the history of the space station development, including the skylab and shuttle); (5) "Building a Way Station to Worlds Beyond" (illustrating an approach to building the space station); (6) ''Orbital Mechanics" (discussing the maneuverability of the space station, including robotic application);(7) "Evolving with Versatility" (describing blueprints for expanding a space station); and (8) "Foothold on the Future" (discussing the future plans of the space station program). (YP) **************************************-******************************* * Reproductions supplied by EDRS are the best that can be made * from the original document. *********************************************************************A*
    [Show full text]
  • Orb2: Spherical Space Station Designed for Single Launch and On-Orbit Assembly
    Orb2: Spherical Space Station Designed for Single Launch and On-Orbit Assembly Vojtech Holub ∗ Unaffiliated With upcoming heavy and super-heavy lift rockets targeted for launch in 2021, a new class of payloads can be launched into low Earth orbit. This paper presents a design for a space station capable of being lifted by a single Blue Origin New Glenn vehicle. Once assembled on-orbit, it contains more than twice the pressurized volume of the International Space Station. The pressurized volume of traditional space station modules is limited by the dimensions of the payload fairing. The proposed Orb2 design consists of a spherical habitation module and a service module. The habitation module avoids the volume limitation by being launched in a flat-packed stack and assembled and welded robotically in orbit. Using CAD and finite element analysis, this paper shows that the habitation module contains approximately 2000 m3 of pressurized volume, with a mass of 24 tons, and can hold four times the standard atmospheric pressure. Moreover, the Whipple shield configuration is identical to the heavily protected sections of the ISS. The service module has a traditional cylindrical design and its role is to provide all the necessary utilities. Furthermore, the paper explains the assembly and welding method required to convert Orb2 into the fully assembled space station. I. Nomenclature LEO = low Earth orbit ISS = International Space Station PAS = payload adapter system MMOD = micrometeoroids and orbital debris FEA = finite element analysis g = gravitational force, 9:81m/s2 EBW = electron beam welding BEAM = Bigelow Expandable Activity Module ∗Staff Research Engineer, Portland, OR, 97201 USA, Member AIAA.
    [Show full text]
  • Nasa Technical Memorandum Tm-88427 Formation Of
    https://ntrs.nasa.gov/search.jsp?R=19860016441 2020-03-20T14:24:06+00:00Z NASA TECHNICAL MEMORANDUM TM-88427 FORMATION OF THE CENTRAL UPLIFT IN METEORIC CRATERS Jvanov, B.A.; Bazilevskiy, A.T.; Sazonova, L.V. Translation of "Ob obrazovanii tsentralnogo podnyatiya v meteoritnykh kraterakh," in "Meteoritika, Akademiya nauk SSSR" No. 40, 1982, pp. 67-81 , f(NASA-TM-88427) FORMATION OF THE CENTBAL N86-25913 DfLIFT IN flETIOEIC CEATEBS {Hatioiial Aeronautics and Space administration) 33 p HC A03/MP A01 CSCX 08G Unclas G3/46 43587 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546 MAY, 1986 FORMATION OF THE CENTRAL UPLIFT IN METEORIC CRATERS V.A. Ivanov INTRODUCTION. /671 Central peaks or central uplifts in meteoric craters are a necessary element in the structure of craters in a certain size range, e.g. craters with a diameter of 25-200 km on the Moon and 4-70 (?) km on Earth. Smaller craters have a simple cup shape; larger craters are complex multiringed structures. The transition from simple cup-shaped craters to craters with central uplifts is associated with a decrease in relative crater depth, which brings into question the depth of excavation during formation of craters with complex structure. A change in crater structure indicates a change in the mechanics of crater formation and requires caution when one attempts to extrapolate to natural occurrences the set of data accumulated during study of this process using experimental explosions and hypervelocity impacts under laboratory conditions. The purpose of this article is to discuss and, if possible, evaluate the relationship of various processes which accompany crater formation; to attempt to identify those which can be related to the natural appearance of central uplifts in impact craters on a certain scale.
