Progress on LLL and Lattice Reduction Claus Peter Schnorr Abstract We surview variants and extensions of the LLL-algorithm of Lenstra, Lenstra Lovasz´ , extensions to quadratic indefinite forms and to faster and stronger reduction algorithms. The LLL-algorithm with Householder orthogonalisation in floating-point arithmetic is very efficient and highly accurate. We surview approx- imations of the shortest lattice vector by feasible lattice reduction, in particular by block reduction, primal-dual reduction and random sampling reduction. Segment re- duction performs LLL-reduction in high dimension mostly working with a few local coordinates. Key words: LLL-reduction, Householder orthogonalisation, floating-point arith- metic, block reduction, segment reduction, primal-dual reduction, sampling reduction, reduction of indefinite quadratic forms. 1 Introduction A lattice basis of dimension n consists of n linearly independent real vectors b1, ..., bn m ∈ R . The basis B = [b1, ..., bn] generates the lattice L consisting of all integer linear combinations of the basis vectors. Lattice reduction transforms a given basis of L into a basis with short and nearly orthogonal vectors. Unifying two traditions. The LLL-algorithm of Lenstra, Lenstra Lovasz´ [47] provides in polynomial time a reduced basis of proven quality. Its inventors focused on Gram-Schmidt orthogonalisation (GSO) in exact integer arithmetic which is only affordable for small dimension n. With floating-point arithmetic (fpa) available it is faster to orthogonalise in fpa. In numerical mathematics the orthogonalisation of Claus Peter Schnorr Fachbereich Informatik und Mathematik, Universit¨at Frankfurt, PSF 111932, D-60054 Frankfurt am Main, Germany.
[email protected] – http: www.mi.informatik.uni-frankfurt.de 1 a lattice basis B is usually done by QR-factorization B = QR using Householder reflections [76].