HTR Protection Collection Catalog CF Version
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Light and Color
Chapter 9 LIGHT AND COLOR What Is Color? Color is a human phenomenon. To the physicist, the only difference be- tween light with a wavelength of 400 nanometers and that of 700 nm is Different wavelengths wavelength and amount of energy. However a normal human eye will see cause the eye to see another very significant difference: The shorter wavelength light will different colors. cause the eye to see blue-violet and the longer, deep red. Thus color is the response of the normal eye to certain wavelengths of light. It is nec- essary to include the qualifier “normal” because some eyes have abnor- malities which makes it impossible for them to distinguish between certain colors, red and green, for example. Note that “color” is something that happens in the human seeing ap- Only light itself paratus—when the eye perceives certain wavelengths of light. There is causes sensations of no mention of paint, pigment, ink, colored cloth or anything except light color. itself. Clear understanding of this point is vital to the forthcoming discus- sion. Colorants by themselves cannot produce sensations of color. If the proper light waves are not present, colorants are helpless to produce a sensation of color. Thus color resides in the eye, actually in the retina- optic-nerve-brain combination which teams up to provide our color sen- Color vision is sations. How this system works has been a matter of study for many years complex and not and recent investigations, many of them based on the availability of new completely brain scanning machines, have made important discoveries. -
Bsl-2 Enhanced Work Practices for Specimen Processing and Cell Culture
BSL-2 ENHANCED WORK PRACTICES FOR SPECIMEN PROCESSING AND CELL CULTURE [email protected] 4/1/21 [CA] Sleeve covers should be used for coats with uncuffed sleeves • BSC should be certified annually and have a current certification sticker attached. Ensure that the samples are coded and labeled in a way that identifies their contents to the laboratory. The lab must implement an easy to understand tracking system to discriminate live from inactive material. This could be different colored tubes, colored labels (“cryodots”), colored sharpies etc. Maintain your inventory in a secure manner. 1 • Prepare fresh 10% bleach in water each day. Label with date • Add concentrated bleach to aspiration flasks before use (add 10% of final volume). • Media should turn pink to clear on contact Do not use this waste bag for items that can puncture a red bag (e.g. pipette tips, serological pipettes) •A plastic beaker can also be used instead and can also be used to collect pipette tips and serological pipettes. Rinse these once with bleach in beaker •Dispose by decanting 10% bleach down drain •Pipette tips and serological pipettes are transferred to a sharps container Content generously shared by Yale University EH&S The Association for Biosafety and Biosecurity Considerations for Handling Potential SARS-CoV-2 Samples BSL2 BSL2 with BSL3 practices BSL3 ● Whole blood, serum and urine ● Aliquoting and/or diluting specimens ● Virus isolation/propagation in cell culture and initial ● Synthetic messenger RNA-based or recombinant protein-based products ● Inoculating -
Control Practices for Delivering Direct Student Support Services
MINNESOTA DEPARTMENT OF HEALTH Recommendations for Infection Prevention and Control Practices for Delivering Direct Student Support Services 5 / 2 7 /2021 This guidance provides strongly recommended practices to school staff on the use of protective equipment to reduce the risk of COVID-19 and other communicable disease transmission when delivering direct student support services that require close, prolonged contact. This guidance applies to services delivered in kindergarten through grade 12 special and general education, pre-kindergarten programs, birth to three-part C under IDEA, and school-based child care programs. References: . CDC: Information for School Nurses and Other Healthcare Personnel (HCP) Working in Schools and Child Care Settings (www.cdc.gov/coronavirus/2019-ncov/community/schools-childcare/school- nurses-hcp.html) . CDC: Interim Infection Prevention and Control Recommendations for Healthcare Personnel During the Coronavirus Disease 2019 (COVID-19) Pandemic (www.cdc.gov/coronavirus/2019- ncov/hcp/infection-control-recommendations.html) . CDC: Updated Healthcare Infection Prevention and Control Recommendations in Response to COVID-19 Vaccination (www.cdc.gov/coronavirus/2019-ncov/hcp/infection-control-after- vaccination.html) . CDC: Guidance for Direct Service Providers (www.cdc.gov/coronavirus/2019-ncov/need-extra- precautions/direct-service-providers.html) . AAP: COVID-19 Guidance for Safe Schools (services.aap.org/en/pages/2019-novel-coronavirus- covid-19-infections/clinical-guidance/covid-19-planning-considerations-return-to-in-person- education-in-schools/) 1 of 13 RECOMMENDATIONS FOR INFECTION PREVENTION AND CONTROL PRACTICES FOR DELIVERING DIRECT STUDENT SUPPORT SERVICES Basic principles of infection control Face mask recommendations The following measures are strongly recommended when direct student support services are being provided to a student: . -
