Robust Increase in Supply by Vessel Dilation in Globally Coupled Microvasculature

Total Page:16

File Type:pdf, Size:1020Kb

Robust Increase in Supply by Vessel Dilation in Globally Coupled Microvasculature Robust increase in supply by vessel dilation in globally coupled microvasculature Felix J. Meigel,1 Peter Cha,2 Michael P. Brenner,2 and Karen Alim1, 3 1Max Planck Institute for Dynamics and Self-Organization, 37077 G¨ottingen,Germany 2John A. Paulson School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA 3 Physik-Department, Technische Universit¨atM¨unchen,85748 Garching, Germany∗ Neuronal activity induces changes in blood flow by locally dilating vessels in the brain microvas- culature. How can the local dilation of a single vessel increase flow-based metabolite supply, given that flows are globally coupled within microvasculature? Solving the supply dynamics for rat brain microvasculature, we find one parameter regime to dominate physiologically. This regime allows for robust increase in supply independent of the position in the network, which we explain analytically. We show that local coupling of vessels promotes spatially correlated increased supply by dilation. Vascular networks pervade all organs of animals tures [21, 22], including solute absorption [23]. The im- and are the paradigm of adaptive transport networks. pact of a dilating vessel is hard to estimate since not only Their self-organized architecture continuously inspires the absorption dynamics on the level of single vessels is the search for their underlying physical principles [1{4] changed, but also solute flux throughout the network is and at the same time serves as a template for design- rerouted since fluid flow and thus solute flux are glob- ing efficient networks in engineering [5]. The blood flow- ally coupled. However, to connect fMRI, which relies ing through vessels transports nutrients, hormones, and on a fluid dynamic signal [9, 24, 25], and the change in metabolites to adjacent tissues. Metabolite exchange pri- blood flow with neuronal activity [7, 11, 26{28], we need marily occurs within the fine vessel meshwork formed by to understand how vessel dilations affect the supply with microvasculature. In the brain, local metabolite demand metabolites. can abruptly rise due to an increase in neural activity [6], In this letter, we present a theoretical model to deter- altering blood flow [7, 8] in the same brain region, observ- mine the change in supply resulting from the dilation of a able in fMRI [9]. During the process of increased neu- single vessel. On the level of an individual vessel, we an- ronal activity, neurons signal their increased demand to alytically identify three regimes, each yielding a different adjacent astrocyte cells, which in turn trigger small ring functional dependence of the overall supply by absorp- muscles surrounding blood vessels to relax [10]. Thus, tion along the vessel wall on vessel geometry, blood flow, neural activity drives local dilation of a vessel [11, 12], and blood flow based solute flux. Numerically analyz- and hence regulates metabolite supply [7, 13]. However, ing supply dynamics in a microvasculature excerpt of a from a fluid dynamics perspective there is a mystery: rat brain supplied from the Kleinfeld laboratory [8], we blood vessels form a highly interconnected network in find that a single regime dominates. This regime has the the microvasculature [8], resulting in a global coupling of important property that dilating a single vessel robustly blood flow. A single dilating vessel can potentially change increases the supply along the dilated vessel independent the metabolite supply in a broad region of the network - of the exact location of the vessel in the network. We ex- and thus the local increase due to dilation is a function plain analytically how a single vessel can buffer the global of specific network topology. Quantitatively, how much coupling of solute fluxes within the network and yield a control over changes in blood-based supply resides in a robust local increase independent of network topology. single dilating vessel? We further discuss how a single dilating vessel impacts Models considering metabolite spread in tissue date the solute flux downstream and thereby induces spatial back more than a hundred years to A. Krogh [14]. correlations in supply increase. Krogh's model estimates the supply pattern in a tissue To understand how a change in flow induces changes in enclosed by vessels assuming that supply is constant on solute flux and supply dynamics, we first focus on a single arXiv:1911.13197v1 [physics.bio-ph] 29 Nov 2019 all vessel walls. Yet, on a larger tissue