GRASS/ Osgeo-News Open Source GIS and Remote Sensing Information Volume 4, December 2006
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Is -Open Source- a Keyword for a Successful Gis Development ?
IS -OPEN SOURCE- A KEYWORD FOR A SUCCESSFUL GIS DEVELOPMENT ? Umit Isikdag(MSc,BSc) University of Salford,UK School of Construction & Property Management [email protected] 1.What is a Geographical Information System ? A GIS can be defined as an information system capable of assembling, storing, manipulating, and displaying geographically referenced information. GIS is also regarded as “a computer system for capturing, storing, checking, integrating, manipulating, analysing and displaying data related to positions on the Earth's surface. Typically, a Geographical Information System (or Spatial Information System) is used for handling maps of one kind or another. These might be represented as several different layers where each layer holds data about a particular kind of feature. Each feature is linked to a position on the graphical image of a map.”12 Figure 1.1-Typical Components of a GIS 1.1 The basic functions of a GIS The basic functions of a GIS are defined as13 capturing the data,integrating the data,projection and registration,sturucturing and modelling the data.The USGS web site(http://www.usgs.gov) defines these functions in detail as: Data Capture:Maps can be digitized, or hand-traced with at computer mouse, to collect the coordinates of features. Data capture - putting the information into the system - is the time-consuming component of GIS work. Identities of the objects on the map must be specified, as well as their spatial relationships. Editing of information that is automatically captured can also be difficult. Electronic scanners record blemishes on a map just as faithfully as they record the map features. -
Experience with a Livecd in an Education Process
EXPERIENCE WITH A LIVECD IN AN EDUCATION PROCESS Experience with a LiveCD in an education process Jan R˚uˇziˇcka, FrantiˇsekKl´ımek Institute of Geoinformatics Faculty of Mining and Geology, VSB-TUO E-mail: [email protected] Key words: LiveCD, GIS´akLiveCD, Distance Learning, E-learning Abstract The paper describes how can be LiveCD (Bootable CD) used for geoinformatics distance learn- ing. We have prepared one LiveCD with basic software for learning geoinformatics and we have some feedback from users and teachers. The paper should evaluate this feedback. LiveCD is a CD-ROM, that can be used as a bootable device. After booting from the CD, the user can access all resources compiled to the CD. There are operating system (usually based on GNU/Linux) and (user, desktop) software installed and configured to be used directly after boot. Our CD named GIS´akLiveCD contains basic GIS software such as UMN MapServer, GRASS, Quantum GIS, Thuban, JUMP, GPS Drive, Blender and we work on other soft- ware packages such as MapLab for UMN MapServer, PostGIS, GeoNetwork Open Source, CatMDEdit, gvSIG, uDIG. GIS´akLiveCD contains set of spatial data from the Czech Re- public. Main part of the CD are tutorials for GIS software. CD is open for other e-learning materials. Now we have about 20 students using our LiveCD and few other users that are not curently our students. The paper should show Pros & Cons of the LiveCD usage for a distance learning. LiveCD Live CD is bootable CD-ROM with operating system and installed and configured programs. It is ready to use as full installed system directly after boot from CD-ROM drive. -
Remotely Execute GRASS GIS Scripts on Your Server
g.remote Remotely execute GRASS GIS scripts on your server Vaclav Petras Center for Geospatial Analytics OSGeo Research and Education Laboratory North Carolina State University May 7, 2015 cba GRASS GIS: g.remote NCSU Center for Geospatial Analytics 1 / 12 Server for everybody there are servers, HPC clusters, clouds lying around once somebody set it up, it’s easy to get to it if you know what ssh -X means and you also want to work locally in the same environment GRASS GIS: g.remote NCSU Center for Geospatial Analytics 2 / 12 Tangible Landscape currently locked to MS Windows desktop needs powerful processing backend for larger simulations pure in-cloud or client-server with WPS would be overkill GRASS GIS: g.remote NCSU Center for Geospatial Analytics 3 / 12 g.remote developed for hybrid desktop-server workflow tests of processing or part of processing locally store and process the big data on a server synchronous processing easily to integrate into scripts GRASS GIS: g.remote NCSU Center for Geospatial Analytics 4 / 12 Usage Basic call in command line g.remote user=john server=example.com \ grassdata=/grassdata \ location=nc_spm mapset=practice1 \ grass_script=/path/to/script.py data are stored on the server Python script is local and transferred to the server GRASS GIS: g.remote NCSU Center for Geospatial Analytics 5 / 12 Usage Addition of inputs and outputs g.remote ... \ raster=elevation \ output_raster=waterflow data are transfered to and from the server GRASS GIS: g.remote NCSU Center for Geospatial Analytics 6 / 12 Usage GRASS GIS: g.remote NCSU Center for Geospatial Analytics 7 / 12 Architecture Three layers connection to server (class) Paramiko ssh + scp (OpenSSH Client) can accommodate web-based applications or local programs GRASS session (class) runs GRASS modules, scripts and Python code inside GRASS session using the connection transports GRASS data (maps, region, . -
