Complexity of Lattice Problems

Total Page:16

File Type:pdf, Size:1020Kb

Complexity of Lattice Problems COMPLEXITY OF LATTICE PROBLEMS A Cryptographic Perspective THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE COMPLEXITY OF LATTICE PROBLEMS A Cryptographic Perspective Daniele Micciancio University of California, San Diego Sbafi Goldwasser The Massachusetts Institute ofTechnology, Cambridge SPRINGER SCIENCE+BUSINESS MEDIA, LLC ISBN 978-1-4613-5293-8 ISBN 978-1-4615-0897-7 (eBook) DOI 10.1007/978-1-4615-0897-7 Library of Congress Cataloging-in-Publication Data A c.I.P. Catalogue record for this book is available from the Library of Congress. Copyright © 2002 Springer Science+Business Media New York Originally published by Kluwer Academic Publishers in 2002 Softcover reprint of the hardcover 1st edition 2002 AII rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photo­ copying, recording, or otherwise, without the prior written permission of the publisher, Springer Science+Business Media, LLC. Printed an acid-free paper. Contents Preface ix 1. BASICS 1 1 Lattices 1 1.1 Determinant 6 1.2 Successive minima 7 1.3 Minkowski's theorems 11 2 Computational problems 14 2.1 Complexity Theory 15 2.2 Some lattice problems 17 2.3 Hardness of approximation 19 3 Notes 21 2. APPROXIMATION ALGORITHMS 23 1 Solving SVP in dimension 2 24 1.1 Reduced basis 24 1.2 Gauss' algorithm 27 1.3 Running time analysis 30 2 Approximating SVP in dimension n 32 2.1 Reduced basis 32 2.2 The LLL basis reduction algorithm 34 2.3 Running time analysis 36 3 Approximating CVP in dimension n 40 4 Notes 42 3. CLOSEST VECTOR PROBLEM 45 1 Decision versus Search 46 2 NP-completeness 48 VI COMPLEXITY OF LATTICE PROBLEMS 3 SVP is not harder than CVP 52 3.1 Deterministic reduction 53 3.2 Randomized Reduction 56 4 Inapproximability of CVP 58 4.1 Polylogarithmic factor 58 4.2 Larger factors 61 5 CVP with preprocessing 64 6 Notes 67 4. SHORTEST VECTOR PROBLEM 69 1 Kannan's homogenization technique 70 2 The Ajtai-Micciancio embedding 77 3 NP-hardness of SVP 83 3.1 Hardness under randomized reductions 83 3.2 Hardness under nonuniform reductions 85 3.3 Hardness under deterministic reductions 86 4 Notes 87 5. SPHERE PACKINGS 91 1 Packing Points in Small Spheres 94 2 The Exponential Sphere Packing 96 2.1 The Schnorr-Adleman prime number lattice 97 2.2 Finding clusters 99 2.3 Some additional properties 104 3 Integer Lattices 105 4 Deterministic construction 108 5 Notes 110 6. LOW-DEGREE HYPERGRAPHS 111 1 Sauer's Lemma 112 2 Weak probabilistic construction 114 2.1 The exponential bound 115 2.2 Well spread hypergraphs 118 2.3 Proof of the weak theorem 121 3 Strong probabilistic construction 122 4 Notes 124 7. BASIS REDUCTION PROBLEMS 125 1 Successive minima and Minkowski's reduction 125 Contents VB 2 Orthogonality defect and KZ reduction 131 3 Small rectangles and the covering radius 136 4 Notes 141 8. CRYPTOGRAPHIC FUNCTIONS 143 1 General techniques 146 1.1 Lattices, sublattices and groups 147 1.2 Discrepancy 153 1.3 Statistical distance 157 2 Collision resistant hash functions 161 2.1 The construction 162 2.2 Collision resistance 164 2.3 The iterative step 168 2.4 Almost perfect lattices 182 3 Encryption Functions 184 3.1 The GGH scheme 185 3.2 The HNF technique 187 3.3 The Ajtai-Dwork cryptosystem 189 3.4 NTRU 191 4 Notes 194 9. INTERACTIVE PROOF SYSTEMS 195 1 Closest vector problem 198 1.1 Proof of the soundness claim 201 1.2 Conclusion 204 2 Shortest vector problem 204 3 Treating other norms 206 4 What does it mean? 208 5 Notes 210 References 211 Index 219 Preface Lattices are geometric objects that can be pictorially described as the set of intersection points of an infinite, regular n-dimensional grid. De­ spite their apparent simplicity, lattices hide a rich combinatorial struc­ ture, which has attracted the attention of great mathematicians over the last two centuries. Not surprisingly, lattices have found numerous ap­ plications in mathematics and computer science, ranging from number theory and Diophantine approximation, to combinatorial optimization and cryptography. The study of lattices, specifically from a computational point of view, was marked by two major breakthroughs: the development of the LLL lattice reduction algorithm by Lenstra, Lenstra and Lovasz in the early 80's, and Ajtai's discovery of a connection between the worst-case and average-case hardness of certain lattice problems in the late 90's. The LLL algorithm, despite the relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cryptosystems, and finding solutions to many other Diophantine and cryptanalysis problems. Ajtai's discovery suggested a