Introduction to GIS : Basics of Using GRASS GIS Karl Kent Benedict, Ph.D

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to GIS : Basics of Using GRASS GIS Karl Kent Benedict, Ph.D Introduction to GIS : Basics of Using GRASS GIS Karl Kent Benedict, Ph.D. Earth Data Analysis Center University of New Mexico Introduction 2 Class Goals • Provide foundation knowledge about Geographic Information Systems (GIS) • Provide hands-on experience with open-source mapping technologies: GRASS and other tools • Provide specific knowledge required to import, integrate with other geospatial data, and visualize output of the DREAM system Introduction 3 Class Organization Introduction GIS Fundamentals Introduction to Linux Building GRASS Data Acquisition and Preprocessing Data Import/Export Data Management Manipulation and Analyisis Product Generation - Visualization Product Generation - Cartography Automation Advanced Topics Recap and Review Introduction 4 GIS Fundamentals 5 GIS Fundamentals A basic understanding of the principles of Geographic Information Systems is required to effectively take advantage of GIS technologies in data management, analysis and visualization applications. This section provides a brief introduction to GIS consisting of the following topics: • What is a GIS? • Key GIS Concepts – Projection – Scale – Resolution • Data Fundamentals – Variable Types – Layer Types • Elements of the GIS Process – Data Acquisition – Preprocessing – Data Management – Manipulation and Management – Product Generation GIS Fundamentals 6 What is a GIS? • A system for managing geographic data. – Information about the shapes of objects. – Information about attributes of those objects. – Spatial variation of measurements across space without reference to specific boundaries – continuous fields of measurements. • A system for analyzing and modeling spatial relationships. – Spatial statistics – Aggregation and reclassification of observation data – Statistical or process model development and implementation • A system for presenting geographic information graphically and in summary – Maps – Tables – Graphs – 2D and 3D animations GIS Fundamentals 7 Key GIS Concepts • Projections and coordinate systems – Define units of measurement (e.g. spherical coordinates [lat-lon], projected coordinates [UTM meters]) – Translate spherical coordinates to cartesian coordinates – Projections may be optimized to retain direction, distance, or area, leading to a need to consider the application in choosing an appropriate projection for a project • Scale – The map scale at which data retain acceptable precision • Resolution – In raster datasets, the size of the pixels in the quantized data representation – Object size, model sensitivity, resolution of source data influence choice of resolution GIS Fundamentals 8 Key GIS Concepts Geographic (Unprojected representation of the analysis region) Transverse Mercator Projection of the same region What projection(s) are commonly used for your area? GIS Fundamentals 9 Data Fundamentals • Data types – Nominal: categories without an inherent order – Ordinal: ordered values without even intervals – Interval: ordered values with even intervals but no well defined zero value (e.g. degrees Celsius) – Ratio: ordered values with even intervals having a well defined zero value (e.g. degrees Kelvin, cm) • Layer types – Vector (point, line, polygon) – Raster (pixels in a regular grid) • Topology – Defines the relationship between spatial objects (e.g. adjacency, direction) GIS Fundamentals 10 Data Fundamentals Samples of Raster Data Elevation Data: Excerpt from a global MODIS Mosaic: GIS Fundamentals 11 Data Fundamentals Samples of Vector Data Cities (Point): European Drainage Network (Line): GIS Fundamentals 12 Data Fundamentals Vector Data Samples (cont.) Country Boundaries (Polygon): Individual data layers are necessary for presenting data to the user, but carefully selected combinations of data layers and supplemental cartographic information provide information to the user. Geographic