Endosymbiotic Theory.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transport in Plants and in Root Nodules
DEVELOPMENT OF SPECIALIZED TRANSPORT PATHWAYS IN PISUM SATIVUM ROOT NODULES by Cherish A. Warner A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Sciences Fall 2018 © 2018 Cherish A. Warner All Rights Reserved DEVELOPMENT OF SPECIALIZED TRANSPORT PATHWAYS IN PISUM SATIVUM ROOT NODULES by Cherish A. Warner Approved: __________________________________________________________ E. Fidelma Boyd, Ph.D. Chair of the Department of Biological Sciences Approved: __________________________________________________________ John Pelesko, Ph.D. Interim Dean of the College of Arts and Sciences Approved: __________________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ D. Janine Sherrier, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Jeffrey L. Caplan, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Diane Herson, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. -
Introgression and Hybridization in Animal Parasites
Genes 2010, 1, 102-123; doi:10.3390/genes1010102 OPEN ACCESS genes ISSN 2073-4425 www.mdpi.com/journal/genes Review An Infectious Topic in Reticulate Evolution: Introgression and Hybridization in Animal Parasites Jillian T. Detwiler * and Charles D. Criscione Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-979-845-0925; Fax: +1-979-845-2891. Received: 29 April 2010; in revised form: 7 June 2010 / Accepted: 7 June 2010 / Published: 9 June 2010 Abstract: Little attention has been given to the role that introgression and hybridization have played in the evolution of parasites. Most studies are host-centric and ask if the hybrid of a free-living species is more or less susceptible to parasite infection. Here we focus on what is known about how introgression and hybridization have influenced the evolution of protozoan and helminth parasites of animals. There are reports of genome or gene introgression from distantly related taxa into apicomplexans and filarial nematodes. Most common are genetic based reports of potential hybridization among congeneric taxa, but in several cases, more work is needed to definitively conclude current hybridization. In the medically important Trypanosoma it is clear that some clonal lineages are the product of past hybridization events. Similarly, strong evidence exists for current hybridization in human helminths such as Schistosoma and Ascaris. There remain topics that warrant further examination such as the potential hybrid origin of polyploid platyhelminths. -
Pronunciation Guide to Microorganisms
Pronunciation Guide to Microorganisms This pronunciation guide is provided to aid each student in acquiring a greater ease in discussing, describing, and using specific microorganisms. Please note that genus and species names are italicized. If they cannot be italicized, then they should be underlined (example: a lab notebook). Prokaryotic Species Correct Pronunciation Acetobacter aceti a-se-toh-BAK-ter a-SET-i Acetobacter pasteurianus a-se-toh-BAK-ter PAS-ter-iann-us Acintobacter calcoacetius a-sin-ee-toe-BAK-ter kal-koh-a-SEE-tee-kus Aerococcus viridans (air-o)-KOK-kus vi-ree-DANS Agrobacterium tumefaciens ag-roh-bak-TEAR-ium too-me-FAY-she-ens Alcaligenes denitrificans al-KAHL-li-jen-eez dee-ni-TREE-fee-cans Alcaligenes faecalis al-KAHL-li-jen-eez fee-KAL-is Anabaena an-na-BEE-na Azotobacter vinelandii a-zoe-toe-BAK-ter vin-lan-DEE-i Bacillus anthracis bah-SIL-lus AN-thray-sis Bacillus lactosporus bah-SIL-lus LAK-toe-spore-us Bacillus megaterium bah-SIL-lus Meg-a-TEER-ee-um Bacillus subtilis bah-SIL-lus SA-til-us Borrelia recurrentis bore-RELL-ee-a re-kur-EN-tis Branhamella catarrhalis bran-hem-EL-ah cat-arr-RAH-lis Citrobacter freundii sit-roe-BACK-ter FROND-ee-i Clostridium perfringens klos-TREH-dee-um per-FRINGE-enz Clostridium sporogenes klos-TREH-dee-um spore-AH-gen-ease Clostridium tetani klos-TREH-dee-um TET-ann-ee Corynebacterium diphtheriae koh-RYNE-nee-back-teer-ee-um dif-THEE-ry-ee Corynebacterium hofmanni koh-RYNE-nee-back-teer-ee-um hoff-MAN-eye Corynebacterium xerosis koh-RYNE-nee-back-teer-ee-um zer-OH-sis Enterobacter -
A Gene Required for the Regulation of Photosynthetic Light Harvesting in the Cyanobacterium Synechocystis PCC6803
A gene required for the regulation of photosyuthetic light harvesting in the cyanobacterium Synechocystis PCC6803 A thesis submitted for the degree of Doctor of Philosophy by Daniel Emlyn-Jones B.Sc. (Hons) Department of Biology University College London ProQuest Number: 10013938 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10013938 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 THESIS ABSTRACT In cyanobacteria, state transitions serve to regulate the distribution of excitation energy delivered to the two photosystem reaction centres from the accessory light harvesting system, the phycobilisome. The trigger for state transitions is the redox state of the cytochrome b f complex/plastoquinone pool. The signal transduction events that connect this redox signal to changes in light harvesting are unknown. In order to identify signal transduction factors required for the state transition, random cartridge mutagenesis was employed in the cyanobacterium Synechocystis PCC6803 to generate a library of random, genetically tagged mutants. The state transition in cyanobacteria is accompanied by a change in fluorescence emission from PS2. By using a fluorescence video imaging system to observe this fluorescence change in mutant colonies it was possible to isolate mutants unable to perform state transitions. -
Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. -
Iron Transport Across Symbiotic Membranes of Nitrogen-Fixing Legumes
International Journal of Molecular Sciences Review Iron Transport across Symbiotic Membranes of Nitrogen-Fixing Legumes David A. Day 1,* and Penelope M. C. Smith 2 1 College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia 2 School of Life Sciences, La Trobe University, Melbourne, VIC 3083, Australia; [email protected] * Correspondence: David.Day@flinders.edu.au Abstract: Iron is an essential nutrient for the legume-rhizobia symbiosis and nitrogen-fixing bac- teroids within root nodules of legumes have a very high demand for the metal. Within the infected cells of nodules, the bacteroids are surrounded by a plant membrane to form an organelle-like structure called the symbiosome. In this review, we focus on how iron is transported across the symbiosome membrane and accessed by the bacteroids. Keywords: legumes; nitrogen fixation; symbiosomes; iron 1. Introduction Iron is an essential nutrient for cell function and plants have developed specialised mechanisms for mobilising, absorbing and storing the metal. Cellular iron homeostasis is important because iron is toxic when present in excess. Symbiotically grown legumes have a particularly high requirement for iron and low iron severely retards their growth and their ability to fix atmospheric nitrogen [1,2]. Legumes form a symbiosis with nitrogen-fixing soil bacteria (rhizobia) that enables the plants to utilize atmospheric nitrogen for growth. Infection of the legume root by rhizobia Citation: Day, D.A.; Smith, P.M.C. results in the formation of specialized organs called nodules that provide the microaerobic Iron Transport across Symbiotic conditions required for operation of the bacterium’s nitrogenase enzyme. -
Journal of Bacteriology
JOURNAL OF BACTERIOLOGY Volume 169 June 1987 No. 6 STRUCTURE AND FUNCTION Assembly of a Chemically Synthesized Peptide of Escherichia coli Type 1 Fimbriae into Fimbria-Like Antigenic Structures. Soman N. Abraham and Edwin H. Beachey ....... 2460-2465 Structure of the Staphylococcus aureus Cell Wall Determined by the Freeze- Substitution Method. Akiko Umeda, Yuji Ueki, and Kazunobu Amako ... 2482-2487 Labeling of Binding Sites for 02-Microglobulin (02m) on Nonfibrillar Surface Structures of Mutans Streptococci by Immunogold and I21m-Gold Electron Microscopy. Dan Ericson, Richard P. Ellen, and Ilze Buivids ........... 2507-2515 Bicarbonate and Potassium Regulation of the Shape of Streptococcus mutans NCTC 10449S. Lin Tao, Jason M. Tanzer, and T. J. MacAlister......... 2543-2547 Periodic Synthesis of Phospholipids during the Caulobacter crescentus Cell Cycle. Edward A. O'Neill and Robert A. Bender.............................. 2618-2623 Association of Thioredeoxin with the Inner Membrane and Adhesion Sites in Escherichia coli. M. E. Bayer, M. H. Bayer, C. A. Lunn, and V. Pigiet 2659-2666 Cell Wall and Lipid Composition of Isosphaera pallida, a Budding Eubacterium from Hot Springs. S. J. Giovannoni, Walter Godchaux III, E. Schabtach, and R. W. Castenholz.............................................. 2702-2707 Charge Distribution on the S Layer of Bacillus stearothermophilus NRS 1536/3c and Importance of Charged Groups for Morphogenesis and Function. Margit Saira and Uwe B. Sleytr ....................................... 2804-2809 PLANT MICROBIOLOGY Rhizobium meliloti ntrA (rpoN) Gene Is Required for Diverse Metabolic Functions. Clive W. Ronson, B. Tracy Nixon, Lisa M. Albright, and Frederick M. Ausubel............................................... 2424-2431 Bradyrhizobium japonicum Mutants Defective in Nitrogen Fixation and Molybde- num Metabolism. Robert J. -
Identification of the Meiotic Life Cycle Stage of Trypanosoma Brucei in The
Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly Lori Peacocka,b, Vanessa Ferrisa,b, Reuben Sharmac,1, Jack Sunterc, Mick Baileyb, Mark Carringtonc, and Wendy Gibsona,2 aSchool of Biological Sciences, University of Bristol, Bristol BS8 1UG, United Kingdom; bDepartment of Clinical Veterinary Science, University of Bristol, Bristol BS40 7DU, United Kingdom; and cDepartment of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved January 27, 2011 (received for review December 23, 2010) Elucidating the mechanism of genetic exchange is fundamental for genetic exchange in T. brucei involves mixing of mitochondrial understanding how genes for such traits as virulence, disease (kinetoplast) and nuclear genomes, because hybrid progeny have phenotype, and drug resistance are transferred between pathogen hybrid kinetoplast DNA (kDNA) networks with mini-circles de- strains. Genetic exchange occurs in the parasitic protists Trypano- rived from both parents (14, 15). Plausible models for the gen- soma brucei, T. cruzi, and Leishmania major, but the precise