Significant Wildlife Habitat Technical Guide

Total Page:16

File Type:pdf, Size:1020Kb

Significant Wildlife Habitat Technical Guide Significant Wildlife Habitat Technical Guide 2000 Fish and Wildlife Branch Wildlife Section Science Development and Transfer Branch Southcentral Sciences Section © 2000, Queen’s printer for Ontario Printed in Ontario, Canada MNR #51438 (.5k P.R. 00 10 16) ISBN# 0-7794-0262-6-6 (Internet) This publication should be cited as: OMNR. 2000. Significant wildlife habitat technical guide. 151p. Copies of this publication are available from: Ontario Ministry of Natural Resources Fish and Wildlife Branch - Wildlife Section 300 Water Street P.O. Box 7000 Peterborough, K9J 8M5 Cette publication scientifique n’est disponible qu’en anglais. Significant Wildlife Habitat Technical Guide Acknowledgements This document has undergone numerous reviews. We would like to thank all those who reviewed this document and contributed comments. Main contributors to the technical guide include: Kerry Coleman – Ontario Ministry of Natural Resources Al Sandilands – Biological Consultant Tim Haxton – Ontario Ministry of Natural Resources Dave Bland – Biological Consultant Vivian Brownell – Biological Consultant Richard Rowe – Ontario Ministry of Natural Resources Main contributors to the appendices include: Ruth Grant – Biological Consultant Don Cuddy – Ontario Ministry of Natural Resources Mike Oldham – Natural Heritage Information Centre i Significant Wildlife Habitat Technical Guide ii Significant Wildlife Habitat Technical Guide Table of Contents Acknowledgements .................................................................................................................... i List of Tables............................................................................................................................ vi List of Figures ......................................................................................................................... vii List of Appendices .................................................................................................................viii 1 Introduction ...................................................................................................................... 1 2 A Landscape Approach to Conserving Significant Wildlife Habitat.............................. 3 2.1 Gap analysis – A critical tool in landscape analysis........................................................... 6 3 Preparing to Identify Significant Wildlife Habitat.......................................................... 8 3.1 Significant wildlife habitat................................................................................................ 8 3.2 Available information ...................................................................................................... 8 3.3 Other information.......................................................................................................... 12 3.4 The conservation advisory committee ............................................................................ 13 3.5 Finding potentially significant wildlife habitat................................................................. 14 3.5.1 Wetlands ............................................................................................................... 16 3.5.2 Woodlands ............................................................................................................ 17 3.6 Mapping significant wildlife habitat................................................................................ 19 4 Identifying Habitats of Seasonal Concentrations of Animals........................................ 20 4.1 Definition ...................................................................................................................... 20 4.2 Ecological functions/effects of loss ................................................................................ 20 4.3 Identification of potentially significant seasonal concentration areas............................... 20 4.3.1 Mapping and verifying known seasonal concentration areas ................................... 20 4.3.2 Finding animal Concentration areas that have not been previously identified........... 21 4.4 How to find some specific seasonal concentration areas................................................. 22 4.4.1 Winter deer yards .................................................................................................. 22 4.4.2 Moose late winter habitat....................................................................................... 23 4.4.3 Colonial bird nesting sites ...................................................................................... 23 4.4.4 Waterfowl stopover and staging areas.................................................................... 25 4.4.5 Waterfowl nesting.................................................................................................. 25 4.4.6 Shorebird migratory stopover areas........................................................................ 26 4.4.7 Landbird migratory stopover areas......................................................................... 27 4.4.8 Raptor winter feeding and roosting areas ............................................................... 27 4.4.9 Wild turkey winter range ....................................................................................... 28 4.4.10 Turkey vulture summer roosting areas ................................................................... 29 ii Significant Wildlife Habitat Technical Guide 4.4.11 Reptile hibernacula ................................................................................................ 