Information Systems provide the tools for managing data and combining those data into informational displays that enhance the user’s understanding of the phenomena being examined. GIS Fundamentals 13 Elements of the GIS Process • Data Acquisition • Preprocessing • Data Management • Manipulation and Analysis • Product Generation GIS Fundamentals 14 Elements of the GIS Process Data acquisition is often the most expensive and time consuming part of any GIS project It may require: • Purchasing data from commercial vendors • Acquisition of data through field collection – Aerial photography – Satellite imagery – GPS – Ground survey – Manual digitizing, either with a digitizing tablet or on-screen • Download from government or other sources What types of data do you want to display? How are spatial data encoded into these data? GIS Fundamentals 15 Elements of the GIS Process Data preprocessing is required to modify obtained data for appropriate use in the GIS. This may include • Reprojection • Reformatting/Conversion • Subsetting • Checking for errors • Orthorectification What are the formats of the spatial data available to you? What coordinate systems are used for those data? GIS Fundamentals 16 Elements of the GIS Process Data management consists of a broad range of activities within the GIS that relate to the organization, processing, and storage of geospatial data. Activities included in data management include: • Importation of external data • Conversion from one data type to another within the GIS • Movement of data from one GIS workspace to another • Building topology • Reprojecting data • Joining attribute data with spatial data Do you have non-spatial data that you would like to map? If so, how might they be joined to available spatial data? GIS Fundamentals 17 Elements of the GIS Process Manipulation and analysis within the GIS might be seen to overlap with management, with the primary distinction being that manipulation and analysis results in: • New datasets based upon other datasets. For example: – Slope and aspect derived from a digital elevation model – The results of a model run that combines geospatial data and predefined processes – Reclassification of data into new representations of those data • Information about datasets as opposed to the datasets themselves (e.g. statistical information) What derived data do you want to generate? What types of statistical analyses do you need to perform? GIS Fundamentals 18 Elements of the GIS Process Product generation encompasses the set of activities that result in end products coming out of the GIS. These products include: • Hard copy maps • Digital representations of GIS data (e.g. TIFF, JPEG, GIF, and PNG files representing mapped data) • Tabular summary data derived from geospatial data or processes employed in the GIS (e.g. model output, or summary statistical data) • Exported geospatial data • Exported databases What information do you need to present in your maps? What standards does your organization use? GIS Fundamentals 19 Introduction to Linux 20 Introduction to Linux The GNU/Linux operating system and applications suite provide the foundation for the GRASS GIS application environment in the course. These tools consist of a robust collection of capabilities that must be understood to gain maximum benefit from the GIS environment. Areas to be discussed: • Logging in & setting a password • Interacting with the system • File system • Users and groups • Permissions • Installing Applications • Getting help Introduction to Linux 21 Logging In • Logging into the local system – Username & password: Generally, only the first 8 characters of the username and password are significant – Graphical login versus command prompt • Changing your password – Password best practices ∗ 8 Alphanumeric characters, mixed case ∗ Include punctuation marks ∗ NO: dictionary words, personal information, ∗ Change regularly • May be performed both from the command prompt and from a GUI interface • Login to a remote system – Telnet ∗ Commonly used to