cellular eration of hybrid kDNA networks are limited by the complex mechanisms are unknown, because the process has not been ob- structure and highly ordered replication of this concatenated served directly. Here we exploit the identification of homologs of mass of small DNA circles (16). Finally, trypanosomes belong to meiotic genes in the T. brucei genome and demonstrate that three the Euglenozoa, a deep branch within the excavate eukaryote su- functionally distinct, meiosis-specific proteins are expressed in the pergroup (17, 18). The production of four haploid gametes and nucleus of a single specific cell type, defining a previously unde- subsequent fusion to reform the diploid occurring in trypanosomes scribed developmental stage occurring within the tsetse flysalivary would strongly suggest the presence of a typical meiosis in the last gland. -
23.3 Groups of Protists
Chapter 23 | Protists 639 cysts that are a protective, resting stage. Depending on habitat of the species, the cysts may be particularly resistant to temperature extremes, desiccation, or low pH. This strategy allows certain protists to “wait out” stressors until their environment becomes more favorable for survival or until they are carried (such as by wind, water, or transport on a larger organism) to a different environment, because cysts exhibit virtually no cellular metabolism. Protist life cycles range from simple to extremely elaborate. Certain parasitic protists have complicated life cycles and must infect different host species at different developmental stages to complete their life cycle. Some protists are unicellular in the haploid form and multicellular in the diploid form, a strategy employed by animals. Other protists have multicellular stages in both haploid and diploid forms, a strategy called alternation of generations, analogous to that used by plants. Habitats Nearly all protists exist in some type of aquatic environment, including freshwater and marine environments, damp soil, and even snow. Several protist species are parasites that infect animals or plants. A few protist species live on dead organisms or their wastes, and contribute to their decay. 23.3 | Groups of Protists By the end of this section, you will be able to do the following: • Describe representative protist organisms from each of the six presently recognized supergroups of eukaryotes • Identify the evolutionary relationships of plants, animals, and fungi within the six presently recognized supergroups of eukaryotes • Identify defining features of protists in each of the six supergroups of eukaryotes. In the span of several decades, the Kingdom Protista has been disassembled because sequence analyses have revealed new genetic (and therefore evolutionary) relationships among these eukaryotes. -
Characterization of Cyanobacterial Phycobilisomes in Zwitterionic
Proc. Natl. Acad. Sci. USA Vol. 76, No. 12, pp. 6162-6166, December 1979 Biochemistry Characterization of cyanobacterial phycobilisomes in zwitterionic detergents (Synechococcus/photosynthetic accessory pigments/sedimentation/electron microscopy/aggregation) ALEXANDER N. GLAZER*, ROBLEY C. WILLIAMSt, GREGORY YAMANAKA*, AND H. K. SCHACHMANt *Department of Microbiology and Immunology, and tDepartment of Molecular Biology, University of California, Berkeley, California 94720 Contributed by Robley C. Williams, September 10, 1979 ABSTRACT Properties of cyanobacterial phycobilisomes preparations of nearly uniform-sized phycobilisomes were (from Synechococcus spp. 6301 and 6312 and Synechocystis sp. obtained. Ultrastructural studies of the particles prepared in 6701) prepared in the presence of two different zwitterionic detergents were compared to those of phycobilisomes detached zwitterionic detergents were facilitated by the marked decrease from membranes with the nonionic detergent Triton X-100 and in aggregation. Such studies show that phycobilisomes from then freed from Triton by sedimentation through high-salt su- different organisms have certain characteristics in common, crose density gradients. The absorption spectra, polypeptide as concluded by others (1, 7, 8), but also exhibit distinctive composition, and ultrastructure of phycobilisomes were inde- structural features. pendent of the detergent used during the preparation. Phyco- bilisomes from certain cyanobacteria aggregated in the absence MATERIALS AND METHODS of detergent. Such -
Photobiology of Bacteria
UvA-DARE (Digital Academic Repository) Photobiology of bacteria Hellingwerf, K.J.; Crielaard, W.; Hoff, W.D.; Matthijs, H.C.P.; Mur, L.R.; van Rotterdam, B.J. DOI 10.1007/BF00872217 Publication date 1994 Published in Antonie van Leeuwenhoek Link to publication Citation for published version (APA): Hellingwerf, K. J., Crielaard, W., Hoff, W. D., Matthijs, H. C. P., Mur, L. R., & van Rotterdam, B. J. (1994). Photobiology of bacteria. Antonie van Leeuwenhoek, 65, 331-347. https://doi.org/10.1007/BF00872217 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:02 Oct 2021 Antonie van Leeuwenhoek 65:331-347, 1994. 331 @ 1994 Kluwer Academic Publishers. Printed in the Netherlands. Photobiology of Bacteria K.J. Hellingwerf a, W. -
Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280