scale, supply spa- vessel. We assume that the flow is laminar with longi- tially varies along the vasculature since resources sup- tudinal velocity profile U(r) = 2U¯(1 (r=R)2) [29, 30], − plied upstream are not available downstream. Alterna- where U¯ denotes the cross-sectional averaged longitudi- tive models consider vessel-based transport [15], yet only nal flow velocity. The dispersion of soluble molecules of diffusive transport is taken into account. The combined concentration C by the fluid flow within a tubular vessel importance of advection and diffusion for transporting of radius R and length L is then given by solutes in a single tube was discovered by G.I. Taylor @C @C [16, 17], with subsequent work outlining modifications + U(r) = κ 2C; (1) due to solute absorption at the tube boundary [18{20]. @t @z r Yet, there has been much less work capturing the cou- where κ denotes the molecular diffusivity of the solute, pling of advection and diffusion in tubular network struc- and r and z parameterize the radial and longitudinal 2 where Pe = UL/κ¯ is the P´ecletnumber, α = γL, and 103 0 S = κγL=RU¯ measures the ratio of absorption rate to ad- vection rate. Note, that the concentration decays along 2 -0.5 10 the vessel starting from an initial concentration C0 that Vessels itself is determined by the solute flux entering a vessel 1 -1 10 50 % all J0. Also for the solute influx into a vessel advective and ) 90 % 0 diffusive transport contribute, /J 0 -1.5 ( 10 99 % 10 2 κβ 2 β log J = πR C U¯ + = πR C U¯ 1 + : (5) 0 0 L 0 Pe -1 advective 10 -2 We define as supply of a vessel φ the integrated diffusive -2 diffusive 10 -2.5 flux through the entire vessel surface of the cylindrical Pe (advection rate / diffusion rate) vessel, S R >1 10-3 -3 @C 10-2 100 102 φ = κ 2πRdz: (6) S (absorption rate / advection rate) − @r r=R ZS FIG. 1. Supply φ by a single vessel can be partitioned into resulting in, three distinctive regimes as a function of dimensionless pa- 2 ¯ α S UL 1 12SPe + 2 β rameters characterizing flow and absorption, Pe = κ and φ =J0 2 (1 exp ( β)) : (7) S = κγL . Dotted lines indicate separation of regimes. Re- β · α · − − RU¯ 1 + Pe 1 + 4SPe ! maining non-dimensional parameter fixed at α = 0:001. Error ellipsoids contain the annotated percentage of vessels of the For physical intuition on how flow and vessel proper- here considered rat brain microvasculature [8] with physiolog- ties affect supply, we partition the phase space of sup- ical parameters for γ and κ, see main text. ply dynamics spanned by Pe and S into three regimes, keeping α fixed, see Fig. 1. At large values of S 1 and S 1=Pe the solute decays very quickly along the component of the vessel. The soluble molecule is ab- vessel. Here, all solute that flows into the vessel of cross- sorbed at the vessel boundary, following sectional area πR2 is absorbed at the wall, here denoted all-absorbing regime @C κ + κγC(R) = 0; (2) @r β r=R φ J = πR2C U¯ 1 + : (8) all 0 0 ≈ Pe with absorption parameter γ. In analogy to the deriva- tion of Taylor Dispersion [16, 17, 23], we simplify the For a network this implies that after a vessel in this multidimensional diffusion-advection for C = C¯+C~ to an regime, no solute for further absorption downstream of equation for the cross-sectionally averaged concentration this vessel is available, which indeed is physiologically C¯ if the cross-sectional variations of the concentration C~ rare, 1:0% in the rat brain microvasculature considered are much smaller than the averaged concentration itself. here. A second regime occurs at Pe 1=S, Pe S This is true if the time scale to diffuse radially within the where diffusive transport dominates, here denoted diffu- vessel is much shorter than the time scale of advection sive regime. We distinguish a third regime, which we along the vessel, R2/κ L=U¯, if the vessel itself can be denote advective regime where advective transport dom- characterized as a long, slender vessel, R L, and if the inates, defined by S 1 and S Pe. In both cases absorption parameter is small enough to keep a shallow the solute decay is very shallow, β 1 in Eqs. (3), (6), gradient in concentration across the vessel's cross-section resulting in supply independent of flow velocity, except γR 1, which states that the length scale of absorption for the dependence on the initial concentration C0 is much bigger than the vessel radius. All these approx- φ φ 2πRL κγ C : (9) imations are valid for the rat brain microvasculature ex- advective ≈ diffusive ≈ · · 0 ample considered here [8]. With these assumptions, the Yet, note that the reason for the solute decay, i.e. β being concentration profile along the vessel