establish a connection to a remote system ∗ Insecure - username, password, and network traffic transfered in clear text – RSH ∗ Occasionally used to establish a remote connection. ∗ Insecure - username, password, and network traffic transferred in clear text – SSH ∗ Increasingly used for establishing connections to Introduction to Linux 22 Logging In remote systems. ∗ Secure - username, password, and network traffic exchanged in an encrypted mode. ∗ May be used for establishing a variety of connections, including: · Shell (ssh) · File Transfer Protocol (sftp) · File Copy (scp) · X-Windows Applications (ssh -X) ∗ It is good to get into a habit of using secure connections when possible Introduction to Linux 23 Logging In SSH Examples: ssh [-afgknqstvxACNTX1246] [-b bindAddress] [-c cipherSpec] [-e escapeChar] [-i identityFile] [-l loginName] [-m macSpec] [-o option] [-p port] [-F configfile] [-L port:host:hostport] [-R port:host:hostport] [-D port] hostname | user@hostname [command] • Connecting to a remote shell ssh -l kbene philostrate.unm.edu • Connecting to a remote system for interactive file trasfer sftp [email protected] • Transferring files from one system to another scp [email protected]:/home/kbene/testfile.txt [email protected]:/home/kbene/testfileNew.txt • Running X-windows applications on a remote system ssh -X -l kbene philostrate.unm.edu grass5 Introduction to Linux 24 Command Line vs. Graphical User Interface The execution of commands may often be accomplished via both the command prompt and via the system’s graphical user interface (GUI). Pros and Cons of GUIs • The GUI often provides access to complex functionality that would require
Recommended publications
  • Package 'Rgdal'
    Package ‘rgdal’ September 16, 2021 Title Bindings for the 'Geospatial' Data Abstraction Library Version 1.5-27 Date 2021-09-16 Depends R (>= 3.5.0), methods, sp (>= 1.1-0) Imports grDevices, graphics, stats, utils LinkingTo sp Suggests knitr, DBI, RSQLite, maptools, mapview, rmarkdown, curl, rgeos NeedsCompilation yes Description Provides bindings to the 'Geospatial' Data Abstraction Li- brary ('GDAL') (>= 1.11.4) and access to projection/transformation opera- tions from the 'PROJ' library. Please note that 'rgdal' will be retired by the end of 2023, plan tran- sition to sf/stars/'terra' functions using 'GDAL' and 'PROJ' at your earliest conve- nience. Use is made of classes defined in the 'sp' package. Raster and vector map data can be im- ported into R, and raster and vector 'sp' objects exported. The 'GDAL' and 'PROJ' libraries are ex- ternal to the package, and, when installing the package from source, must be correctly in- stalled first; it is important that 'GDAL' < 3 be matched with 'PROJ' < 6. From 'rgdal' 1.5-8, in- stalled with to 'GDAL' >=3, 'PROJ' >=6 and 'sp' >= 1.4, coordinate reference sys- tems use 'WKT2_2019' strings, not 'PROJ' strings. 'Windows' and 'macOS' binaries (includ- ing 'GDAL', 'PROJ' and their dependencies) are provided on 'CRAN'. License GPL (>= 2) URL http://rgdal.r-forge.r-project.org, https://gdal.org, https://proj.org, https://r-forge.r-project.org/projects/rgdal/ SystemRequirements PROJ (>= 4.8.0, https://proj.org/download.html) and GDAL (>= 1.11.4, https://gdal.org/download.html), with versions either (A) PROJ < 6 and GDAL < 3 or (B) PROJ >= 6 and GDAL >= 3.
    [Show full text]
  • Comparison of Open Source Virtual Globes
    FOSS4G 2010 Comparison of Open Source Virtual Globes Mathias Walker Pirmin Kalberer Sourcepole AG, Bad Ragaz www.sourcepole.ch FOSS4G Barcelona 7.-9.9.10 Comparison of Open Source Virtual Globes About Sourcepole > GIS-Knoppix: first GIS live-CD > QGIS > Core developer > QGIS Mapserver > OGR / GDAL > Interlis driver > schema support for PostGIS driver > Ruby on Rails > MapLayers plugin > Mapfish server plugin FOSS4G Barcelona 7.-9.9.10 Comparison of Open Source Virtual Globes Overview > Multi-platform Open Source Virtual Globes > Installation > out-of-the-box application > Adding user data > Features > Demo movie > Comparison > User data > Technology > Desired Virtual Globe features FOSS4G Barcelona 7.