3D Printed Face Shield by Peter Smith, Principal Design Engineer, Gilero
3D Printed Face Shield By Peter Smith, Principal Design Engineer, Gilero This face shield design is based on an open source design by HanochH on Thingiverse. Changes were to make the design more robust. This design uses a number of 3D printed parts. The prototype was printed in PETG on a Fusion3. It also uses the following: • One (1) 12” x 7” sheet of PET clear film, 0.010 – 0.020” thick (or a cut up 2L soda bottle) • Two (2) ¼-20 x 5/8” long Hex Head Screws (with 7/16” across the flats of the hex head) • Two (2) ¼-20 Hex Nuts (with 7/16” across the flats) • Two (2) #6 x ½” long button head sheet metal screws • Ten inches of ¼” braided elastic or similar The above are commonly available in any hardware store or from online vendors such as McMaster-Carr: www.mcmaster.com Tools required for assembly: • Phillips screwdriver (#1 or #2) • Box cutter or sharp knife • Pair of household scissors Step 1. Print all parts using the supplied STL files. Note that 2 copies of the thumbnut will be needed. Press the nuts into the thumbnut printed parts. Press the Hex Head Screws into the recesses in the blue part shown and through the holes in the other parts as shown. Screw the assembled thumbnuts onto the Hex Head Screws to hold the assembly together. Step 2. Secure the cap with one of the #6 sheet metal screws. Step 3. Slip the visor into the gap in the orange part shown until it butts up to the cap. -
OHA's Mask, Face Covering, and Face Shield Requirements for Health Care
OFFICE OF THE DIRECTOR Kate Brown, Governor 500 Summer St NE E20 Salem OR 97301 Voice: 503-947-2340 Date: June 30,2021 Fax: 503-947-2341 Mask, Face Covering, and Face Shield Requirements for Health Care Offices While the Governor has rescinded many of the Executive Orders, the declaration of emergency remains in effect and masks are still required in health care settings. See Executive Order 21-15. In addition, health care offices must continue to follow all applicable state and federal regulatory requirements related to masking, including Oregon-OSHA rules addressing COVID-19 workplace risks. Authority: ORS 433.441, ORS 433.443, ORS 431A.010 and ORS 431A.015 Applicability: These requirements apply to: • All health care personnel in health care offices, as defined below. • All patients and visitors in health care offices, as defined below. Definitions: • “Face covering” means a cloth, polypropylene, paper or other face covering that covers the nose and the mouth and that rests snugly above the nose, below the mouth, and on the sides of the face. • “Face mask” means a medical grade mask. • “Face shield” means a clear plastic shield that covers the forehead, extends below the chin, and wraps around the sides of the face. • “Healthcare Personnel (HCP)” means all paid and unpaid persons serving in healthcare offices who have the potential for direct or indirect exposure to patients or infectious materials, including body substances (e.g., blood, tissue, and specific body fluids); contaminated medical supplies, devices, and equipment; contaminated -
Goethe's Theory of Colors Between the Ancient Philosophy, Middle Ages
CULTURE, MEDIA & FILM | RESEARCH ARTICLE Goethe’s theory of colors between the ancient philosophy, middle ages occultism and modern science Victor Barsan and Andrei Merticariu Cogent Arts & Humanities (2016), 3: 1145569 Page 1 of 29 Barsan & Merticariu, Cogent Arts & Humanities (2016), 3: 1145569 http://dx.doi.org/10.1080/23311983.2016.1145569 CULTURE, MEDIA & FILM | RESEARCH ARTICLE Goethe’s theory of colors between the ancient philosophy, middle ages occultism and modern science 1 2 Received: 18 February 2015 Victor Barsan * and Andrei Merticariu Accepted: 20 January 2016 Published: 18 February 2016 Abstract: Goethe’s rejection of Newton’s theory of colors is an interesting example *Corresponding author: Victor Barsan, of the vulnerability of the human mind—however brilliant it might be—to fanati- Department of Theoretical Physics, cism. After an analysis of Goethe’s persistent fascination with magic and occultism, Horia Hulubei Institute of Physics and Nuclear Engineering, Aleea Reactorului of his education, existential experiences, influences, and idiosyncrasies, the authors nr. 30, Magurele, Bucharest, Romania E-mail: [email protected] propose an original interpretation of his anti-Newtonian position. The relevance of Goethe’s Farbenlehre to physics and physiology, from the perspective of modern sci- Reviewing editor: Peter Stanley Fosl, Transylvania ence, is discussed in detail. University, USA Subjects: Aristotle; Biophysics; Experimental Physics; Fine Art; Medical Physics; Ophthal- Additional information is available at the end of the article mology; Philosophy of Art; Philosophy of Science; Presocratics Keywords: ancient philosophy; Greek–Roman classicism; middle ages science; Newtonian science; occultism; pantheism; optics; theory of colors; primordial phenomenon (urphaeno men) 1. Introduction Light is one of the most interesting components of the physical universe. -