Assessmentof Open Source GIS Software for Water Resources
Assessment of Open Source GIS Software for Water Resources Management in Developing Countries Daoyi Chen, Department of Engineering, University of Liverpool César Carmona-Moreno, EU Joint Research Centre Andrea Leone, Department of Engineering, University of Liverpool Shahriar Shams, Department of Engineering, University of Liverpool EUR 23705 EN - 2008 The mission of the Institute for Environment and Sustainability is to provide scientific-technical support to the European Union’s Policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Contact information Cesar Carmona-Moreno Address: via fermi, T440, I-21027 ISPRA (VA) ITALY E-mail: [email protected] Tel.: +39 0332 78 9654 Fax: +39 0332 78 9073 http://ies.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC [49291] EUR 23705 EN ISBN 978-92-79-11229-4 ISSN 1018-5593 DOI 10.2788/71249 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Table of Content Introduction............................................................................................................................4 1. -
GRASS GIS 6.3 Command List
d.erase Erase the contents of the active display frame with user defined color d.extend Set window region so that all currently displayed raster, vector and sites maps can be shown in a monitor. d.extract Select and extract vectors with mouse into new vector map d.font.freetype Selects the font in which text will be displayed on the user’s graphics monitor. d.font Selects the font in which text will be displayed on the user’s graphics monitor. d.frame Manages display frames on the user’s graphics monitor. GRASS GIS 6.3 Command list d.geodesic Displays a geodesic line, tracing the shortest distance between two geographic points 20 Novermber 2006 along a great circle, in a longitude/latitude data set. d.graph Program for generating and displaying simple graphics on the display monitor. d.grid Overlays a user-specified grid in the active display frame on the graphics monitor. Command types: d.his Displays the result obtained by combining hue, intensity, and saturation (his) values from user-specified input raster map layers. d.* display commands d.histogram Displays a histogram in the form of a pie or bar chart for a user-specified raster file. db.* database commands d.info Display information about the active display monitor g.* general commands d.labels Displays text labels (created with v.label) to the active frame on the graphics monitor. i.* imagery commands d.legend Displays a legend for a raster map in the active frame of the graphics monitor. m.* miscellanous commands d.linegraph Generates and displays simple line graphs in the active graphics monitor display ps.* postscript commands frame. -
Qgis-1.0.0-User-Guide-En.Pdf
Quantum GIS User, Installation and Coding Guide Version 1.0.0 ’Kore’ Preamble This document is the original user, installation and coding guide of the described software Quantum GIS. The software and hardware described in this document are in most cases registered trademarks and are therefore subject to the legal requirements. Quantum GIS is subject to the GNU General Public License. Find more information on the Quantum GIS Homepage http://qgis.osgeo.org. The details, data, results etc. in this document have been written and verified to the best of knowledge and responsibility of the authors and editors. Nevertheless, mistakes concerning the content are possible. Therefore, all data are not liable to any duties or guarantees. The authors, editors and publishers do not take any responsibility or liability for failures and their consequences. Your are always welcome to indicate possible mistakes. This document has been typeset with LATEX. It is available as LATEX source code via subversion and online as PDF document via http://qgis.osgeo.org/documentation/manuals.html. Translated versions of this document can be downloaded via the documentation area of the QGIS project as well. For more information about contributing to this document and about translating it, please visit: http://wiki.qgis.org/qgiswiki/DocumentationWritersCorner Links in this Document This document contains internal and external links. Clicking on an internal link moves within the document, while clicking on an external link opens an internet address. In PDF form, internal links are shown in blue, while external links are shown in red and are handled by the system browser. -