-9.9.10 Comparison of Open Source Virtual Globes Open Source Virtual Globes > NASA World Wind Java SDK > ossimPlanet > gvSIG 3D > osgEarth > Norkart Virtual Globe > Earth3D > Marble > comparison to Google Earth FOSS4G Barcelona 7.-9.9.10 Comparison of Open Source Virtual Globes Test user data > Test data of Austrian skiing region Lech > projection: WGS84 (EPSG:4326) > OpenStreetMap WMS > winter orthophoto > GeoTiff, 20cm resolution, 4.5GB > KML Tile Cache > ski lifts, ski slopes, cable cars and POIs > KML > Shapefile > elevation (ASTER) > GeoTiff, ~30m resolution, 445MB FOSS4G Barcelona 7.-9.9.10 Comparison of Open Source Virtual Globes NASA World Wind Java SDK > created by NASA's Learning Technologies project > now developed by NASA staff and open source community developers FOSS4G Barcelona 7.-9.9.10 Comparison of Open Source Virtual Globes
    [Show full text]
  • Remotely Execute GRASS GIS Scripts on Your Server
    g.remote Remotely execute GRASS GIS scripts on your server Vaclav Petras Center for Geospatial Analytics OSGeo Research and Education Laboratory North Carolina State University May 7, 2015 cba GRASS GIS: g.remote NCSU Center for Geospatial Analytics 1 / 12 Server for everybody there are servers, HPC clusters, clouds lying around once somebody set it up, it’s easy to get to it if you know what ssh -X means and you also want to work locally in the same environment GRASS GIS: g.remote NCSU Center for Geospatial Analytics 2 / 12 Tangible Landscape currently locked to MS Windows desktop needs powerful processing backend for larger simulations pure in-cloud or client-server with WPS would be overkill GRASS GIS: g.remote NCSU Center for Geospatial Analytics 3 / 12 g.remote developed for hybrid desktop-server workflow tests of processing or part of processing locally store and process the big data on a server synchronous processing easily to integrate into scripts GRASS GIS: g.remote NCSU Center for Geospatial Analytics 4 / 12 Usage Basic call in command line g.remote user=john server=example.com \ grassdata=/grassdata \ location=nc_spm mapset=practice1 \ grass_script=/path/to/script.py data are stored on the server Python script is local and transferred to the server GRASS GIS: g.remote NCSU Center for Geospatial Analytics 5 / 12 Usage Addition of inputs and outputs g.remote ... \ raster=elevation \ output_raster=waterflow data are transfered to and from the server GRASS GIS: g.remote NCSU Center for Geospatial Analytics 6 / 12 Usage GRASS GIS: g.remote NCSU Center for Geospatial Analytics 7 / 12 Architecture Three layers connection to server (class) Paramiko ssh + scp (OpenSSH Client) can accommodate web-based applications or local programs GRASS session (class) runs GRASS modules, scripts and Python code inside GRASS session using the connection transports GRASS data (maps, region, .
    [Show full text]
  • Assessmentof Open Source GIS Software for Water Resources
    Assessment of Open Source GIS Software for Water Resources Management in Developing Countries Daoyi Chen, Department of Engineering, University of Liverpool César Carmona-Moreno, EU Joint Research Centre Andrea Leone, Department of Engineering, University of Liverpool Shahriar Shams, Department of Engineering, University of Liverpool EUR 23705 EN - 2008 The mission of the Institute for Environment and Sustainability is to provide scientific-technical support to the European Union’s Policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Contact information Cesar Carmona-Moreno Address: via fermi, T440, I-21027 ISPRA (VA) ITALY E-mail: [email protected] Tel.: +39 0332 78 9654 Fax: +39 0332 78 9073 http://ies.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC [49291] EUR 23705 EN ISBN 978-92-79-11229-4 ISSN 1018-5593 DOI 10.2788/71249 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Table of Content Introduction............................................................................................................................4 1.