29 4.4.12 Bat hibernacula...................................................................................................... 30 4.4.13 Bullfrog concentration areas .................................................................................. 31 4.4.14 Migratory butterfly stopover areas ......................................................................... 32 5 Identifying Rare Vegetation Communities or Specialised Habitats for Wildlife.......... 33 5.1 Definitions..................................................................................................................... 33 5.2 Ecological function/effects of loss.................................................................................. 33 5.2.1 Rare vegetation communities ................................................................................. 33 5.2.2 Specialised habitats for wildlife .............................................................................. 33 5.3 Identification of potentially rare vegetation communities or specialised habitat for wildlife34 5.3.1 Potentially rare vegetation communities ................................................................. 35 5.3.2 Specialised habitats for wildlife .............................................................................. 36 5.4 How to find some rare vegetation communities or specialised habitats for wildlife.......... 37 5.4.1 Rare vegetation communities ................................................................................. 37 5.4.1.1 Alvars............................................................................................................... 37 5.4.1.2 Tall-grass prairies ............................................................................................. 38 5.4.1.3 Savannahs......................................................................................................... 39 5.4.1.4 Rare forest types............................................................................................... 40 5.4.1.5 Talus slopes...................................................................................................... 41 5.4.1.6 Rock barrens .................................................................................................... 41 5.4.1.7 Sand barrens..................................................................................................... 42 5.4.1.8 Great Lakes dunes ............................................................................................ 42 5.4.2 How to find specialised habitats for wildlife ........................................................... 43 5.4.2.1 Habitat for area-sensitive species ...................................................................... 43 5.4.2.2 Forests providing a high diversity of habitats..................................................... 45 5.4.2.3 Old-growth or mature forest stands................................................................... 45 5.4.2.4 Foraging areas with abundant mast ................................................................... 46 5.4.2.5 Amphibian woodland breeding ponds................................................................ 47 5.4.2.6 Turtle nesting habitat ........................................................................................ 47 5.4.2.7 Specialised raptor nesting habitat ...................................................................... 48 5.4.2.8 Moose calving areas ......................................................................................... 49 5.4.2.9 Moose aquatic feeding areas ............................................................................. 50 5.4.2.10 Mineral licks ................................................................................................... 50 5.4.2.11 Mink, otter, marten, and fisher denning sites ................................................... 50 5.4.3 Highly diverse areas..............................................................................................
Recommended publications
  • Why Is the Common Grackle Becoming Less Common? Avian Conservation and Ecology 16(2):7
    VOLUME 16, ISSUE 2, ARTICLE 7 Horsley, N. P., and M. P. Ward. 2021. Why is the Common Grackle becoming less common? Avian Conservation and Ecology 16(2):7. https://doi. org/10.5751/ACE-01879-160207 Copyright © 2021 by the author(s). Published here under license by the Resilience Alliance. Research Paper Why is the Common Grackle becoming less common? Noah P. Horsley 1 and Michael P. Ward 1,2 1University of Illinois at Urbana-Champaign, 2Illinois Natural History Survey ABSTRACT. Despite a generalist life history and a widespread distribution, the Common Grackle (Quiscalus quiscula) has declined by more than 58% since 1970. In Illinois, where this study was conducted, the current rate of decline is 7.03% annually. We hypothesized that low reproductive success in intensely agricultural areas is driving population decline. To test this, we quantified the nesting success and post-fledging survival of Common Grackles in central Illinois. Over a 2-year period, we monitored 188 nests and tracked the survival of 53 fledglings. Our estimate for nesting success of 0.622 (95% CI: 0.549-0.695) was much higher than the literature average of 0.267. Similarly, although post-fledging survival had not been estimated previously for Common Grackles, our estimate of 0.617 (95% CI: 0.471-0.764) was relatively high compared to that of other songbirds (range: 0.23-0.87). The most important factor influencing these estimates was ordinal date, which had a negative relationship with both nesting success and post-fledging survival. These results suggest that reproductive success is not the primary driver of population decline in Illinois.