    [Show full text]
  • Space Odyssey Alumni Fuel 60 Years of Space Exploration
    SPRING/SUMMER 2018 THE MAGAZINE OF THE STEVENS ALUMNI ASSOCIAASSOCIATIONTION SPACE ODYSSEY ALUMNI FUEL 60 YEARS OF SPACE EXPLORATION IN THIS ISSUE: A LASTING LEGACY | LIFE AT BUZZFEED | CELEBRATING 50 YEARS OF STEP DEPARTMENTS 2 PRESIDENT’S CORNER 3 LETTERS TO THE EDITOR/SOCIAL MEDIA 4-7 GRIST FROM THE MILL 7 CALENDAR OF EVENTS 42 SPORTS UPDATE 43-72 ALUMNI NEWS 44 SAA PRESIDENT’S LETTER 68 VITALS FEATURES 8-10 A TRIBUTE TO HIS ‘STUTE’ Richard F. Harries’ ’58 reunion-year gift makes Stevens history 11 STEVENS VENTURE CENTER ‘GRADUATES’ FIRST COMPANY FinTech Studios strikes out on its own 12-31 SPACE ODYSSEY Stevens alumni fuel 60 years (and counting) of space exploration 32-33 ENCHANTED EVENING See moments from the 2018 Stevens Awards Gala 34-35 PROFILE: CAROLINE AMABA ’12 36-38 STEP’S 50TH ANNIVERSARY The Stevens Technical Enrichment Program (STEP) will mark its 50th anniversary this fall, as its alumni reflect on its impact. 39 STEVENS RECEIVES ACE/FIDELITY INVESTMENTS AWARD ‘Turnaround’ not too strong a word to describe the university’s transformation 40 QUANTUM LEAP Physics team deploys, verifies pathbreaking three-node network 41 ROBOTIC DEVICE AIDS STROKE PATIENTS Mobility-assistance system will be tested by stroke patients at Kessler Institute Cover Photo: Shutterstock Images/NASA Cover Design: Simone Larson Design Campus Photo: Bob Handelman SPRING/SUMMER 2018 1 LETTERS TO THE EDITOR REMEMBERING PAUL MILLER SPRING/SUMMER 2018 VOL. 139, NO. 2 I had a chance to read the Winter 2018 edition of e Stevens Indicator and read Editor Beth Kissinger the story of former artist-in-residence Paul [email protected] Miller.
    [Show full text]
  • The International Space Station a Guide for European Users
    BR-ISS-COVER-137 06-04-1999 15:32 Page 1 BR-137 February 1999 The International Space Station A Guide for European Users nn > < Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands > Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 < Directorate of Manned Spaceflight and Microgravity Direction des Vols Habités et de la Microgravité BR-137 February 1999 The International Space Station A Guide for European Users > < Contents INTRODUCTION 5 Purpose 5 Scope 5 Status 5 OVERVIEW 6 Background 6 ISS: General Description 7 Payload Transportation and Logistics Carriers 10 Distributed Station Systems 11 Command and Data Handling (C&DH) System 11 Communications and Tracking System (C&TS) 12 Electrical Power System (EPS) 13 Thermal Control System (TCS) 14 Guidance, Navigation and Control (GN&C) 14 Flight Crew Systems 14 Environmental Control & Life Support System (ECLSS) 15 Information Services 15 Environment Considerations 16 Natural Environment 16 Induced Environment 17 ACCOMMODATION AND UTILISATION RESOURCES CAPABILIITIES FOR PAYLOADS 19 Overall ISS Utilisation Capabilities 19 European Utilisation Capabilities 19 Columbus Laboratory Characteristics 20 Basic Accommodation Units 20 Columbus Resources and Services to Payloads 22 Data Management Services (DMS) 22 Electrical Power 22 Vacuum and Venting System (VVS) 23 Cooling Water 23 Nitrogen Gas 23 Video Communications 24 Telemetry and Telecommand Links 24 Fire Detection and Suppression (FDS) 24 Emergency, Warning and Caution and Safing (EWACS) 24 Cabin Air 24 Columbus
    [Show full text]
  • The International Space Station (ISS) Is an Experiment in the Design, Development, and Assembly of an Orbital Space Facility. It
    The International Space Station (ISS) is an experiment in the design, development, and assembly of an orbital space facility. It serves as a elements habitat for its crew, a command post for orbital operations, and a port for the rendezvous and berthing of smaller orbiting vehicles. It functions as an orbital microgravity and life sciences laboratory, a test bed for new technologies in areas like life support and robotics, and a platform for astronomical and Earth observations. PMA 2 berthed on Node 1 serves as a primary docking port for the Space Shuttle. The U.S. Lab Module Destiny provides research and habitation accommodations. Node 2 is to the left; the truss is mounted atop the U.S. Lab; Node 1, Unity, is to the right; Node 3 and the Cupola are below and to the right. INTERNATIONAL SPACE STATION GUIDE ELEMENTS 23 ARCHITECTURE DESIGN EVOLUTION Architecture Design Evolution Why does the ISS look the way it does ? The design evolved over more than a decade. The modularity and size of the U.S., Japanese, and European elements were dictated by the use of the Space Shuttle as the primary launch vehicle and by the requirement to make system components maintainable and replaceable over a lifetime of many years. When the Russians joined the program in 1993, their architecture was based largely on the Mir and Salyut stations they had built earlier. Russian space vehicle design philosophy has always emphasized automated operation and remote control. The design of the interior of the U.S., European, and Japanese elements was dictated by four specific principles: modularity, maintainability, reconfigurability, and accessibility.