    [Show full text]
  • Python Scripting for Spatial Data Processing
    Python Scripting for Spatial Data Processing. Pete Bunting and Daniel Clewley Teaching notes on the MSc's in Remote Sensing and GIS. May 4, 2013 Aberystwyth University Institute of Geography and Earth Sciences. Copyright c Pete Bunting and Daniel Clewley 2013. This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons. org/licenses/by-sa/3.0/. i Acknowledgements The authors would like to acknowledge to the supports of others but specifically (and in no particular order) Prof. Richard Lucas, Sam Gillingham (developer of RIOS and the image viewer) and Neil Flood (developer of RIOS) for their support and time. ii Authors Peter Bunting Dr Pete Bunting joined the Institute of Geography and Earth Sciences (IGES), Aberystwyth University, in September 2004 for his Ph.D. where upon completion in the summer of 2007 he received a lectureship in remote sensing and GIS. Prior to joining the department, Peter received a BEng(Hons) in software engineering from the department of Computer Science at Aberystwyth University. Pete also spent a year working for Landcare Research in New Zealand before rejoining IGES in 2012 as a senior lecturer in remote sensing. Contact Details EMail: [email protected] Senior Lecturer in Remote Sensing Institute of Geography and Earth Sciences Aberystwyth University Aberystwyth Ceredigion SY23 3DB United Kingdom iii iv Daniel Clewley Dr Dan Clewley joined IGES in 2006 undertaking an MSc in Remote Sensing and GIS, following his MSc Dan undertook a Ph.D. entitled Retrieval of Forest Biomass and Structure from Radar Data using Backscatter Modelling and Inversion under the supervision of Prof.
    [Show full text]
  • GRASS GIS 6.3 Command List
    d.erase Erase the contents of the active display frame with user defined color d.extend Set window region so that all currently displayed raster, vector and sites maps can be shown in a monitor. d.extract Select and extract vectors with mouse into new vector map d.font.freetype Selects the font in which text will be displayed on the user’s graphics monitor. d.font Selects the font in which text will be displayed on the user’s graphics monitor. d.frame Manages display frames on the user’s graphics monitor. GRASS GIS 6.3 Command list d.geodesic Displays a geodesic line, tracing the shortest distance between two geographic points 20 Novermber 2006 along a great circle, in a longitude/latitude data set. d.graph Program for generating and displaying simple graphics on the display monitor. d.grid Overlays a user-specified grid in the active display frame on the graphics monitor. Command types: d.his Displays the result obtained by combining hue, intensity, and saturation (his) values from user-specified input raster map layers. d.* display commands d.histogram Displays a histogram in the form of a pie or bar chart for a user-specified raster file. db.* database commands d.info Display information about the active display monitor g.* general commands d.labels Displays text labels (created with v.label) to the active frame on the graphics monitor. i.* imagery commands d.legend Displays a legend for a raster map in the active frame of the graphics monitor. m.* miscellanous commands d.linegraph Generates and displays simple line graphs in the active graphics monitor display ps.* postscript commands frame.
    [Show full text]
  • The State of Open Source GIS
    The State of Open Source GIS Prepared By: Paul Ramsey, Director Refractions Research Inc. Suite 300 – 1207 Douglas Street Victoria, BC, V8W-2E7 [email protected] Phone: (250) 383-3022 Fax: (250) 383-2140 Last Revised: September 15, 2007 TABLE OF CONTENTS 1 SUMMARY ...................................................................................................4 1.1 OPEN SOURCE ........................................................................................... 4 1.2 OPEN SOURCE GIS.................................................................................... 6 2 IMPLEMENTATION LANGUAGES ........................................................7 2.1 SURVEY OF ‘C’ PROJECTS ......................................................................... 8 2.1.1 Shared Libraries ............................................................................... 9 2.1.1.1 GDAL/OGR ...................................................................................9 2.1.1.2 Proj4 .............................................................................................11 2.1.1.3 GEOS ...........................................................................................13 2.1.1.4 Mapnik .........................................................................................14 2.1.1.5 FDO..............................................................................................15 2.1.2 Applications .................................................................................... 16 2.1.2.1 MapGuide Open Source...............................................................16
    [Show full text]
  • Qgis-1.0.0-User-Guide-En.Pdf
    Quantum GIS User, Installation and Coding Guide Version 1.0.0 ’Kore’ Preamble This document is the original user, installation and coding guide of the described software Quantum GIS. The software and hardware described in this document are in most cases registered trademarks and are therefore subject to the legal requirements. Quantum GIS is subject to the GNU General Public License. Find more information on the Quantum GIS Homepage http://qgis.osgeo.org. The details, data, results etc. in this document have been written and verified to the best of knowledge and responsibility of the authors and editors. Nevertheless, mistakes concerning the content are possible. Therefore, all data are not liable to any duties or guarantees. The authors, editors and publishers do not take any responsibility or liability for failures and their consequences. Your are always welcome to indicate possible mistakes. This document has been typeset with LATEX. It is available as LATEX source code via subversion and online as PDF document via http://qgis.osgeo.org/documentation/manuals.html. Translated versions of this document can be downloaded via the documentation area of the QGIS project as well. For more information about contributing to this document and about translating it, please visit: http://wiki.qgis.org/qgiswiki/DocumentationWritersCorner Links in this Document This document contains internal and external links. Clicking on an internal link moves within the document, while clicking on an external link opens an internet address. In PDF form, internal links are shown in blue, while external links are shown in red and are handled by the system browser.