approaches a steady small, arises from entirely different transport dynamics, state over a timescale L=U¯ given by (see the Supplemen- see Fig. 1. This is reflected in the very different relation tal Material S1 for derivation) between initial solute concentration at the start of the vessel C and the solute influx J for the two regimes z 0 0 C¯(z) = C exp β(Pe; S; α) ; (3) (see the Supplemental Material S1 for derivation) 0 − L 2 ¯ 24 Pe 8S α2 J0;advective C0 πR U; (10) ≈ · · β(Pe; S; α) = · α2 1 + + 1 ; (4) 3 Pe 6PeS − 2 48 + S2 r ! J0;diffusive C0 πR κ 2γ: (11) ≈ · · p 3 Hence, under constant solute influx J0 the diffusive and the advective regime show a fundamentally different, yet both non-linear dependence on the vessel radius, 2γκL φ J ; (12) advective ≈ 0 RU¯ p2γL φdiffusive J0 : (13) ≈ pR Based on these results for a single vessel we expect largely varying increase in supply in response to vessel dilation.
Recommended publications
  • Continuous Arterial Spin Labeling of Mouse Cerebral Blood Flow Using an Actively-Detuned Two-Coil System at 9.4T
    Article Continuous arterial spin labeling of mouse cerebral blood flow using an actively-detuned two-coil system at 9.4T. LEI, Hongxia, et al. Abstract Among numerous magnetic resonance imaging (MRI) techniques, perfusion MRI provides insight into the passage of blood through the brain's vascular network non-invasively. Studying disease models and transgenic mice would intrinsically help understanding the underlying brain functions, cerebrovascular disease and brain disorders. This study evaluates the feasibility of performing continuous arterial spin labeling (CASL) on all cranial arteries for mapping murine cerebral blood flow at 9.4 T. We showed that with an active-detuned two-coil system, a labeling efficiency of 0.82 ± 0.03 was achieved with minimal magnetization transfer residuals in brain. The resulting cerebral blood flow of healthy mouse was 99 ± 26 mL/100g/min, in excellent agreement with other techniques. In conclusion, high magnetic fields deliver high sensitivity and allowing not only CASL but also other MR techniques, i.e. (1)H MRS and diffusion MRI etc, in studying murine brains. Reference LEI, Hongxia, et al. Continuous arterial spin labeling of mouse cerebral blood flow using an actively-detuned two-coil system at 9.4T. Conference proceedings : IEEE Engineering in Medicine and Biology Society, 2011, vol. 2011, p. 6993-6 DOI : 10.1109/IEMBS.2011.6091768 PMID : 22255948 Available at: http://archive-ouverte.unige.ch/unige:32993 Disclaimer: layout of this document may differ from the published version. 1 / 1 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts USA, August 30 - September 3, 2011 Continuous Arterial Spin Labeling of Mouse Cerebral Blood Flow Using an Actively-Detuned Two-Coil System at 9.4T Hongxia Lei, Yves Pilloud, Arthur W.
    [Show full text]
  • Brain Glucose Concentrations in Poorly Controlled Diabetes Mellitus As Measured by High-Field Magnetic Resonance Spectroscopy Elizabeth R
    Metabolism Clinical and Experimental 54 (2005) 1008–1013 www.elsevier.com/locate/metabol Brain glucose concentrations in poorly controlled diabetes mellitus as measured by high-field magnetic resonance spectroscopy Elizabeth R. Seaquista,T, Ivan Tkacb, Greg Damberga,1, William Thomasc, Rolf Gruetterb,d aDepartment of Medicine, University of Minnesota Medical School, MN, 55455 USA bDepartment of Radiology, University of Minnesota Medical School, MN, 55455 USA cDivision of Biostatistics, School of Public Health, University of Minnesota, MN, 55455 USA dDepartment of Neuroscience, University of Minnesota Medical School, MN, 55455 USA Received 23 September 2004; accepted 4 February 2005 Abstract Hyperglycemia and diabetes alter the function and metabolism of many tissues. The effect on the brain remains poorly defined, but some animal data suggest that chronic hyperglycemia reduces rates of brain glucose transport and/or metabolism. To address this question in human beings, we measured glucose in the occipital cortex of patients with poorly controlled diabetes and healthy volunteers at the same levels of plasma glucose using proton magnetic resonance spectroscopy. Fourteen patients with poorly controlled diabetes (hemoglobin A1c = 9.8% F 1.7%, mean F SD) and 14 healthy volunteers similar with respect to age, sex, and body mass index were studied at a plasma glucose of 300 mg/dL. Brain glucose concentrations of patients with poorly controlled diabetes were lower but not statistically different from those of control subjects (4.7 F 0.9 vs 5.3 F 1.1 lmol/g wet wt; P = .1). Our sample size gave 80% power to detect a difference as small as 1.1 lmol/g wet wt.
