Development of New Propylene Oxide Process

Total Page:16

File Type:pdf, Size:1020Kb

Development of New Propylene Oxide Process Development of New Propylene Sumitomo Chemical Co., Ltd. Planning & Coordination Office, Petrochemicals & Plastics Sector Oxide Process Junpei TSUJI Petrochemicals Research Laboratory Jun YAMAMOTO Masaru ISHINO Rabigh Project Office Noriaki OKU There has always been a strong demand for the development of a new PO-only process. Conventional processes –the chlorohydrin PO-only process and the organic hydroperoxide process, which generates a huge amount of co-products– have given PO producers headaches due to the generation of waste that is not envi- ronmentally friendly and the dependence of product price on the fluctuating market for co-products. With the development of a high performance titanium epoxidation catalyst by our researchers, we have suc- ceeded in establishing a novel PO-only manufacturing process where cumene acts as the oxygen carrier. The new PO Cumene process is considered a “green process” since it gives higher yields than conventional processes while only producing small amounts of by-products. This paper is translated from R&D Report, “SUMITOMO KAGAKU”, vol. 2006-I. Introduction plans for new plants (Fig. 2). Production by the princi- ple producers of PO worldwide is shown in Fig. 3, and Propylene oxide (PO) is a major industrial product Fig. 4 shows the proportions of production by produc- with production of more than 6 million tons per year tion method. worldwide. Approximately 70% of it is used as PO production methods that have been industrial- polypropylene glycol in the raw materials for urethane, ized up to this point can be roughly divided into two and the remainder is used as propylene glycol in the methodologies. The first is PO-only production meth- raw materials for unsaturated polyesters, food product ods using chlorine, and the other is co-production additives and cosmetics (Fig. 1). The demand for ure- methods that produce co-products such as styrene thane is growing remarkably, particularly in Asia, and monomers along with the PO. All of the industrial one PO producer after another is announcing business processes that have been implemented up to now carry (1000T/y) 1,800 1,600 1,400 1,200 1,000 800 Propylene glycol Polyols 600 Unsaturated polyester resins Polyurethane (rigid forms) 400 → building materials → refrigerator, insulator Industrial use Polyurethane (flexible forms) 200 → antifreeze, lubricant → car seat, mattress, carpet 0 Pharmaceuticals Non forms 2003 2004 2005 2006 2007 2008 2009 2010 → toothpaste, cosmetics → elastomer, adhesive, paint Fig. 2 Asian PO demand forecasting (excluding Fig. 1 Uses for Propylene oxide (PO) Japan) SUMITOMO KAGAKU 2006-I 1 Development of New Propylene Oxide Process Total 6740kt/y duction method. Each of these production methods will Huntsman 230 (2003. Estimated) Others be introduced in the following.1), 2) Repsol 250 Dow 2300 Sumitomo + Nihon oxirane 1. Chlorine Method 380 Lyondell The chlorine method (also known as the chlorohy- (incl. Bayer) Shell/BASF 900 1860 drin method) is technology that was originally used for the production of ethylene oxide, but in the 1960s, with Fig. 3 Global PO supplier and capacity (1000t/y) the conversion of production methods to direct oxida- tion methods for ethylene oxide, it became the method used for producing PO using the idle plants. The PO/TBA(20%) largest producer using this method is the Dow Chemi- Lyondell Huntsman Chlorohydrin(45%) cal Company, and there are two Japanese producers, Dow Asahi Glass Co. Ltd. and Tokuyama Corp. Up to now, Co-production Asahi Glass PO-only method PO/SM(35%) Tokuyama production Lyondell method this was the only industrial PO-only production Shell Repsol method. Nihon Oxirane SKC Chemical Sumitomo New PO process 2CH3CH = CH2 + 2HOCl CH3CHCH2Cl + CH3CHCH2OH Fig. 4 PO production technologies OH Cl CH3CHCH2Cl + CH3CHCH2OH + Ca(OH)2 with them the problem of byproducts and the problem OH Cl O of controlling market conditions and the like for the co- 2CH3CH CH2 + CaCl2 + 2H2O products, and the PO producers in various countries have been focusing the attention on developing a new Propylene and chlorine are reacted to produce a mix- PO-only method. ture of α- and β-chlorohydrin (9:1), and next, PO is syn- Sumitomo Chemical has also been eagerly research- thesized by reaction with an alkali (calcium hydroxide, ing new PO-only production methods. Taking the for example). The only product is PO, and as a byprod- opportunity of our successfully developing a new epoxi- uct, an alkali salt is produced in the same molar quanti- dation catalyst in 1998, we were successful in establish- ty as the PO. This production method is a moderate ing the technology for a new PO production process, temperature reaction in an aqueous solution, but for and starting in 2003, we began using the new PO-only each ton