Fuzzy Set Theoretical Approach to the Tone Triangular System
JOURNAL OF COMPUTERS, VOL. 6, NO. 11, NOVEMBER 2011 2345 Fuzzy Set Theoretical Approach to the Tone Triangular System Naotoshi Sugano Tamagawa University, Tokyo, Japan [email protected] Abstract—The present study considers a fuzzy color system gravity of the attribute information of vague colors. This in which three input fuzzy sets are constructed on the tone fuzzy set theoretical approach is useful for vague color triangle. This system can process a fuzzy input to a tone information processing, color identification, and similar triangular system and output to a color on the RGB applications. triangular system. Three input fuzzy sets (not black, white, and light) are applied to the tone triangle relationship. By treating three attributes of chromaticness, whiteness, and II. METHODS blackness on the tone triangle, a target color can be easily A. Color Triangle and Additive Color Mixture obtained as the center of gravity of the output fuzzy set. In Additive color mixing occurs when two or three beams the present paper, the differences between fuzzy inputs and inference outputs are described, and the relationship of differently colored light combine. It has been found between inference outputs for crisp inputs and for fuzzy that mixing just three additive primary colors, red, green, inputs on the RGB triangular system are shown by the and blue, can produce the majority of colors. In general, a input-output characteristics between chromaticness, color vector can be described by certain quantities as a whiteness, and blackness as the inputs and redness (as one scalar and a direction. These quantities are referred to as of the outputs). -
A Correlated Color Temperature for Illuminants
. (R P 365) A CORRELATED COLOR TEMPERATURE FOR ILLUMINANTS By Raymond Davis ABSTRACT As has long been known, most of the artificial and natural illuminants do not match exactly any one of the Planckian colors. Therefore, strictly speaking, they can not be assigned a color temperature. A color of this type may, however, be correlated with a representative Planckian color. The method of determining correlated color temperature described in this paper consists in comparing the relative luminosities of each of the three primary red, green, and blue components of the source with similar values for the Planckian series. With such a comparison three component temperatures are obtained; that is, the red component of the source corresponds with that of the Planckian radiator at one temperature, its green component with that of the Planckian radiator at a second temperature, and its blue component with that of the Planckian radiator at a third temperature. The average of these three component temperatures is designated as the correlated color temperature of the source. The mean devia- tion of the component temperatures from the average temperature is used as a basis for specifying the color (chromaticity) departure of the source from that of the Planckian radiator at the correlated color temperature. The conjunctive wave length indicates the kind of color departure. CONTENTS Page I. Introduction 659 II. The proposed method 662 III. Procedure 665 1. The Planckian radiator evaluated in terms of relative lumi- nosity of the primary components 665 2. Computation of the correlated color temperature 670 3. Calculation of color departure in terms of sensation steps 672 4. -
The Challenge of Performing Mastoidectomy Using The
The challenge of performing mastoidectomy using the operating microscope with COVID-19 personal protective equipment (PPE) Philip Clamp1 and Stephen Broomfield1 1University Hospitals Bristol and Weston NHS Foundation Trust May 19, 2020 Abstract Objective: As an aerosol generating procedure (AGP), mastoidectomy in the COVID-19 era requires healthcare workers to wear personal protective equipment (PPE); UK guidelines recommend an FFP-3 mask and full-face visor. The aim of this study was to examine the effect of wearing PPE on the view achieved using the operating microscope. Methods: Using the operating microscope, ENT surgeons were asked to view a target so that it filled the entire operating field. The distance between the surgeon's eye and the microscope was recorded and subsequently measured with the surgeon wearing a range of PPE. In each PPE condition, surgeons scored the visibility of the target; scores were used to calculate the visible area of the surgical field. Results: Eleven surgeons took part, generating 51 eye-microscope and target-view scores. Distance from the eye to the microscope inversely correlated with diameter and area visible (Pearson correlation coefficient -0.983 and -0.894 respectively; p<0.001). Use of PPE increased the eye-microscope distance and reduced the surgical view. The median area visible wearing the FFP-3 mask and full-face visor was 4% (range 4 { 16%). Conclusion: PPE consisting of an FFP-3 mask and full-face visor is incompatible with use of the operating microscope, with less than 10% of the surgical field visible in most cases. Solutions that allow for concurrent use of the operating microscope and drill during mastoid surgery are urgently required so that surgeons are adequately protected from COVID-19 transmission. -