    [Show full text]
  • EARLY HISTORY of MAGNETIC RESONANCE Norman F. Ramsey
    EARLY HISTORY OF MAGNETIC RESONANCE Norman F. Ramsey Lyman Laboratory of Physics Harvard University Cambridge, Massachusetts 02138 INTRODUCTION change in the quantum mechanical space quanti- zation when the direction of a magnetic field is In the title of this report, emphasis should be changed. The problem was first posed and par- given to the word early. Some readers may even tially solved in 1927 by C. G. Darwin(2) and his believe that "Pre-History" would be a better title analysis was subsequently improved by P. than early history. The report will cover the Gutinger(3), E. Majorana(4), and L. Mote and period from 1921 to the first nuclear resonance M. Rose(4). absorption experiments of Purcell, Torrey and In the period 1931-33 several experiments in Pound and the first nuclear induction experi- Otto Stern's laboratory in Hamburg successfully ments of Bloch, Hansen and Packard even measured the changes in the space quantization though from some points of view the history of when the direction of the magnetic field was magnetic resonance can be said to begin with the changed. The experiments of Phipps and experiments that end this report. Stern(5) and Frisch and Segre(6) partly agreed My interest in the history of magnetic reso- with the best theory and partially disagreed. I. nance began with preparations for my Ph.D. I. Rabi(7) pointed out that the discrepancy final examination in 1939. Since mine was the between theory and experiment was due to the first Ph.D. thesis based on nuclear magnetic, neglect of nuclear spins in previous theories.
    [Show full text]
  • Functional Magnetic Resonance Spectroscopic Imaging of the Mouse Brain: Overcoming Current Sensitivity Limitations
    Research Collection Doctoral Thesis Functional magnetic resonance spectroscopic imaging of the mouse brain: overcoming current sensitivity limitations Author(s): Seuwen, Aline Publication Date: 2015 Permanent Link: https://doi.org/10.3929/ethz-a-010579480 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 23040 Functional magnetic resonance spectroscopic imaging of the mouse brain: overcoming current sensitivity limitations. A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by ALINE SEUWEN Master of Science in physics (M Sc), University of Basel born on 22.04.1985 citizen of France accepted on the recommendation of Prof. Dr. Markus Rudin, examiner Prof. Dr. Rolf Gruetter, co-examiner Dr. Anke Henning, co-examiner 2015 1 Contents: List of abbreviations-----------------------------------------------------------------------------------------------4 Summary-------------------------------------------------------------------------------------------------------------6 Zusammenfassung--------------------------------------------------------------------------------------------------8 1 Introduction ---------------------------------------------------------------------------------------------------------- 12 Noninvasive imaging in mice: high demands on spatial resolution and sensitivity --------------------- 13
    [Show full text]
  • Application to Schizophrenia
    MAGMA (2005) 18: 276–282 DOI 10.1007/s10334-005-0012-0 RESEARCH ARTICLE Melissa Terpstra Validation of glutathione quantitation from T. J. Vaughan 1 Kamil Ugurbil STEAM spectra against edited H NMR Kelvin O. Lim S. Charles Schulz spectroscopy at 4T: application to Rolf Gruetter schizophrenia Abstract Objective: Quantitation of quantified in nine controls and 13 Received: 24 June 2005 Accepted: 7 October 2005 glutathione (GSH) in the human medicated schizophrenic patients. Published online: 18 November 2005 brain in vivo using short echo time Results: GSH concentrations as © ESMRMB 2005 1H NMR spectroscopy is quantified using STEAM, 1.6 ± challenging because GSH resonances 0.4 µmol/g (mean ± SD, n = 10), are not easily resolved. The main were within error of those quantified objective of this study was to validate using edited spectra, 1.4 ± such quantitation in a clinically 0.4 µmol/g, and were not different relevant population using the (p = 0.4). None of the neurochemical resolved GSH resonances provided measurements reached sufficient by