of PO, a large amount of secondary raw mate- production method at 150,000 tons per year at our rials, 1.4 tons of chlorine and one ton of calcium Chiba Plant. After this, we implemented a plant hydroxide, are necessary, and approximately 2.0 tons enhancement to 200,000 tons per year in the fall of of calcium chloride is produced as a byproduct. In addi- 2005 based on the healthy demand in Asia, and opera- tion, a large excess of water is present in this reaction, tions are continuing to go well. Furthermore, we plan and a chlorohydrin concentration of 3 – 6% is main- to start operating a second plant (200,000 tons of PO tained, so the formation of chlorine adducts must be per year) in 2008 according to the Rabigh plan for controlled. Therefore, a large volume of waste water Saudi Arabia. containing the alkali salt is produced (a volume several Along with reviewing the current industrial process- tens of times that of the PO), and the process is one es, this paper introduces the features of the PO-only with an extremely large waste water burden. process developed by Sumitomo Chemical. 2. Organic Peroxide Method Existing PO Production Processes The organic peroxide method (also known as the hydroperoxide method) was first developed by Halcon The propylene oxide (PO) production processes that Corp. and Atlantic Richfield Oil Corp. (later ARCO) in have been industrialized so far can be roughly divided the 1970s. In this method there is a method using eth- into the chlorine method, which is a PO-only method, ylbenzene and a method using isobutane, and in each and the organic peroxide method, which is a co-pro- of them PO is synthesized by indirect epoxidation of SUMITOMO KAGAKU 2006-I 2 Development of New Propylene Oxide Process propylene using ethylbenzene hydroperoxide or tert- Sumitomo Chemical’s New PO-only Process butyl hydroperoxide as the organic peroxide. A styrene monomer (SM) or tert-butanol (TBA) is produced as Using cumene, Sumitomo Chemical has established the co-product. Typical producers using PO/SM co- a cumene PO-only process as a new PO production production are Lyondell Chemical Company and Shell process. We developed a high performance Ti based Chemicals Ltd., and in Japan, there is only Nihon Oxi- epoxidation catalyst in 1998, and taking this as an rane Co., Ltd. The PO/TBA producers are Lyondell opportunity, we started working on developing a new and Huntsman International LLC. In a reflection of the PO-only process using cumene. Starting with the labo- trends in demand for the two sets of co-products in ratory investigations in 1999, it was possible to carry recent years, new PO plants have exclusively employed out development and establish the business in a short the PO/SM co-production method. We will describe time by maximizing the use of concurrent engineering, the PO/SM co-production process in the following. with bench tests in 2000, pilot testing in 2001, comple- tion of a plant in 2002 and plant startup in 2003. CH3 CH3 This production method is fundamentally similar to CH2 + O2 CH the organic peroxide methods, but the major feature is OOH using a high performance epoxidation catalyst that CH3 uses cumene as the reaction medium, so we can call it CH + CH3CH = CH2 the cumene PO-only process. This production method OOH CH3 O is made up of the following processes. CH + CH3CH CH2 (1) Oxidation process where cumene is oxidized in air OH to obtain cumene hydroperoxide (CMHP). α α CH3 CH2 (2) Epoxidation process where , -dimethyl benzyl CH C + H2O alcohol (CMA) is obtained from CMHP and propy- OH H lene in the presence of an epoxidation catalyst. (3) Hydrogenation process where CMA is hydrogenat- First of all, ethylbenzene hydroperoxide is produced ed and cumene is obtained in the presence of a by air oxidation of ethylbenzene. Next, the ethylben- hydrogenation catalyst and hydrogen. zene hydroperoxide and propylene are reacted in the (4) Cumene purification process where the cumene presence of an epoxidation catalyst, and α-methylben- obtained is purified and recycled to the oxidation zyl alcohol and PO are produced. The α-methylbenzyl process. alcohol that is produced undergoes a dehydration reac- (5) PO purification process where PO is purified. tion in the presence of an acid catalyst to form SM. Mo Three reaction processes are included, the (1) oxida- based homogeneous catalysts3) and Ti supported silica tion process, (2) epoxidation process and (3) hydro- based heterogeneous catalysts4), 5) are used for the genation process. In the following, we will give an epoxidation catalyst. With the isobutane method, there overview of each of the reaction processes. is co-production of TBA. If TBA is dehydrated, it forms isobutylene, and if it is further reacted with methanol, 1. Oxidation Process methyl tertiary-butyl ether (MTBE), which is useful as This is a process where cumene is oxidized by oxy- a gasoline additive, can be synthesized.