Raphics & Visualization
Graphics & Visualization Chapter 11 COLOR IN GRAPHICS & VISUALIZATION Graphics & Visualization: Principles & Algorithms Chapter 11 Introduction • The study of color, and the way humans perceive it, a branch of: Physics Physiology Psychology Computer Graphics Visualization • The result of graphics or visualization algorithms is a color or grayscale image to be viewed on an output device (monitor, printer) Graphics programmer should be aware of the fundamental principles behind color and its digital representation Graphics & Visualization: Principles & Algorithms Chapter 11 2 Grayscale • Intensity: achromatic light; color characteristics removed • Intensity can be represented by a real number between 0 (black) and 1 (white) Values between these two extremes are called grayscales • Assume use of d bits to represent the intensity of each pixel n=2d different intensity values per pixel • Question: which intensity values shall we represent ? • Answer: Linear scale of intensities between the minimum & maximum value, is not a good idea: Human eye perceives intensity ratios rather than absolute intensity values. Light bulb example: 20-40-60W Therefore, we opt for a logarithmic distribution of intensity values Graphics & Visualization: Principles & Algorithms Chapter 11 3 Grayscale (2) • Let Φ0 be the minimum intensity value For typical monitors: Φ0 = (1/300) * maximum value 1 (white) Such monitors have a dynamic range of 300:1 • Let λ be the ratio between successive intensity values • Then we take: Φ1 = λ* Φ0 2 Φ1 = λ* Φ1=λ *Φ0 … -
Guidance for Use of PPE for Aerosol Generating Procedures (PDF)
Guidance for Use of Personal Protective Equipment PPE for Aerosol Generating Procedures The following table provides guidance for determining the appropriate PPE and room criteria required for Aerosol Transmissible Diseases 1 (ATDs) when performing Aerosol Generating Procedures (AGP). A PAPR is required for AGP for patients requiring airborne precautions. Droplet transmitted infections2 that Has signs/symptoms consistent with Airborne transmitted are part of the ATD Standard All Others5 COVID-19 and undergoing evaluation, Asymptomatic with COVID-19 status infections2 (e.g. influenza, adenovirus) (Including patients with negative COVID COVID-19 exposed, or confirmed unknown and/or test pending (e.g. TB, measles, varicella) excludes RSV, rhinovirus, parainfluenza, tests) (Novel respiratory isolation)3 human metapneumovirus Room 3 Room PPE PPE Room criteria PPE Room criteria PPE Room criteria PPE criteria criteria N95 with eye PAPR and 6 protection (or PAPR) refer to Airborne Aerosol N95 with face N95 with face N95 with eye recommended plus isolation Isolation room Generating shield (or PAPR), shield (or PAPR), protection (or PAPR), Standard Precautions table for continuous 4 4 Procedure gown, gloves gown, gloves gown, gloves AND Airborne AGP preferred Private Private patient Private patient refer to isolation table Isolation patient room room preferred room preferred as applicable room not Use Standard 7 Not PAPR or N95 Surgical mask necessary N95 with face Private patient Surgical mask Precautions aerosol and refer to with eye Type of -
Computer Vision? Color Histograms
Lecture 11 Color © UW CSE vision faculty Starting Point: What is light? Electromagnetic radiation (EMR) moving along rays in space •R(λ) is EMR, measured in units of power (watts) – λ is wavelength Perceiving light • How do we convert radiation into “color”? • What part of the spectrum do we see? Newton’s prism experiment Newton’s own drawing of his experiment showing decomposition of white light The light spectrum We “see” electromagnetic radiation in a range of wavelengths Light spectrum The appearance of light depends on its power spectrum • How much power (or energy) at each wavelength daylight tungsten bulb Our visual system converts a light spectrum into “color” • This is a rather complex transformation Recall: Image Formation Basics i(x,y) f(x,y) r(x,y) (from Gonzalez & Woods, 2008) Image Formation: Basics Image f(x,y) is characterized by 2 components 1. Illumination i(x,y) = Amount of source illumination incident on scene 2. Reflectance r(x,y) = Amount of illumination reflected by objects in the scene f(,)(,)(,) x y i= x y r x y where 0 (< ,i ) x < y ∞andr 0 < x y ( , < ) 1 r(x,y) depends on object properties r = 0 means total absorption and 1 means total reflectance The Human Eye and Retina Color perception • Light hits the retina, which contains photosensitive cells – rods and cones • Rods responsible for intensity, cones responsible for color Density of rods and cones Rods and cones are non-uniformly distributed on the retina • Fovea - Small central region (1 or 2°) containing the highest density of cones (and no rods) • Less visual acuity in the periphery—many rods wired to the same neuron Demonstration of Blind Spot With left eye shut, look at the cross on the left.