completely different way to use lattices in cryptography. Instead of using algorithmic solutions to computationally tractable lattice approximation problems to break cryptosystems, Ajtai's work shows how to use the existence of computationally intractable-to­ approximate lattice problems to build cryptosystems which are impossi­ ble to break. Namely, design cryptographic functions that are provably as hard to break as it is to solve a computationally hard lattice problem. Whereas in complexity theory we say that a problem is hard if it is hard for the worst case instance, in cryptography a problem is deemed hard only if it is hard in the average case (i.e., for all but a negligible IX x COMPLEXITY OF LATTICE PROBLEMS fraction of the instances). The novelty in Ajtai's result, is that he shows how to build a cryptographic function which is as hard to break on the average (e.g., over the random choices of the function instance) as it is to solve the worst case instance of a certain lattice problem. This achievement is unique to lattice theory at this time, and points to lattices as an ideal source of hardness for cryptographic purposes. These new constructive applications of lattices, are deeply rooted in complexity theory, and were followed by a sharp increase in the study of lattices from a computational complexity point of view. This led to the resolution of several long standing open problems in the area. Most notably, the NP-hardness of the shortest vector problem in its exact and approximate versions. We present a self contained exposition of this latter result as well as other results on the computational complexity of lattice problems. We did not attempt to cover everything known about lattices, as this would have filled several volumes. Rather, we selected a few represen­ tative topics, based on our personal taste and research experience. Re­ grettably, a topic which we neglect is duality and transference theorems. With this notable exception, we believe that most of the current ideas relevant to lattice based cryptography appear within in some form or another. Many research questions regarding lattices and their cryptographic usage remain open. We hope that this book will help make lattice based cryptography more accessible to a wider audience, and ultimately yield further progress in this exciting research area. Acknowledgments. Part of the material presented in this book is based on joint work of the authors with Shai Halevi, Oded Goldreich, Muli Safra and Jean-Pierre Seifert. Many other people have indirectly contributed to this book, either through their work, or through many conversations with the authors. Among them, we would like to men­ tion Miklos Ajtai, Ravi Kannan, Amit Sahai, Claus Schnorr, Madhu Sudan and Salil Vadhan. We would like to thank all our coauthors and colleagues that have made this book possible. The first author would like to thank also the National Science Foun­ dation and Chris and Warren Hellman for partially supporting this work under NSF Career Award CCR-0093029 and a 2001-02 Hellman Fellow­ ship. DANIELE MICCIANCIO Chapter 1 BASICS This book is about algorithmic problems on point lattices, and their computational complexity. In this chapter we give some background about lattices and complexity theory. 1. Lattices Let IRm be the m-dimensional Euclidean space. A lattice in IRm is the set .c(bl' ... ' bn ) = {tXibi:Xi E Z} (1.1) t=1 of all integral combinations of n linearly independent vectors b 1, ... , b n in IRm (m 2: n). The integers nand m are called the rank and dimension of the lattice, respectively. The sequence of vectors b 1, ... , b n is called a lattice basis and it is conveniently represented as a matrix (1.2) having the basis vectors as columns. Using matrix notation, (1.1) can be rewritten in a more compact form as .c(B) = {Bx: x E zn} (1.3) where Bx is the usual matrix-vector multiplication. Graphically, a lattice can be described as the set of intersection points of an infinite, regular (but not necessarily orthogonal) n-dimensional grid. A 2-dimensional example is shown in Figure 1.1. There, the basis vectors are (1.4) 2 COMPLEXITY OF LATTICE PROBLEMS Figure 1.1. A lattice in R2 and they generate all the intersection points of the grid when combined with integer coefficients. The same lattice has many different bases. For example, vectors (1.5) are also a basis for lattice .L:(bI, b2). The grid generated by b~, b~ is shown in Figure 1.2. Notice that although the two grids are different, the set of intersection points is exactly the same, i.e., {bI, b2} and {b~, b~} are two different bases for the same lattice .L:(bI, b2) = .L:(b~, b~).