Recommended publications
  • The PO Production Chain and Possibilities for Energy Saving
    The PO production chain and possibilities for energy saving Public Summary Report Delft, January 2012 Author(s): Ewout Dönszelmann Ab de Buck Harry Croezen Lonneke Wielders Publication Data Bibliographical data: Ewout Dönszelmann, Ab de Buck, Harry Croezen, Lonneke Wielders The PO production chain and possibilities for energy saving Public Summary Delft, CE Delft, January 2012 Energy saving / Chain Management / Products / Chemical industry / Propylene Oxide / Styrene / Iso-butylene FT: Tert-butyl alcohol (TBA) Publication code: 12.2232.12 CE publications are available from www.cedelft.eu. Commissioned by: Agentschap NL Further information on this study can be obtained from the contact person, Ewout Dönszelmann. © copyright, CE Delft, Delft CE Delft Committed to the Environment CE Delft is an independent research and consultancy organisation specialised in developing structural and innovative solutions to environmental problems. CE Delft’s solutions are characterised in being politically feasible, technologically sound, economically prudent and socially equitable. 2 January 2012 2.232.3 – The PO production chain and possibilities for energy saving Contents 1 Introduction 5 1.1 General background 5 1.2 The project 5 1.3 Approach 6 1.4 Reading guide 6 2 The production chains 7 2.1 The two processes 7 2.2 Expanded polystyrene 9 2.3 Polyols 11 2.4 TBA/iso-butylene applications 13 3 Conclusions, recommendations 17 3.1 Conclusions 17 3.2 Recommendations 17 4 Background of the Long-term Agreement Energy Efficiency ETS enterprises (LEE) 19 References 21 3 January 2012 2.232.3 – The PO production chain and possibilities for energy saving 4 January 2012 2.232.3 – The PO production chain and possibilities for energy saving 1 Introduction 1.1 General background The Dutch Industry and the Dutch government have made long term agreements on energy efficiency (LEE) for companies that are under the European Trading Scheme (ETS).
    [Show full text]
  • Kinetic Modeling for PAH Formation in a Counterflow Diffusion Flame of Isobutane
    27th ICDERS July 28th – August 2nd, 2019 Beijing, China Kinetic modeling for PAH formation in a counterflow diffusion flame of isobutane Wei-Kai Chiua, Hairong Taob, Kuang C. Linc,* aDepartment of Mechanical and Electro-Mechanical Engineering,Kaohsiung 80424, National Sun Yat-Sen University, Taiwan bCollege of Chemistry, Beijing Normal University, Beijing 100875, China cEngineering and System Science,Hsinchu 30013, National Tsing Hua University, Taiwan 1 Abstract In the purpose of understanding the complex chemistry of aromatic hydrocarbon formation in diffusion flames of isobutane oxidation, mechanism that consists of 300 species and 11790 reactions is employed for verifying experimental measurements. The kinetic mechanism is incorporated into a 1-D axisymmetric laminar finite-rate model of a counterflow flame to compute the species profiles. Furthermore, the reaction pathway diagram produced by rate of production analysis illustrates the correlation between the decomposition of isobutane and formation of the target species. Keywords: isobutane, counterflow diffusion flame, paromatic hydrocarbon, chemical kinetic modeling 2 Introduction Isobutane (iC4H10) is an isomer of butane and flammable gas. Although it is not ideal fuel on its own, this species plays a role in the oxidation of large hydrocarbon fuels and is used in liquified natural gas (LNG) [1]. The detailed kinetic mechanism of isobutane combustion contains dozens of species and hundreds of reactions. When a kinetic mechanism is applied to a reaction source term of species transport equations, the computational solutions can be used to describe reactive flows and species distribution in multidimensional reactors. This kind of numerical modeling permits designers and analysts to evaluate emissions and performance of fuels in reactors or combustors.