    [Show full text]
  • From GDAL to SAGA: Tips & Tricks from the World of Open Source
    From GDAL to SAGA: Tips & Tricks from the World of Open Source Trevor Hobbs Resource Information Manager Huron-Manistee National Forests From GDAL to SAGA: Tips & Tricks from the World of Open Source Trevor Hobbs Resource Information Manager Director of Location Intelligence Huron-Manistee National Forests Purpose of this Presentation • Provide a brief introduction to a variety of open source GIS software • Serve as a reference to links and documentation • DEMO– LiDAR data processing using Open Source GIS • Relate open source GIS workflows to ESRI workflows • Promote greater awareness of open source GIS at IMAGIN Application Soft Launch – Michigan Forest Viewer, LiDAR Derivative Products served as WMTS layers through Amazon Web Services What is “Open Source” GIS? From the Open Source Geospatial Foundation… Technical • Open Source: a collaborative approach to Geospatial software development Documentation Release • Open Data: freely available information to use as you wish Collaborative Sustainable • Open Standards: avoid lock-in with interoperable Open Source Participatory software Social Open Developers Fair • Open Education: Removing the barriers to Community Guide learning and teaching Open Source Geospatial Foundation https://www.osgeo.org/ My Journey to Open Source… • Think geo-centric solutions, not software-centric solutions • International community of geospatial professionals from all backgrounds • Transparency builds trust Where do I get the Software? OSGeo Installation… • Link to download… https://qgis.org/en/site/forusers/download.html
    [Show full text]
  • Proof of Concept and State of the Art in FOSS Geospatial Technology
    Field Information Geospatial-database System (FIGS) for the United Nations Office for Coordination of Humanitarian Affairs (OCHA) Proof of concept and state of the art in FOSS Geospatial Technology Report by Sean Ahearn, Ph.D., Hunter College - CUNY David Almeida, Hunter College CUNY Software Engineer, TTSI Mark Gahegan, Ph.D. Pennsylvania State University To Mr. Suha Ulgen Technical Coordinator Field Information Support Project Office for the Coordination of Humanitarian Affairs One UN Plaza DC1-1368 New York, NY 10017 March 2006 FIGS Working Group Document: Proof of Concept and state of the art in FOSS 1 Geospatial Technology 3/15/2006 Table of Contents Page number Executive Summary 5 1.0 Introduction 7 2.0 Purpose of broader project 9 2.1 Phase 1: Proof of Concept and state of the art in FOSS Geospatial Technology 9 2.2 FIGS Development 9 2.3 Phase 3: FIGS Field Implementation 11 3.0 Background 11 4.0 Phase I: Proof of Concept and state of the 12 art in FOSS Geospatial Technology 4.1.1 Initial overview of the use of geospatial 12 technology for disaster relief management. 4.1.2 Introduction: Humanitarian Information Centers (HIC) 13 4.1.3 Tsunami (South-east Asia) 16 4.1.4 Earthquake (Pakistan-India) 17 4.2 Within the context of these emergencies, conduct a 20 preliminary data needs assessment and establish functionality requirements for geospatial query, analysis and cartographic output. 4.2.1 Current software systems used 21 4.2.2 Required functionality of Geospatial environment 21 4.2.3 Critical information needs 22 4.2.4 Operational conditions 24 4.3 Assemble, integrate and test Free Open Source Software 24 (FOSS) systems for storage, maintenance, access and analysis of geospatial information.