    [Show full text]
  • Management Plan for the Yellow Rail in Canada
    Species at Risk Actl Management Plan Series Management Plan for the Yellow Rail (Coturnicops noveboracensis) in Canada Yellow Rail 2013 Recommended citation: Environment Canada. 2013. Management Plan for the Yellow Rail (Coturnicops noveboracensis) in Canada. Species at Risk Act Management Plan Series. Environment Canada, Ottawa. iii + 24 pp. For copies of the management plan, or for additional information on species at risk, including COSEWIC Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk (SAR) Public Registry (www.sararegistry.gc.ca). Cover photo: ©Jacques Brisson Également disponible en français sous le titre « Plan de gestion du Râle jaune (Coturnicops noveboracensis) au Canada » © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2013. All rights reserved. ISBN 978-1-100-21199-2 Catalogue no. En3-5/38-2013E-PDF Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. Management Plan for the Yellow Rail 2013 PREFACE The federal, provincial, and territorial government signatories under the Accord for the Protection of Species at Risk (1996) agreed to establish complementary legislation and programs that provide for effective protection of species at risk throughout Canada. Under the Species at Risk Act (S.C. 2002, c.29) (SARA), the federal competent ministers are responsible for the preparation of management plans for listed Special Concern species and are required to report on progress within five years. The Minister of the Environment and the Minister responsible for the Parks Canada Agency are the competent ministers for the management of the Yellow Rail and have prepared this plan, as per section 65 of SARA.
    [Show full text]
  • V Review of Bufflehead Sex and Age Criteria with Notes on Weights :HARLES J
    V review of Bufflehead sex and age criteria with notes on weights :HARLES J. HENNY, JOHN L. CARTER, and BETTE J. CARTER The Bufflehead Bucephaia albeola is the stated that any duck, goose, or swan, re­ mallest diving duck in North America. A gardless of age or plumage, may be sexed ecent review by Palmer (1976) noted by the presence or absence of the penis. )otential problems regarding sex and age However, in the Bufflehead, we found that letermination which in turn leads to the penis of immatures (first-year males) loubts about the relative size among sex was very small and sometimes difficult to md age classes. The present study was ascertain; therefore, an internal check of lesigned to check the reliability of several the gonads was made for verification. In nethods used for sex and age determina- adults, the penis is larger and enclosed ion in this species. within a conspicuous sheath. We collected 87 birds during two duck In the female, the criterion of age is the lunting seasons (24 November 1978 to 14 left oviduct which empties into the cloacal anuary 1979 and 4 N ovember 1979 to 6 chamber through the left cloacal wall. In ianuary 1980) at the Salmon River estuary, immature females, the oviduct is closed by incoin County, Oregon. a membrane; the left cloacal wall is un­ broken. In adult females, the occluding membrane is absent; the oviduct may be »ex and age determination seen as a conspicuous slit on the left cloacal wall. >ex and/or age may be determined in In both sexes another criterion of age waterfowl in several ways: (1) general exists in the cloaca, the bursa of Fabricius.
    [Show full text]
  • The Oxbow Philadelphia Vireo
    The Oxbow Philadelphia Vireo Ron Lockwood In 1998 a Philadelphia Vireo {Vireo philadelphicus) was present during the spring and summer months in the Oxbow National Wildlife Refuge in Harvard, an occurrence that was unusual since Harvard is well south of the region where this vireo species normally breeds. In the spring of 1999, a Philadelphia Vireo, possibly the same individual that was observed in 1998, was again present from the middle of May until at least August. In 1999, however, the vireo sang a song that was similar to the song of the Warbling Vireos {Vireo gilvus) that commonly breed along the Nashua River. It sang this aberrant song, as well as the normal Philadelphia Vireo song, for about the first month after arriving. Later in the summer it sang the normal Philadelphia Vireo song exclusively. Except for a mimid or starling, this was the first time I had heard an individual of one passerine species sing the song of another. To my ear, the aberrant song sounded very much like an abbreviated Warbling Vireo song, but sweeter and not quite so throaty. Upon careful observation, the bird’s plumage was consistent with that of a typical Philadelphia Vireo with dark lores, a yellow breast, a slightly less bright yellow belly and undertail coverts, and a gray crown grading into an olive nape and back. There was no visual indication that the vireo was a hybrid. Bird song serves multiple functions including the establishment and maintenance of breeding and feeding territories, and mate attraction (e.g., Kroodsma and Byers 1991; McDonald 1989).