    [Show full text]
  • Oxidation Processes: Experimental Study and Theoretical Investigations
    Oxidation Processes: Experimental Study and Theoretical Investigations By Nada Mohammed Al-Ananzeh A Dissertation Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Chemical Engineering April 2004 Approved by: --------------------------------------------------------------------------------------- Robert Thompson, Ph.D., Advisor Professor of Chemical Engineering Worcester Polytechnic --------------------------------------------------------------------------------------- John Bergendahl, Ph.D. Assistant Professor of Civil and Environmental Engineering Worcester Polytechnic Institute -------------------------------------------------------------------------------- Fabio H. Ribeiro, Ph.D. Professor of Chemical Engineering Purdue University i Abstract Oxidation reactions are of prime importance at an industrial level and correspond to a huge market. Oxidation reactions are widely practiced in industry and are thoroughly studied in academic and industrial laboratories. Achievements in oxidation process resulted in the development of many new selective oxidation processes. Environmental protection also relies mainly on oxidation reactions. Remarkable results obtained in this field contributed to promote the social image of chemistry which gradually changes from being the enemy of nature to becoming its friend and savior. This study dealt with two aspects regarding oxidation process. The first aspect represented an experimental study for the catalytic
    [Show full text]
  • Emissions from Small-Scale Combustion of Biomass Fuels - Extensive Quantification and Characterization
    Emissions from small-scale combustion of biomass fuels - extensive quantification and characterization Christoffer Boman Anders Nordin Marcus Öhman Dan Boström Energy Technology and Thermal Process Chemistry Umeå University Roger Westerholm Analytical Chemistry, Arrhenius Laboratory Stockholm University _______________________________________________________________ Emissions from small-scale combustion of biomass fuels - extensive quantification and characterization Christoffer Boman1, Anders Nordin1, Roger Westerholm2, Marcus Öhman1, Dan Boström1 1Energy Technology and Thermal Process Chemistry, Umeå University, SE-901 87 Umeå, Sweden 2Analytical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden STEM-BHM (P12648-1 and P21906-1) Umeå, February 2005 SUMMARY This work was a part of the Swedish national research program concerning emissions and air quality ("Utsläpp och Luftkvalitet") with the sub-programme concerning biomass, health and environment ("Biobränlen, Hälsa, Miljö" - BHM). The main objective of the work was to systematically determine the quantities and characteristics of gaseous and particulate emissions from combustion in residential wood log and biomass fuel pellet appliances and report emission factors for the most important emission components. The specific focus was on present commercial wood and pellet stoves as well as to illustrate the potentials for future technology development. The work was divided in different sub- projects; 1) a literature review of health effects of ambient wood
    [Show full text]
  • HPPO Process Technology a Novel Route to Propylene Oxide Without Coproducts
    sustainability/ Industry perspective GREEN CHEMISTRy FRANZ SCHMIDT, MAIK BERNHARD, HEIKO MORELL, MATTHIAS PASCALy* *Corresponding author Evonik Industries AG, Advanced Intermediates – Innovation, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany Matthias Pascaly HPPO Process Technology A novel route to propylene oxide without coproducts KEYWORDS: HPPO process, propylene oxide, hydrogen peroxide, titanium silicalite. The common industrial technologies for the conversion of propylene to propylene oxide have been Abstract compared with a special focus on the direct oxidation using hydrogen peroxide. The HPPO process is an economically and ecologically superior technology since there are no market dependencies of other coproducts and water is the only waste product. The catalyst used in this process is a partly titanium substituted silica based zeolite called TS-1. The article summarizes the most important information concerning the HPPO process. INTRODUCTION approximately 7 Mt/a in the year 2010 at a production capacity of approximately 8 Mt/a. Based on a total The oxidation of organic compounds is of vital importance market growth of around 5 % per year, the expected for the chemical industry. Besides basic oxidation reactions values for demand and capacity in 2015 are nearly such as bleaching processes (e.g. paper or laundry) also at 9 and 10 Mt/a respectively. The growing markets are in oxidation reactions of chemicals are important: Epoxides Asia and potentially in the Middle East (1). - especially ethylene and propylene oxide – are among the There are several industrial routes to produce propylene major chemicals. Replacement of traditionally used halide- oxide, of which the chlorohydrin process (CH) is the based oxidants (chlorine) by hydrogen peroxide provided a oldest one (2).