edited spectroscopy. A secondary statistical power to detect differences M. Terpstra (B) · T.J. Vaughan objective was to compare several of smaller than 10% in schizophrenia K. Ugurbil · R. Gruetter the neurochemical concentrations versus control. As such, no Center for Magnetic Resonance Research, quantified along with GSH using differences were observed. Department of Radiology, Conclusions University of MN, Minneapolis, LCModel analysis of short echo time : Human brain GSH MN 55455, USA spectra in schizophrenia versus concentrations can be quantified in a e-mail: [email protected] control. Materials and Methods: clinical setting using short-echo time Tel.: +1-612-6257897 GSH was quantified at 4T from STEAM spectra at 4T.
    [Show full text]
  • Benedikt Poser
    Curriculum Vitae – Benedikt Poser General Name: Benedikt Andreas Poser (BSc, MPhys, PhD) Date of Birth: 4 October 1978 Place of Birth: Wolfenbüttel, Germany Nationality: German married, three children Scientific Positions 05/2013 – pres. Assistant Professor at Maastricht Brain Imaging Center 05/2013 – 09/2015 secondment to Scannexus BV (0.3fte) 10/2011 – 10/2013 affiliated Research Fellow of the Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen 11/2010 – 04/2013 Postdoctoral Fellow, University of Hawaii JABSOM Focus: parallel RF transmission techniques for fMRI 06/2009 – 08/2010 PostDoc at Donders Institute, Centre for Cognitive Neuroimaging at Radboud University Nijmegen. Focus: fMRI methods development, Siemens IDEA / ICE pulse sequence design 08/2006 – 08/2010 PostDoc at Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany. Focus: fMRI techniques at 7T 09/2003 – 06/2009 PhD student at the F.C. Donders Centre for Cognitive Neuroimaging, Nijmegen, NL. Supervisor: David Norris, Focus: fMRI techniques with multiply-refocused spin echoes. Higher Education 06/2009 PhD in MR-physics at the Radboud University Nijmegen: “Techniques for BOLD and blood volume weighted fMRI” 09/1998 – 06/2003 Physics with Business and Management, University of Manchester, UK (MPhys, First Class Honours degree) School Education 01/1996 – 12/1997 Waterford Kamhlaba United World College of Southern Africa, Mbabane, Swaziland; International Baccalaureate (42 points) 08/1995 – 12/1995 Alströmer Gymnasiet Alingsås, Sweden
    [Show full text]
  • Using Magnetic Resonance Spectroscopy to Study Neural Activity: the Role of Inhibitory and Excitatory Neurotransmitters for Systems-Level Brain Dynamics
    ` Fakultät für Medizin Abteilung für diagnostische und interventionelle Neuroradiologie Using magnetic resonance spectroscopy to study neural activity: The role of inhibitory and excitatory neurotransmitters for systems-level brain dynamics Katarzyna Kurcyus Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doctor of Philosophy (Ph.D.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Arthur Konnerth ​ Betreuer: Priv.-Doz. Dr. Valentin Riedl ​ Prüfer der Dissertation: 1. apl. Prof. Dr. Helmut Adelsberger 2. Prof. Dr. Markus Ploner Die Dissertation wurde am 30.06.2017 bei der Fakultät für Medizin der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 14.07.2017 angenommen. Summary Magnetic resonance spectroscopy (MRS) is an emerging technique to study metabolites in the human brain. A novel, edited MRS method allows to quan- tify the concentration of most abundant inhibitory and excitatory neurotransmit- ters: γ-aminobutyric acid (GABA) and glutamate (Glu). This approach revealed altered levels of neurotransmitters in pathological brain states (such as depression and schizophrenia) but the relationship of neurotransmitter levels to neuronal ac- tivity and behaviour is still unclear. Crucially, studies have focused so far on the influence of baseline neurotransmit- ter levels on fMRI (functional magnetic resonance imaging) activity or behavioural performance, but did not investigate these relationships during identical conditions. Moreover, studies have never analysed both neurotransmitters, GABA and Glu, during identical states. In this thesis, I focus on the visual system in the healthy brain and study the re- lationship of both GABA and Glu with fMRI activity and visual performance during different behavioural states.