Recommended publications
  • Arxiv:Cs/0601091V2
    Communication Over MIMO Broadcast Channels Using Lattice-Basis Reduction1 Mahmoud Taherzadeh, Amin Mobasher, and Amir K. Khandani Coding & Signal Transmission Laboratory Department of Electrical & Computer Engineering University of Waterloo Waterloo, Ontario, Canada, N2L 3G1 Abstract A simple scheme for communication over MIMO broadcast channels is introduced which adopts the lattice reduction technique to improve the naive channel inversion method. Lattice basis reduction helps us to reduce the average transmitted energy by modifying the region which includes the constellation points. Simulation results show that the proposed scheme performs well, and as compared to the more complex methods (such as the perturbation method [1]) has a negligible loss. Moreover, the proposed method is extended to the case of different rates for different users. The asymptotic behavior (SNR ) of the symbol error rate of the proposed method and the −→ ∞ perturbation technique, and also the outage probability for the case of fixed-rate users is analyzed. It is shown that the proposed method, based on LLL lattice reduction, achieves the optimum asymptotic slope of symbol-error-rate (called the precoding diversity). Also, the outage probability for the case of fixed sum-rate is analyzed. I. INTRODUCTION In the recent years, communications over multiple-antenna fading channels has attracted the attention of many researchers. Initially, the main interest has been on the point-to-point Multiple-Input Multiple-Output (MIMO) communications [2]–[6]. In [2] and [3], the authors have shown that the capacity of a MIMO point-to-point channel increases linearly with the arXiv:cs/0601091v2 [cs.IT] 18 Jun 2007 minimum number of the transmit and the receive antennas.
    [Show full text]
  • Lectures on the NTRU Encryption Algorithm and Digital Signature Scheme: Grenoble, June 2002
    Lectures on the NTRU encryption algorithm and digital signature scheme: Grenoble, June 2002 J. Pipher Brown University, Providence RI 02912 1 Lecture 1 1.1 Integer lattices Lattices have been studied by cryptographers for quite some time, in both the field of cryptanalysis (see for example [16{18]) and as a source of hard problems on which to build encryption schemes (see [1, 8, 9]). In this lecture, we describe the NTRU encryption algorithm, and the lattice problems on which this is based. We begin with some definitions and a brief overview of lattices. If a ; a ; :::; a are n independent vectors in Rm, n m, then the 1 2 n ≤ integer lattice with these vectors as basis is the set = n x a : x L f 1 i i i 2 Z . A lattice is often represented as matrix A whose rows are the basis g P vectors a1; :::; an. The elements of the lattice are simply the vectors of the form vT A, which denotes the usual matrix multiplication. We will specialize for now to the situation when the rank of the lattice and the dimension are the same (n = m). The determinant of a lattice det( ) is the volume of the fundamen- L tal parallelepiped spanned by the basis vectors. By the Gram-Schmidt process, one can obtain a basis for the vector space generated by , and L the det( ) will just be the product of these orthogonal vectors. Note that L these vectors are not a basis for as a lattice, since will not usually L L possess an orthogonal basis.