    [Show full text]
  • Birds of the East Texas Baptist University Campus with Birds Observed Off-Campus During BIOL3400 Field Course
    Birds of the East Texas Baptist University Campus with birds observed off-campus during BIOL3400 Field course Photo Credit: Talton Cooper Species Descriptions and Photos by students of BIOL3400 Edited by Troy A. Ladine Photo Credit: Kenneth Anding Links to Tables, Figures, and Species accounts for birds observed during May-term course or winter bird counts. Figure 1. Location of Environmental Studies Area Table. 1. Number of species and number of days observing birds during the field course from 2005 to 2016 and annual statistics. Table 2. Compilation of species observed during May 2005 - 2016 on campus and off-campus. Table 3. Number of days, by year, species have been observed on the campus of ETBU. Table 4. Number of days, by year, species have been observed during the off-campus trips. Table 5. Number of days, by year, species have been observed during a winter count of birds on the Environmental Studies Area of ETBU. Table 6. Species observed from 1 September to 1 October 2009 on the Environmental Studies Area of ETBU. Alphabetical Listing of Birds with authors of accounts and photographers . A Acadian Flycatcher B Anhinga B Belted Kingfisher Alder Flycatcher Bald Eagle Travis W. Sammons American Bittern Shane Kelehan Bewick's Wren Lynlea Hansen Rusty Collier Black Phoebe American Coot Leslie Fletcher Black-throated Blue Warbler Jordan Bartlett Jovana Nieto Jacob Stone American Crow Baltimore Oriole Black Vulture Zane Gruznina Pete Fitzsimmons Jeremy Alexander Darius Roberts George Plumlee Blair Brown Rachel Hastie Janae Wineland Brent Lewis American Goldfinch Barn Swallow Keely Schlabs Kathleen Santanello Katy Gifford Black-and-white Warbler Matthew Armendarez Jordan Brewer Sheridan A.
    [Show full text]
  • Aquatic Vascular Plant Species Distribution Maps
    Appendix 11.5.1: Aquatic Vascular Plant Species Distribution Maps These distribution maps are for 116 aquatic vascular macrophyte species (Table 1). Aquatic designation follows habitat descriptions in Haines and Vining (1998), and includes submergent, floating and some emergent species. See Appendix 11.4 for list of species. Also included in Appendix 11.4 is the number of HUC-10 watersheds from which each taxon has been recorded, and the county-level distributions. Data are from nine sources, as compiled in the MABP database (plus a few additional records derived from ancilliary information contained in reports from two fisheries surveys in the Upper St. John basin organized by The Nature Conservancy). With the exception of the University of Maine herbarium records, most locations represent point samples (coordinates were provided in data sources or derived by MABP from site descriptions in data sources). The herbarium data are identified only to township. In the species distribution maps, town-level records are indicated by center-points (centroids). Figure 1 on this page shows as polygons the towns where taxon records are identified only at the town level. Data Sources: MABP ID MABP DataSet Name Provider 7 Rare taxa from MNAP lake plant surveys D. Cameron, MNAP 8 Lake plant surveys D. Cameron, MNAP 35 Acadia National Park plant survey C. Greene et al. 63 Lake plant surveys A. Dieffenbacher-Krall 71 Natural Heritage Database (rare plants) MNAP 91 University of Maine herbarium database C. Campbell 183 Natural Heritage Database (delisted species) MNAP 194 Rapid bioassessment surveys D. Cameron, MNAP 207 Invasive aquatic plant records MDEP Maps are in alphabetical order by species name.