    [Show full text]
  • Mapaction Field Guide to Humanitarian Mapping
    Field Guide to Humanitarian Mapping Second Edition, 2011 This field guide was produced by MapAction to help humanitarian organisations to make use of mapping methods using Geographic Information Systems (GIS) and related technologies. About MapAction MapAction has, since 2003, become the most experienced international NGO in using GIS and related matters in the field in sudden-onset natural disasters as well as complex emergencies. When disaster strikes a region, a MapAction team arrives quickly at the scene and creates a stream of unique maps that depict the situation as the crisis unfolds. Aid agencies rely on these maps to coordinate the relief effort. MapAction regularly gives training and guidance to staff of aid organisations at national, regional and global levels in using geospatial methods. This second edition of the Field Guide expands the content of the highly successful first edition published in 2009. For further details on MapAction, emergency maps or to make a donation please visit - www.mapaction.org, or email - [email protected]. Lime Farm Office Little Missenden Bucks HP7 0RQ UK Copyright © 2011 MapAction. Any part of this field guide may be cited, copied, adapted, translated and further distributed for non-commercial purposes without prior permission from MapAction, provided the original source is clearly stated. Field Guide to Humanitarian Mapping MapAction Second Edition, July 2011 Field Guide to Humanitarian Mapping Preface: How to use this field guide There are now many possible ways to create maps for humanitarian work, with an ever-growing range of hardware and software tools available. This can be a problem for humanitarian field workers who want to collect and share mappable data and make simple maps themselves during an emergency.
    [Show full text]
  • Quick Introduction to Lidar and Basic Lidar Tools What Is Lidar
    Quick Introduction to Lidar and Basic Lidar Tools What is Lidar LIDAR is an Acronym for LIght Detection And Ranging A basic lidar device consists of a laser, an optical telescope, and a detector. Laser Telescope/ Detector What is Lidar ? - Cont. The detector counts the intensity of photons returned over fixed time intervals and these intensities over times are converted to heights called range bins. range bin = dz=(c*dt)/2, where c = the speed of light, dz = distance dt = time. 160 ns would = 24m of dz See http://pcl.physics.uwo.ca/science/lidarintro/ for details. Types of Lidar - Lasers Lasers can be pulsed or continuous wave, or can be of different frequencies Standard airborne lasers will be near - infrared(1047nm, 1064nm, and 1550nm). Bathymetric lasers – green (EAARL NOAA/USGS, Commercial) Multibeam Lidar – 2 lasers near infrared and Green – mainly coastal, but may become more mainstream. http://agrg.cogs.nscc.ca/resources/lidar- glossary Types of Lidar – Platforms Satellite – mostly profiles Fixed-wing aircraft – most common cost- effective Helicopter – higher accuracy over large areas and air density/pollutant measurements Ground Based – Scan area around point Tabletop/vehicle mounted – specialized applications for specific areas. 3D scan – place object on rotating surface to scan the object in 3 dimensions Posting/Point Spacing Distance Distance between successive ground points Historic 5-8 Meters ( NC 2001) FEMA Flood standard 1.4 M/ USGS QL2 standard 0.7m posting High density 10 points /M FEMA requires better reporting/metadata http://www.fema.gov/plan/prevent/fhm/lidar_4b.shtm From http://www.eijournal.com/LiDar_Mapping.asp Lidar data outputs Ascii X,Y,Z Proprietary binary formats – older data going away ( .ebn, .eebn) LAS format -Industry standard, not mandatory, usually not all “required” fields populated.
    [Show full text]