    [Show full text]
  • Solving Hard Lattice Problems and the Security of Lattice-Based Cryptosystems
    Solving Hard Lattice Problems and the Security of Lattice-Based Cryptosystems † Thijs Laarhoven∗ Joop van de Pol Benne de Weger∗ September 10, 2012 Abstract This paper is a tutorial introduction to the present state-of-the-art in the field of security of lattice- based cryptosystems. After a short introduction to lattices, we describe the main hard problems in lattice theory that cryptosystems base their security on, and we present the main methods of attacking these hard problems, based on lattice basis reduction. We show how to find shortest vectors in lattices, which can be used to improve basis reduction algorithms. Finally we give a framework for assessing the security of cryptosystems based on these hard problems. 1 Introduction Lattice-based cryptography is a quickly expanding field. The last two decades have seen exciting devel- opments, both in using lattices in cryptanalysis and in building public key cryptosystems on hard lattice problems. In the latter category we could mention the systems of Ajtai and Dwork [AD], Goldreich, Goldwasser and Halevi [GGH2], the NTRU cryptosystem [HPS], and systems built on Small Integer Solu- tions [MR1] problems and Learning With Errors [R1] problems. In the last few years these developments culminated in the advent of the first fully homomorphic encryption scheme by Gentry [Ge]. A major issue in this field is to base key length recommendations on a firm understanding of the hardness of the underlying lattice problems. The general feeling among the experts is that the present understanding is not yet on the same level as the understanding of, e.g., factoring or discrete logarithms.
    [Show full text]
  • On Ideal Lattices and Learning with Errors Over Rings∗
    On Ideal Lattices and Learning with Errors Over Rings∗ Vadim Lyubashevskyy Chris Peikertz Oded Regevx June 25, 2013 Abstract The “learning with errors” (LWE) problem is to distinguish random linear equations, which have been perturbed by a small amount of noise, from truly uniform ones. The problem has been shown to be as hard as worst-case lattice problems, and in recent years it has served as the foundation for a plethora of cryptographic applications. Unfortunately, these applications are rather inefficient due to an inherent quadratic overhead in the use of LWE. A main open question was whether LWE and its applications could be made truly efficient by exploiting extra algebraic structure, as was done for lattice-based hash functions (and related primitives). We resolve this question in the affirmative by introducing an algebraic variant of LWE called ring- LWE, and proving that it too enjoys very strong hardness guarantees. Specifically, we show that the ring-LWE distribution is pseudorandom, assuming that worst-case problems on ideal lattices are hard for polynomial-time quantum algorithms. Applications include the first truly practical lattice-based public-key cryptosystem with an efficient security reduction; moreover, many of the other applications of LWE can be made much more efficient through the use of ring-LWE. 1 Introduction Over the last decade, lattices have emerged as a very attractive foundation for cryptography. The appeal of lattice-based primitives stems from the fact that their security can often be based on worst-case hardness assumptions, and that they appear to remain secure even against quantum computers.
    [Show full text]
  • On Lattices, Learning with Errors, Random Linear Codes, and Cryptography
    On Lattices, Learning with Errors, Random Linear Codes, and Cryptography Oded Regev ¤ May 2, 2009 Abstract Our main result is a reduction from worst-case lattice problems such as GAPSVP and SIVP to a certain learning problem. This learning problem is a natural extension of the ‘learning from parity with error’ problem to higher moduli. It can also be viewed as the problem of decoding from a random linear code. This, we believe, gives a strong indication that these problems are hard. Our reduction, however, is quantum. Hence, an efficient solution to the learning problem implies a quantum algorithm for GAPSVP and SIVP. A main open question is whether this reduction can be made classical (i.e., non-quantum). We also present a (classical) public-key cryptosystem whose security is based on the hardness of the learning problem. By the main result, its security is also based on the worst-case quantum hardness of GAPSVP and SIVP. The new cryptosystem is much more efficient than previous lattice-based cryp- tosystems: the public key is of size O~(n2) and encrypting a message increases its size by a factor of O~(n) (in previous cryptosystems these values are O~(n4) and O~(n2), respectively). In fact, under the assumption that all parties share a random bit string of length O~(n2), the size of the public key can be reduced to O~(n). 1 Introduction Main theorem. For an integer n ¸ 1 and a real number " ¸ 0, consider the ‘learning from parity with n error’ problem, defined as follows: the goal is to find an unknown s 2 Z2 given a list of ‘equations with errors’ hs; a1i ¼" b1 (mod 2) hs; a2i ¼" b2 (mod 2) .