    [Show full text]
  • Tinamiformes – Falconiformes
    LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma
    [Show full text]
  • Wildlife Habitat Plan
    WILDLIFE HABITAT PLAN City of Novi, Michigan A QUALITY OF LIFE FOR THE 21ST CENTURY WILDLIFE HABITAT PLAN City of Novi, Michigan A QUALIlY OF LIFE FOR THE 21ST CENTURY JUNE 1993 Prepared By: Wildlife Management Services Brandon M. Rogers and Associates, P.C. JCK & Associates, Inc. ii ACKNOWLEDGEMENTS City Council Matthew C. Ouinn, Mayor Hugh C. Crawford, Mayor ProTem Nancy C. Cassis Carol A. Mason Tim Pope Robert D. Schmid Joseph G. Toth Planning Commission Kathleen S. McLallen, * Chairman John P. Balagna, Vice Chairman lodia Richards, Secretary Richard J. Clark Glen Bonaventura Laura J. lorenzo* Robert Mitzel* Timothy Gilberg Robert Taub City Manager Edward F. Kriewall Director of Planning and Community Development James R. Wahl Planning Consultant Team Wildlife Management Services - 640 Starkweather Plymouth, MI. 48170 Kevin Clark, Urban Wildlife Specialist Adrienne Kral, Wildlife Biologist Ashley long, Field Research Assistant Brandon M. Rogers and Associates, P.C. - 20490 Harper Ave. Harper Woods, MI. 48225 Unda C. lemke, RlA, ASLA JCK & Associates, Inc. - 45650 Grand River Ave. Novi, MI. 48374 Susan Tepatti, Water Resources Specialist * Participated with the Planning Consultant Team in developing the study. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS iii PREFACE vii EXECUTIVE SUMMARY viii FRAGMENTATION OF NATURAL RESOURCES " ., , 1 Consequences ............................................ .. 1 Effects Of Forest Fragmentation 2 Edges 2 Reduction of habitat 2 SPECIES SAMPLING TECHNIQUES ................................ .. 3 Methodology 3 Survey Targets ............................................ ., 6 Ranking System ., , 7 Core Reserves . .. 7 Wildlife Movement Corridor .............................. .. 9 FIELD SURVEY RESULTS AND RECOMMENDATIONS , 9 Analysis Results ................................ .. 9 Core Reserves . .. 9 Findings and Recommendations , 9 WALLED LAKE CORE RESERVE - DETAILED STUDy.... .. .... .. .... .. 19 Results and Recommendations ............................... .. 21 GUIDELINES TO ECOLOGICAL LANDSCAPE PLANNING AND WILDLIFE CONSERVATION.
    [Show full text]
  • Stage 1 Archaeological Assessment: 3856/3866/3876 Navan Road, City of Ottawa, Ontario
    Stage 1 Archaeological Assessment: 3856/3866/3876 Navan Road, City of Ottawa, Ontario Part Lot 7, Concession 11, Former Township of Cumberland, Russell Township, now City of Ottawa, Ontario November 28, 2018 Prepared for: Mr. Magdi Farid St. George and St. Anthony Church 1081 Cadboro Road Ottawa, ON K1J 7T8 Prepared by: Stantec Consulting Ltd. 400-1331 Clyde Avenue Ottawa, ON K2C 3G4 Licensee: Patrick Hoskins, MA Licence Number: P415 PIF Number: P415-0173-2018 Project # 160410200 ORIGINAL REPORT STAGE 1 ARCHAEOLOGICAL ASSESSMENT: 3856/3866/3876 NAVAN ROAD, CITY OF OTTAWA, ONT AR IO November 27, 2018 STAGE 1 ARCHAEOLOGICAL ASSESSMENT: 3856/3866/3876 NAVAN ROAD, CITY OF OTTAWA, ONT AR IO November 27, 2018 Table of Contents EXECUTIVE SUMMARY ............................................................................................................... III PROJECT PERSONNEL .............................................................................................................. IV ACKNOWLEDGEMENTS ............................................................................................................. IV 1.0 PROJECT CONTEXT ...................................................................................................... 1.1 1.1 DEVELOPMENT CONTEXT ........................................................................................... 1.1 1.1.1 Objectives .......................................................................................................1.1 1.2 HISTORICAL CONTEXT ................................................................................................