    [Show full text]
  • Space Stations
    Order Code IB93017 CRS Issue Brief for Congress Received through the CRS Web Space Stations Updated November 17, 2005 Marcia S. Smith Resources, Science, and Industry Division Congressional Research Service ˜ The Library of Congress CONTENTS SUMMARY MOST RECENT DEVELOPMENTS BACKGROUND AND ANALYSIS Introduction The Space Station Program: 1984-1993 Space Station Freedom 1993 Redesign — the Clinton Administration Restructuring The International Space Station (ISS): 1993-Present ISS Design, Cost, Schedule, and Lifetime September 1993-January 2001: The Clinton Administration 2001-Present: The George W. Bush Administration Reviews of NASA’s Cost Estimates and Adding Funds for ISS Congressional Action FY2005 FY2006 International Partners The Original Partners: Europe, Canada, and Japan Russia Risks and Benefits of Russian Participation ISS and U.S. Nonproliferation Objectives, Including the Iran Nonproliferation Act (INA) Key Issues For Congress Maintaining ISS Operations While the Shuttle Is Grounded Ensuring U.S. Astronaut Participation in Long-Duration Missions Impact of President Bush’s Vision for Space Exploration, Including a Potential Gap in U.S. Human Access to Space LEGISLATION IB93017 11-17-05 Space Stations SUMMARY Congress continues to debate NASA’s “Moon/Mars” Vision instead of the broadly- International Space Station (ISS), a perma- based program that was planned. nently occupied facility in Earth orbit where astronauts live and conduct research. Canada, Japan, and several European Congress appropriated approximately $35 countries became partners with NASA in billion for the program from FY1985-2005. building the space station in 1988; Russia The initial FY2006 ISS request was $2.180 joined in 1993. Except for money paid to billion: $1.857 billion for construction and Russia, there is no exchange of funds among operations and $324 million for research to be the partners.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • Evolvable Mars Campaign and Technology Development
    National Aeronautics and Space Administration Evolvable Mars Campaign and Technology Development Jason Crusan Director, Advanced Exploration Systems Human Exploration & Operations Mission Directorate NASA Headquarters 27July 2015 2 3 Pioneering Space - Goals “Fifty years after the creation of NASA, our goal is no longer just a destination to reach. Our goal is the capacity for people to work and learn and operate and live safely beyond the Earth for extended periods of time, ultimately in ways that are more sustainable and even indefinite. And in fulfilling this task, we will not only extend humanity’s reach in space -- we will strengthen America’s leadership here on Earth.” - President Obama - April, 2010 4 NASA Strategic Plan Objective 1.1 Expand human presence into the solar system and to the surface of Mars to advance exploration, science, innovation, benefits to humanity, and international collaboration. 5 Strategic Principles for Sustainable Exploration • Implementable in the near-term with the buying power of current budgets and in the longer term with budgets commensurate with economic growth; • Exploration enables science and science enables exploration, leveraging robotic expertise for human exploration of the solar system • Application of high Technology Readiness Level (TRL) technologies for near term missions, while focusing sustained investments on technologies and capabilities to address challenges of future missions; • Near-term mission opportunities with a defined cadence of compelling and integrated human and robotic missions providing for an incremental buildup of capabilities for more complex missions over time; • Opportunities for U.S. commercial business to further enhance the experience and business base; • Multi-use, evolvable space infrastructure, minimizing unique major developments, with each mission leaving something behind to support subsequent missions; and • Substantial new international and commercial partnerships, leveraging the current International Space Station partnership while building new cooperative ventures.
    [Show full text]