    [Show full text]
  • Lattice Reduction for Modular Knapsack⋆
    Lattice Reduction for Modular Knapsack? Thomas Plantard, Willy Susilo, and Zhenfei Zhang Centre for Computer and Information Security Research School of Computer Science & Software Engineering (SCSSE) University Of Wollongong, Australia fthomaspl, wsusilo, [email protected] Abstract. In this paper, we present a new methodology to adapt any kind of lattice reduction algorithms to deal with the modular knapsack problem. In general, the modular knapsack problem can be solved using a lattice reduction algorithm, when its density is low. The complexity of lattice reduction algorithms to solve those problems is upper-bounded in the function of the lattice dimension and the maximum norm of the input basis. In the case of a low density modular knapsack-type basis, the weight of maximum norm is mainly from its first column. Therefore, by distributing the weight into multiple columns, we are able to reduce the maximum norm of the input basis. Consequently, the upper bound of the time complexity is reduced. To show the advantage of our methodology, we apply our idea over the floating-point LLL (L2) algorithm. We bring the complexity from O(d3+"β2 + d4+"β) to O(d2+"β2 + d4+"β) for " < 1 for the low den- sity knapsack problem, assuming a uniform distribution, where d is the dimension of the lattice, β is the bit length of the maximum norm of knapsack-type basis. We also provide some techniques when dealing with a principal ideal lattice basis, which can be seen as a special case of a low density modular knapsack-type basis. Keywords: Lattice Theory, Lattice Reduction, Knapsack Problem, LLL, Recursive Reduction, Ideal Lattice.
    [Show full text]
  • Making NTRU As Secure As Worst-Case Problems Over Ideal Lattices
    Making NTRU as Secure as Worst-Case Problems over Ideal Lattices Damien Stehlé1 and Ron Steinfeld2 1 CNRS, Laboratoire LIP (U. Lyon, CNRS, ENS Lyon, INRIA, UCBL), 46 Allée d’Italie, 69364 Lyon Cedex 07, France. [email protected] – http://perso.ens-lyon.fr/damien.stehle 2 Centre for Advanced Computing - Algorithms and Cryptography, Department of Computing, Macquarie University, NSW 2109, Australia [email protected] – http://web.science.mq.edu.au/~rons Abstract. NTRUEncrypt, proposed in 1996 by Hoffstein, Pipher and Sil- verman, is the fastest known lattice-based encryption scheme. Its mod- erate key-sizes, excellent asymptotic performance and conjectured resis- tance to quantum computers could make it a desirable alternative to fac- torisation and discrete-log based encryption schemes. However, since its introduction, doubts have regularly arisen on its security. In the present work, we show how to modify NTRUEncrypt to make it provably secure in the standard model, under the assumed quantum hardness of standard worst-case lattice problems, restricted to a family of lattices related to some cyclotomic fields. Our main contribution is to show that if the se- cret key polynomials are selected by rejection from discrete Gaussians, then the public key, which is their ratio, is statistically indistinguishable from uniform over its domain. The security then follows from the already proven hardness of the R-LWE problem. Keywords. Lattice-based cryptography, NTRU, provable security. 1 Introduction NTRUEncrypt, devised by Hoffstein, Pipher and Silverman, was first presented at the Crypto’96 rump session [14]. Although its description relies on arithmetic n over the polynomial ring Zq[x]=(x − 1) for n prime and q a small integer, it was quickly observed that breaking it could be expressed as a problem over Euclidean lattices [6].