    [Show full text]
  • Glutathione Deficit Affects the Integrity and Function of the Fimbria/Fornix and Anterior Commissure in Mice
    International Journal of Neuropsychopharmacology Advance Access published October 17, 2015 International Journal of Neuropsychopharmacology, 2015, 1–11 doi:10.1093/ijnp/pyv110 Advance Access publication October 3, 2015 Research Article research article Glutathione Deficit Affects the Integrity and Function of the Fimbria/Fornix and Anterior Commissure in Mice: Relevance for Schizophrenia Downloaded from Alberto Corcoba, MS; Pascal Steullet, PhD; João M. N. Duarte, PhD; Yohan Van de Looij, PhD; Aline Monin, PhD; Michel Cuenod, PhD; Rolf Gruetter, PhD; Kim Q. Do,PhD http://ijnp.oxfordjournals.org/ Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter). Correspondence: Kim Q. Do, Center for Psychiatric Neuroscience, Site de Cery, 1008 Prilly, Switzerland ([email protected]). by guest on November 29, 2015 Abstract Background: Structural anomalies of white matter are found in various brain regions of patients with schizophrenia and bipolar and other psychiatric disorders, but the causes at the cellular and molecular levels remain unclear. Oxidative stress and redox dysregulation have been proposed to play a role in the pathophysiology of several psychiatric conditions, but their anatomical and functional consequences are poorly understood. The aim of this study was to investigate white matter throughout the brain in a preclinical model of redox dysregulation.
    [Show full text]
  • Brain Glucose Concentrations in Patients with Type 1 Diabetes and Hypoglycemia Unawareness
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Infoscience - École polytechnique fédérale de Lausanne Journal of Neuroscience Research 79:42–47 (2005) Brain Glucose Concentrations in Patients with Type 1 Diabetes and Hypoglycemia Unawareness Amy B. Criego,1* Ivan Tkac,3 Anjali Kumar,2 William Thomas,5 Rolf Gruetter,3,4 and Elizabeth R. Seaquist2 1Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota 2Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 3Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota 4Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota 5Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, Minnesota Although it is well established that recurrent hypoglyce- Recurrent hypoglycemia frequently leads to the mia leads to hypoglycemia unawareness, the mecha- condition of hypoglycemia unawareness in which a patient nisms responsible for this are unknown. One hypothesis is no longer able to perceive symptoms of hypoglycemia is that recurrent hypoglycemia alters brain glucose trans- and consequently is unable to take action to prevent the port or metabolism. We measured steady-state brain development of severe hypoglycemia. In these cases, the glucose concentrations during a glucose clamp to deter- autonomic symptoms of hypoglycemia (tachycardia, ner- mine whether subjects with type 1 diabetes and hypo- vousness, and tremor) are not recognized or do not occur glycemia unawareness may have altered cerebral glu- before development of neuroglycopenia. Intensively cose transport or metabolism after exposure to recurrent treated patients with type 1 diabetes require a lower glu- hypoglycemia.