    [Show full text]
  • The Implications of Lake History for Conservation Biology
    THE IMPLICATIONS OF LAKE HISTORY FOR CONSERVATION BIOLOGY Kristine Alexia Ciruna A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Zoology, University of Toronto O Copyright by Kristine Alexia Cinina 1999 National Libraiy Biiiotheque nationale du Canada Acquisitions and Acquisitions et Bibliographie Services sewices bibliographiques 395 Wellmgtori Street 395, nie WeJMngton OüawaON K1A ON4 OitawaON K1AW Canada CaMda The author has gmnted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or selî reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur fomiat électronique. The author retains ownershp of the L'auteur consme la propriété du copyright in this thesis. Neither the &oit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract ABSTRACT Ciruna, Kristine Alexia. 1999. The implications of lake history for conservation biology. Ph.D. dissertation. Department of Zoology, University of Toronto, Toronto, Ontario. The historical formation of aquatic ecosystems and the regional environmental processes acting at the watershed level are important components in the conservation of aquatic ecosystems which are often'neglected. This thesis integrates the fields of cornmunity and landscape ecology.
    [Show full text]
  • A Classification of the Rallidae
    A CLASSIFICATION OF THE RALLIDAE STARRY L. OLSON HE family Rallidae, containing over 150 living or recently extinct species T and having one of the widest distributions of any family of terrestrial vertebrates, has, in proportion to its size and interest, received less study than perhaps any other major group of birds. The only two attempts at a classifi- cation of all of the recent rallid genera are those of Sharpe (1894) and Peters (1934). Although each of these lists has some merit, neither is satisfactory in reflecting relationships between the genera and both often separate closely related groups. In the past, no attempt has been made to identify the more primitive members of the Rallidae or to illuminate evolutionary trends in the family. Lists almost invariably begin with the genus Rdus which is actually one of the most specialized genera of the family and does not represent an ancestral or primitive stock. One of the difficulties of rallid taxonomy arises from the relative homo- geneity of the family, rails for the most part being rather generalized birds with few groups having morphological modifications that clearly define them. As a consequence, particularly well-marked genera have been elevated to subfamily rank on the basis of characters that in more diverse families would not be considered as significant. Another weakness of former classifications of the family arose from what Mayr (194933) referred to as the “instability of the morphology of rails.” This “instability of morphology,” while seeming to belie what I have just said about homogeneity, refers only to the characteristics associated with flightlessness-a condition that appears with great regularity in island rails and which has evolved many times.
    [Show full text]
  • Artificial Water Catchments Influence Wildlife Distribution in the Mojave
    The Journal of Wildlife Management; DOI: 10.1002/jwmg.21654 Research Article Artificial Water Catchments Influence Wildlife Distribution in the Mojave Desert LINDSEY N. RICH,1,2 Department of Environmental Science, Policy, and Management, University of California- Berkeley, 130 Mulford Hall 3114, Berkeley, CA 94720, USA STEVEN R. BEISSINGER, Department of Environmental Science, Policy, and Management, University of California- Berkeley, 130 Mulford Hall 3114, Berkeley, CA 94720, USA JUSTIN S. BRASHARES, Department of Environmental Science, Policy, and Management, University of California- Berkeley, 130 Mulford Hall 3114, Berkeley, CA 94720, USA BRETT J. FURNAS, Wildlife Investigations Laboratory, California Department of Fish and Wildlife, Rancho Cordova, CA 95670, USA ABSTRACT Water often limits the distribution and productivity of wildlife in arid environments. Consequently, resource managers have constructed artificial water catchments (AWCs) in deserts of the southwestern United States, assuming that additional free water benefits wildlife. We tested this assumption by using data from acoustic and camera trap surveys to determine whether AWCs influenced the distributions of terrestrial mammals (>0.5 kg), birds, and bats in the Mojave Desert, California, USA. We sampled 200 sites in 2016–2017 using camera traps and acoustic recording units, 52 of which had AWCs. We identified detections to the species-level, and modeled occupancy for each of the 44 species of wildlife photographed or recorded. Artificial water catchments explained spatial variation in occupancy for 8 terrestrial mammals, 4 bats, and 18 bird species. Occupancy of 18 species was strongly and positively associated with AWCs, whereas 1 species (i.e., horned lark [Eremophila alpestris]) was negatively associated. Access to an AWC had a larger influence on species’ distributions than precipitation and slope and was nearly as influential as temperature.
    [Show full text]