    [Show full text]
  • Lower Bounds on Lattice Sieving and Information Set Decoding
    Lower bounds on lattice sieving and information set decoding Elena Kirshanova1 and Thijs Laarhoven2 1Immanuel Kant Baltic Federal University, Kaliningrad, Russia [email protected] 2Eindhoven University of Technology, Eindhoven, The Netherlands [email protected] April 22, 2021 Abstract In two of the main areas of post-quantum cryptography, based on lattices and codes, nearest neighbor techniques have been used to speed up state-of-the-art cryptanalytic algorithms, and to obtain the lowest asymptotic cost estimates to date [May{Ozerov, Eurocrypt'15; Becker{Ducas{Gama{Laarhoven, SODA'16]. These upper bounds are useful for assessing the security of cryptosystems against known attacks, but to guarantee long-term security one would like to have closely matching lower bounds, showing that improvements on the algorithmic side will not drastically reduce the security in the future. As existing lower bounds from the nearest neighbor literature do not apply to the nearest neighbor problems appearing in this context, one might wonder whether further speedups to these cryptanalytic algorithms can still be found by only improving the nearest neighbor subroutines. We derive new lower bounds on the costs of solving the nearest neighbor search problems appearing in these cryptanalytic settings. For the Euclidean metric we show that for random data sets on the sphere, the locality-sensitive filtering approach of [Becker{Ducas{Gama{Laarhoven, SODA 2016] using spherical caps is optimal, and hence within a broad class of lattice sieving algorithms covering almost all approaches to date, their asymptotic time complexity of 20:292d+o(d) is optimal. Similar conditional optimality results apply to lattice sieving variants, such as the 20:265d+o(d) complexity for quantum sieving [Laarhoven, PhD thesis 2016] and previously derived complexity estimates for tuple sieving [Herold{Kirshanova{Laarhoven, PKC 2018].
    [Show full text]
  • Lattice Reduction in Two Dimensions: Analyses Under Realistic Probabilistic Models
    Lattice reduction in two dimensions : analyses under realistic probabilistic models Brigitte Vallée, Antonio Vera To cite this version: Brigitte Vallée, Antonio Vera. Lattice reduction in two dimensions : analyses under realistic proba- bilistic models. 2008. hal-00211495 HAL Id: hal-00211495 https://hal.archives-ouvertes.fr/hal-00211495 Preprint submitted on 21 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lattice reduction in two dimensions: analyses under realistic probabilistic models Brigitte Vallee´ and Antonio Vera CNRS UMR 6072, GREYC, Universite´ de Caen, F-14032 Caen, France The Gaussian algorithm for lattice reduction in dimension 2 is precisely analysed under a class of realistic probabilistic models, which are of interest when applying the Gauss algorithm “inside” the LLL algorithm. The proofs deal with the underlying dynamical systems and transfer operators. All the main parameters are studied: execution parameters which describe the behaviour of the algorithm itself as well as output parameters, which describe the geometry of reduced bases. Keywords: Lattice Reduction, Gauss’ algorithm, LLL algorithm, Euclid’s algorithm, probabilistic analysis of algo- rithms, Dynamical Systems, Dynamical analysis of Algorithms. 1 Introduction The lattice reduction problem consists in finding a short basis of a lattice of Euclidean space given an initially skew basis.