    [Show full text]
  • Process for Preparing Phenol and Acetone from Cumene
    Europaisches Patentamt 0 1 64 568 J) European Patent Office Publication number: B1 Office europeen des brevets EUROPEAN PATENT SPECIFICATION Date of publication of patent specification: 06.07.88 (g) int. ci.4: C 07 C 45/53, C 07 C 37/08, C 07 C 27/00, C 07 C 39/04, Application number: 85105584.8 C 07 C 49/08 Date of filing: 07.05.85 Process for preparing phenol and acetone from cumene. (§) Priority: 24.05.84 US 614124 Proprietor: GENERAL ELECTRIC COMPANY 1 River Road Schenectady New York 12305 (US) Date of publication of application: 18.12.85 Bulletin 85/51 Inventor: Fulmer, John William 78 Park Ridge Drive Publication of the grant of the patent: Mt. Vernon Indiana 47620 (US) 06.07.88 Bulletin 88/27 Representative: Catherine, Alain Designated Contracting States: General Electric France Service de Propriete DEFRGBIT Industrielle 18 Rue Horace Vernet B.P. 76 F-92134 Issy-les-Moulineaux Cedex (FR) References cited: EP-A-0 008 869 EP-A-0 028 522 EP-A-0028910 EP-A-0 032 255 AT-B-205490 AT-B- 219 029 00 DE-A-2 756026 DE-A-3 222 533 US-A-2715145 US-A-4480134 <0 Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall shall be deemed have been filed until the opposition fee has been Q. be filed in a written reasoned statement.
    [Show full text]
  • Section 2. Hazards Identification OSHA/HCS Status : This Material Is Considered Hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200)
    SAFETY DATA SHEET Nonflammable Gas Mixture: 1,3-Butadiene / Acetylene / Carbon Dioxide / Ethane / Ethylene / Isobutane / Methane / N-Butane / Nitrogen / Nitrous Oxide / Propane / Propylene Section 1. Identification GHS product identifier : Nonflammable Gas Mixture: 1,3-Butadiene / Acetylene / Carbon Dioxide / Ethane / Ethylene / Isobutane / Methane / N-Butane / Nitrogen / Nitrous Oxide / Propane / Propylene Other means of : Not available. identification Product use : Synthetic/Analytical chemistry. SDS # : 019804 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : GASES UNDER PRESSURE - Compressed gas substance or mixture GHS label elements Hazard pictograms : Signal word : Warning Hazard statements : Contains gas under pressure; may explode if heated. May displace oxygen and cause rapid suffocation. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Prevention : Not applicable. Response : Not applicable. Storage : Protect from sunlight when ambient temperature exceeds 52°C/125°F. Store in a well- ventilated place. Disposal : Not applicable. Hazards not otherwise : In addition to any other important health or physical hazards, this product may displace classified oxygen and cause rapid suffocation.
    [Show full text]
  • Propylene Oxide
    This report contains the collective views of an in- ternational group of experts and does not necessarily epresent the decisions or the stated policy of the United Nations Environment Programme, the Interna- tional Labour Organisation, or the World Health lOrganization Environmental Health Criteria 56 PROPYLENE OXIDE Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization World Health Organization --'-- Geneva, 1985 The International Programme on Chemical Safety (IPCS) is a joint venture the United Nations Environment Programme, the International Labour Organis tion, and the World Health Organization. The main objective of the IPCS is carry Out and disseminate evaluations of the effects of chemicals on human hea' and the quality of the environment. Supporting activities include the developm of epidemiological, experimental laboratory, and risk-assessment methods that cou produce internationally comparable results, and the development of manpower the field of toxicology. Other activities carried out by 1PCS include the develo ment of know-how for coping with chemical accidents, coordination of laborato. testing and epidemiological studies, and promotion of research on the mechanisi of th biological action of chemicals ISBN 92 4 154196 2 \Vorld Health Organization 1985 Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Conven- tion. For rights
    [Show full text]
  • Isobutane Version 3.0 Revision Date 2019-06-05
    SAFETY DATA SHEET Isobutane Version 3.0 Revision Date 2019-06-05 SECTION 1: Identification of the substance/mixture and of the company/undertaking Product information Product Name : Isobutane Material : 1020532, 1012533 Company : Chevron Phillips Chemical Company LP 10001 Six Pines Drive The Woodlands, TX 77380 Emergency telephone: Health: 866.442.9628 (North America) 1.832.813.4984 (International) Transport: CHEMTREC 800.424.9300 or 703.527.3887(int'l) Asia: CHEMWATCH (+612 9186 1132) China: 0532 8388 9090 EUROPE: BIG +32.14.584545 (phone) or +32.14583516 (telefax) Mexico CHEMTREC 01-800-681-9531 (24 hours) South America SOS-Cotec Inside Brazil: 0800.111.767 Outside Brazil: +55.19.3467.1600 Argentina: +(54)-1159839431 Responsible Department : Product Safety and Toxicology Group E-mail address : [email protected] Website : www.CPChem.com SECTION 2: Hazards identification Classification of the substance or mixture This product has been classified in accordance with the hazard communication standard 29 CFR 1910.1200; the SDS and labels contain all the information as required by the standard. Classification : Gases under pressure, Liquefied gas Flammable liquids, Category 1 Labeling SDS Number:100000100432 1/12 SAFETY DATA SHEET Isobutane Version 3.0 Revision Date 2019-06-05 Symbol(s) : Signal Word : Danger Hazard Statements : H224: Extremely flammable liquid and vapor. H280: Contains gas under pressure; may explode if heated. Precautionary Statements : Prevention: P210 Keep away from heat/sparks/open flames/hot surfaces. No smoking. P233 Keep container tightly closed. P240 Ground/bond container and receiving equipment. P241 Use explosion-proof electrical/ ventilating/ lighting/ equipment. P242 Use only non-sparking tools.