From GDAL to SAGA: Tips & Tricks from the World of Open Source
From GDAL to SAGA: Tips & Tricks from the World of Open Source Trevor Hobbs Resource Information Manager Huron-Manistee National Forests From GDAL to SAGA: Tips & Tricks from the World of Open Source Trevor Hobbs Resource Information Manager Director of Location Intelligence Huron-Manistee National Forests Purpose of this Presentation • Provide a brief introduction to a variety of open source GIS software • Serve as a reference to links and documentation • DEMO– LiDAR data processing using Open Source GIS • Relate open source GIS workflows to ESRI workflows • Promote greater awareness of open source GIS at IMAGIN Application Soft Launch – Michigan Forest Viewer, LiDAR Derivative Products served as WMTS layers through Amazon Web Services What is “Open Source” GIS? From the Open Source Geospatial Foundation… Technical • Open Source: a collaborative approach to Geospatial software development Documentation Release • Open Data: freely available information to use as you wish Collaborative Sustainable • Open Standards: avoid lock-in with interoperable Open Source Participatory software Social Open Developers Fair • Open Education: Removing the barriers to Community Guide learning and teaching Open Source Geospatial Foundation https://www.osgeo.org/ My Journey to Open Source… • Think geo-centric solutions, not software-centric solutions • International community of geospatial professionals from all backgrounds • Transparency builds trust Where do I get the Software? OSGeo Installation… • Link to download… https://qgis.org/en/site/forusers/download.html -
Mapaction Field Guide to Humanitarian Mapping
Field Guide to Humanitarian Mapping Second Edition, 2011 This field guide was produced by MapAction to help humanitarian organisations to make use of mapping methods using Geographic Information Systems (GIS) and related technologies. About MapAction MapAction has, since 2003, become the most experienced international NGO in using GIS and related matters in the field in sudden-onset natural disasters as well as complex emergencies. When disaster strikes a region, a MapAction team arrives quickly at the scene and creates a stream of unique maps that depict the situation as the crisis unfolds. Aid agencies rely on these maps to coordinate the relief effort. MapAction regularly gives training and guidance to staff of aid organisations at national, regional and global levels in using geospatial methods. This second edition of the Field Guide expands the content of the highly successful first edition published in 2009. For further details on MapAction, emergency maps or to make a donation please visit - www.mapaction.org, or email - [email protected]. Lime Farm Office Little Missenden Bucks HP7 0RQ UK Copyright © 2011 MapAction. Any part of this field guide may be cited, copied, adapted, translated and further distributed for non-commercial purposes without prior permission from MapAction, provided the original source is clearly stated. Field Guide to Humanitarian Mapping MapAction Second Edition, July 2011 Field Guide to Humanitarian Mapping Preface: How to use this field guide There are now many possible ways to create maps for humanitarian work, with an ever-growing range of hardware and software tools available. This can be a problem for humanitarian field workers who want to collect and share mappable data and make simple maps themselves during an emergency. -
Pipenightdreams Osgcal-Doc Mumudvb Mpg123-Alsa Tbb
pipenightdreams osgcal-doc mumudvb mpg123-alsa tbb-examples libgammu4-dbg gcc-4.1-doc snort-rules-default davical cutmp3 libevolution5.0-cil aspell-am python-gobject-doc openoffice.org-l10n-mn libc6-xen xserver-xorg trophy-data t38modem pioneers-console libnb-platform10-java libgtkglext1-ruby libboost-wave1.39-dev drgenius bfbtester libchromexvmcpro1 isdnutils-xtools ubuntuone-client openoffice.org2-math openoffice.org-l10n-lt lsb-cxx-ia32 kdeartwork-emoticons-kde4 wmpuzzle trafshow python-plplot lx-gdb link-monitor-applet libscm-dev liblog-agent-logger-perl libccrtp-doc libclass-throwable-perl kde-i18n-csb jack-jconv hamradio-menus coinor-libvol-doc msx-emulator bitbake nabi language-pack-gnome-zh libpaperg popularity-contest xracer-tools xfont-nexus opendrim-lmp-baseserver libvorbisfile-ruby liblinebreak-doc libgfcui-2.0-0c2a-dbg libblacs-mpi-dev dict-freedict-spa-eng blender-ogrexml aspell-da x11-apps openoffice.org-l10n-lv openoffice.org-l10n-nl pnmtopng libodbcinstq1 libhsqldb-java-doc libmono-addins-gui0.2-cil sg3-utils linux-backports-modules-alsa-2.6.31-19-generic yorick-yeti-gsl python-pymssql plasma-widget-cpuload mcpp gpsim-lcd cl-csv libhtml-clean-perl asterisk-dbg apt-dater-dbg libgnome-mag1-dev language-pack-gnome-yo python-crypto svn-autoreleasedeb sugar-terminal-activity mii-diag maria-doc libplexus-component-api-java-doc libhugs-hgl-bundled libchipcard-libgwenhywfar47-plugins libghc6-random-dev freefem3d ezmlm cakephp-scripts aspell-ar ara-byte not+sparc openoffice.org-l10n-nn linux-backports-modules-karmic-generic-pae -