    [Show full text]
  • Algorithms for the Approximate Common Divisor Problem
    Algorithms for the Approximate Common Divisor Problem Steven D. Galbraith1, Shishay W. Gebregiyorgis1, and Sean Murphy2 1 Mathematics Department, University of Auckland, New Zealand. [email protected],[email protected] 2 Royal Holloway, University of London, UK. [email protected] Abstract. The security of several homomorphic encryption schemes depends on the hardness of the Approximate Common Divisor (ACD) problem. In this paper we review and compare existing algorithms to solve the ACD prob- lem using lattices. In particular we consider the simultaneous Diophantine approximation method, the orthogonal lattice method, and a method based on multivariate polynomials and Coppersmith’s algorithm that was studied in detail by Cohn and Heninger. One of our main goals is to compare the multivariate polynomial approach with other methods. We find that the multivariate polynomial approach is not better than the orthogonal lattice algorithm for practical cryptanalysis. Another contribution is to consider a sample-amplification technique for ACD samples, and to consider a pre- processing algorithm similar to the Blum-Kalai-Wasserman (BKW) algorithm for learning parity with noise. We explain why, unlike in other settings, the BKW algorithm does not give an improvement over the lattice algorithms. This is the full version of a paper published at ANTS-XII in 2016. Keywords: Approximate common divisors, lattice attacks, orthogonal lattice, Coppersmith’s method. 1 Introduction The approximate common divisor problem (ACD) was first studied by Howgrave-Graham [HG01]. Further inter- est in this problem was provided by the homomorphic encryption scheme of van Dijk, Gentry, Halevi and Vaikun- tanathan [DGHV10] and its variants [CMNT11,CNT12,CS15].
    [Show full text]
  • A Hybrid Lattice-Reduction and Meet-In-The-Middle Attack Against NTRU
    A hybrid lattice-reduction and meet-in-the-middle attack against NTRU Nick Howgrave-Graham [email protected] NTRU Cryptosystems, Inc. Abstract. To date the NTRUEncrypt security parameters have been based on the existence of two types of attack: a meet-in-the-middle at- tack due to Odlyzko, and a conservative extrapolation of the running times of the best (known) lattice reduction schemes to recover the private key. We show that there is in fact a continuum of more efficient attacks between these two attacks. We show that by combining lattice reduction and a meet-in-the-middle strategy one can reduce the number of loops in attacking the NTRUEncrypt private key from 284.2 to 260.3, for the k = 80 parameter set. In practice the attack is still expensive (depen- dent on ones choice of cost-metric), although there are certain space/time tradeoffs that can be applied. Asymptotically our attack remains expo- nential in the security parameter k, but it dictates that NTRUEncrypt parameters must be chosen so that the meet-in-the-middle attack has complexity 2k even after an initial lattice basis reduction of complexity 2k. 1 Introduction It is well known that the closest vector problem (CVP) can be solved efficiently in the case that the given point in space is very close to a lattice vector [7, 18]. If this CVP algorithm takes time t and a set S has the property that it includes at least one point v0 S which is very close to a lattice vector, then clearly v0 can be found in time O∈( S t) by exhaustively enumerating the set S.
    [Show full text]
  • Algorithms for the Densest Sub-Lattice Problem
    Algorithms for the Densest Sub-Lattice Problem Daniel Dadush∗ Daniele Micciancioy December 24, 2012 Abstract We give algorithms for computing the densest k-dimensional sublattice of an arbitrary lattice, and related problems. This is an important problem in the algorithmic geometry of numbers that includes as special cases Rankin’s problem (which corresponds to the densest sublattice problem with respect to the Euclidean norm, and has applications to the design of lattice reduction algorithms), and the shortest vector problem for arbitrary norms (which corresponds to setting k = 1) and its dual (k = n − 1). Our algorithm works for any norm and has running time kO(k·n) and uses 2n poly(n) space. In particular, the algorithm runs in single exponential time 2O(n) for any constant k = O(1). ∗Georgia Tech. Atlanta, GA, USA. Email: [email protected] yUniversity of California, San Diego. 9500 Gilman Dr., Mail Code 0404, La Jolla, CA 92093, USA. Email: [email protected]. This work was supported in part by NSF grant CNS-1117936. Any opinions, findings, and con- clusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. 1 Introduction n A lattice is a discrete subgroup of R . Computational problems on lattices play an important role in many areas of computer science, mathematics and engineering, including cryptography, cryptanalysis, combinatorial optimization, communication theory and algebraic number theory. The most famous problem on lattices is the shortest vector problem (SVP), which asks to find the shortest nonzero vector in an input lattice.
    [Show full text]