    [Show full text]
  • Ni-DOPED Cu-BTC for DIRECT HYDROXYLATION of BENZENE to PHENOL”
    1 UNIVERSIDAD DE INVESTIGACIÓN DE TECNOLOGÍA EXPERIMENTAL YACHAY School of Chemical Sciences and Engineering TITTLE: “Ni-DOPED Cu-BTC FOR DIRECT HYDROXYLATION OF BENZENE TO PHENOL”. Trabajo de integración curricular presentado como requisito para la obtención del título de Ingeniero en Polímeros Author: Zenteno Sanchez Jeremee Paul Advisor: PhD Terencio Thibault Urcuquí, September 2019 2 3 4 5 6 Acknowledgments For god, family, and friends. For my family that has always been there to support me every day especially my mother who believes and supports me in the good and bad moments. For my friends and the special people who are an excellent company through these years and the good moments that I shared with them. For all the teachers that teach me in every class, especially Thibault Terencio excellent mentor that support and guiding me throughout the last year of this project. For all of them, thank you so much. 7 Abstract Metal Organic Frameworks (MOFs) are novel materials with vast applications such as catalysis, dye adsorption, drug retention, or gas storage.1 MOFs can retain molecules inside their microporosity or onto its surface due to its 3D structure. One of the main advantages of the MOFs is the chemical diversity present at their surface because they consist of an organic ligand and a metal center. In this case, Copper (II) acts as the metal center and benzene-1, 3, 5 tricarboxylic acid BTC as the organic ligand, to form HKUST-1 (also known as Cu-BTC or MOF-199). Despite the diversity of existing inorganic and organic parts, each MOF usually contains only one type of transition metal.
    [Show full text]
  • Pesticides EPA 738-R-06-029 Environmental Protection and Toxic Substances August 2006 Agency (7508P)
    United States Prevention, Pesticides EPA 738-R-06-029 Environmental Protection and Toxic Substances August 2006 Agency (7508P) Reregistration Eligibility Decision for Propylene Oxide Reregistration Eligibility Decision (RED) Document for Propylene Oxide List B Case Number 2560 Approved by: Date: July 31, 2006 Debra Edwards, Ph. D. Director Special Review and Reregistration Division Page 2 of 192 Table of Contents Propylene Oxide Reregistration Eligibility Decision Team ...................................................... 5 Glossary of Terms and Abbreviations ........................................................................................ 6 Abstract.......................................................................................................................................... 8 I. Introduction ............................................................................................................................... 9 II. Chemical Overview................................................................................................................ 10 A. Chemical Identity................................................................................................................10 B. Use and Usage Profile .........................................................................................................11 C. Tolerances............................................................................................................................11 III. Propylene Oxide Risk Assessments ...................................................................................
    [Show full text]
  • Polymer Information on STN a Quick Reference Guide
    ® Polymer Information on STN A Quick Reference Guide Table of Contents Preface ......................................................................................................................................................... 3 STN databases with polymer information .................................................................................................... 4 Overview of searching in CAS REGISTRY .................................................................................................. 5 REGISTRY search options .......................................................................................................................... 5 Overview of searching in CAplus ................................................................................................................. 7 Searching polymer chemical names in REGISTRY .................................................................................... 9 Searching CAS Registry Numbers for monomers in REGISTRY .............................................................. 14 Searching polymer class terms in REGISTRY .......................................................................................... 17 Searching structures in REGISTRY ........................................................................................................... 19 Searching for patents on a polymer ........................................................................................................... 22 Searching for patents on a class of polymers ...........................................................................................
    [Show full text]