GRASS 5.0 Programmer's Manual
GRASS Development Team GRASS 5.0 Programmer's Manual Geographic Resources Analysis Support System 30th January 2004 Edited by Markus Neteler Member of GRASS Development Team ITC-irst Istituto per la Ricerca Scientifica e Tecnologica Via Sommarive, 18 38050 Povo (Trento), Italy GMS Laboratory University of Illinois-Champaign, Urbana, Illinois Center of Applied Spatial Research Baylor University, Waco, Texas 30th January 2004, Draft Version Based on preliminary programming notes on GRASS 5 written by Olga Waupotitsch and Michael Shapiro (CERL), Bill Brown (GMSL) and Darrel McCauley (Purdue) and the former GRASS 4.2 Programmer's Manual edited by Steve Clamons, Bruce Byars (Baylor University) and basically written by Michael Shapiro, James Westervelt, Dave Gerdes, Majorie Larson, and Kenneth R. Brownfield (CERL) ABSTRACT GRASS (Geographical Resources Analysis Support System) is a comprehensive GIS with raster, topological vector, image processing, and graphics production functionality. This manual in- troduces the reader to the Geographic Resources Analysis Support System version 5.0 from the programming perspective. Design theory, system support libraries, system maintenance, and system enhancement are all presented. Standard GRASS 4.x conventions are still used in much of the code. This work is part of ongoing research being performed by the GRASS Develop- ment Team coordinated at ITC-irst, Trento, Italy), a worldwide programmer's team (see below), the GMS Laboratory at University of Illinois-Champaign (U.S.A.) and the Center of Applied Geographic and Spatial Research at Baylor University (U.S.A.). GRASS module authors are cited within their module's source code and the contributed manual pages. 30th January 2004 ¡ c 2000 Markus Neteler / GRASS Development Team Published under GNU Free Documentation License (GFDL) http://www.fsf.org/copyleft/fdl.html (see C GNU Free Documentation License (p. -
EGU2015-8142, 2015 EGU General Assembly 2015 © Author(S) 2015
Geophysical Research Abstracts Vol. 17, EGU2015-8142, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License. Analyzing rasters, vectors and time series using new Python interfaces in GRASS GIS 7 Vaclav Petras (1), Anna Petrasova (1), Yann Chemin (2), Pietro Zambelli (3), Martin Landa (4), Sören Gebbert (5), Markus Neteler (6), and Peter Löwe (7) (1) North Carolina State University, Raleigh, USA ([email protected]), (2) International Water Management Institute, Pelawatta, Sri Lanka, (3) EURAC Research, Institute for Renewable Energy, Bolzano/Bozen, Italy, (4) Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic, (5) Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany, (6) Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy, (7) German National Library for Science and Technology, Hanover, Germany GRASS GIS 7 is a free and open source GIS software developed and used by many scientists (Neteler et al., 2012). While some users of GRASS GIS prefer its graphical user interface, significant part of the scientific community takes advantage of various scripting and programing interfaces offered by GRASS GIS to develop new models and algorithms. Here we will present different interfaces added to GRASS GIS 7 and available in Python, a popular programming language and environment in geosciences. These Python interfaces are designed to satisfy the needs of scientists and programmers under various circumstances. PyGRASS (Zambelli et al., 2013) is a new object-oriented interface to GRASS GIS modules and libraries. The GRASS GIS libraries are implemented in C to ensure maximum performance and the PyGRASS interface provides an intuitive, pythonic access to their functionality. -
Location Based Authentication
University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 5-20-2005 Location Based Authentication Seema Sharma University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Sharma, Seema, "Location Based Authentication" (2005). University of New Orleans Theses and Dissertations. 141. https://scholarworks.uno.edu/td/141 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. LOCATION BASED AUTHENTICATION A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science in The Department of Computer Science by Seema Rani Sharma B.E. University of Pune, India, 2002 May 2005 ACKNOWLEDGEMENTS No Herculean task is consummated without the support and contribution from a number of individuals and that is the very essence of any colossal scheme. These few paragraphs are an effort to optimize my gratitude towards all those who helped me complete my thesis successfully.