    [Show full text]
  • Elemental and Neurochemical Based Analysis of the Pathophysiological Mechanisms of Gilles De La Tourette Syndrome
    MEDIZINISCHE HOCHSCHULE HANNOVER Klinik für Psychiatrie, Sozialpsychiatrie und Psychotherapie Elemental and Neurochemical Based Analysis of the Pathophysiological Mechanisms of Gilles de la Tourette syndrome INAUGURALDISSERTATION zur Erlangung des Grades einer Doktorin oder eines Doktors der Naturwissenschaften Doctor rerum naturalium - Dr. rer. nat. vorgelegt von Ahmad Seif Kanaan B.Sc., M.Sc geb. am 17/05/1986, Amman, Jordanien Hannover, Deutschland (2017) Promotionsordnung der Medizinischen Hochschule Hannover für die Erlangung des Grades einer Doktorin/eines Doktors der Naturwissenschaften (Doctor rerum naturalium) Letzte Änderung in der 523. Sitzung Senatssitzung vom 15.07.2015 Wissenschaftliche Betreuung: Prof. Dr. med. Kirsten Müller-Vahl Wissenschaftliche Zweitbetreuung: Prof. Dr. rer. nat. Claudia Grothe 1. Erst-Gutachterin/Gutachter: Prof. Dr. med. Kirsten Müller-Vahl 2. Gutachterliche Stellungnahme durch: Prof. Dr. rer. nat. Claudia Grothe 3. Gutachterin/Gutachter: Prof Dr. Phil. Florian Beißner Tag der mündlichen Prüfung: 12.07.2017 Promotionsordnung der Medizinischen Hochschule Hannover für die Erlangung des Grades einer Doktorin/eines Doktors der Naturwissenschaften (Doctor rerum naturalium) Letzte Änderung in der 523. Sitzung Senatssitzung vom 15.07.2015 To Seif, Shireen, Farah & Mira . “How can a three-pound mass of jelly that you can hold in your palm imagine angels, contemplate the meaning of infinity, and even question its own place in the cosmos? Especially awe inspiring is the fact that any single brain, including yours, is made up of atoms that were forged in the hearts of countless, far-flung stars billions of years ago. These particles drifted for eons and light-years until gravity and change brought them together here, now. These atoms now form a conglomerate- your brain- that can not only ponder the very stars that gave it birth but can also think about its own ability to think and wonder about its own ability to wonder.
    [Show full text]
  • A Classic Thesis Style
    TECHNIQUES FOR THE PROCESSING AND ANALYSIS OF MAGNETIC RESONANCE IMAGING PHASE DATA amanda ching lih ng Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy 2013 Department of Electrical and Electronic Engineering Faculty of Engineering The University of Melbourne Printed on archival quality paper ABSTRACT From its beginnings in the 1970s, the medical imaging field of magnetic resonance (MR) imaging has focussed primarily on the magnitude of the acquired complex data. With ever increasing magnet field strengths, interest in the phase, or argu- ment, of complex T2⇤-weighted gradient echo MR data has grown. Compared to magnitude images, phase images provide novel contrast and increased sensitivity to tissue properties such as magnetic susceptibility. Several post-acquisition processing methods exploit this sensitivity to suscept- ibility, notably Susceptibility-Weighted Imaging (SWI) and Quantitative Suscept- ibility Mapping (QSM). These methods provide greater contrast valuable in the visualisation of biological structures, such as venous vessels, tumours, haemor- rhages and subcortical structures. QSM, in particular, may provide the ability to infer changes in chemical composition, such as iron deposition, which is import- ant in the progression of several neurodegenerative disorders such as Parkinson’s Disease and Alzheimer’s Disease. Phase imaging-based methods such as SWI and QSM operate on processed phase data. The argument of a complex number is inherently circular, and the MR phase is often affected by spatially slow varying inhomogeneities. In order to extract the localised phase contrast required for SWI and QSM, a combination of phase unwrapping and high pass filtering is necessary. This task is non-trivial, with several methods having been proposed in the literature.
    [Show full text]
  • Diffusion‐Weighted Spectroscopy
    Magnetic Resonance in Medicine 64:939–946 (2010) Diffusion-Weighted Spectroscopy: A Novel Approach to Determine Macromolecule Resonances in Short-Echo Time 1H-MRS N. Kunz,1,2 C. Cudalbu,1 V. Mlynarik,1 P. S. Hu¨ ppi,2 S. V. Sizonenko,2 and R. Gruetter1,3,4* Quantification of short-echo time proton magnetic resonance (composing the neurochemical profile) in the rodent spectroscopy results in >18 metabolite concentrations (neuro- brain (1). chemical profile). Their quantification accuracy depends on The accuracy of the quantification of the neurochemi- the assessment of the contribution of macromolecule (MM) cal profile is critically dependent on the estimation of resonances, previously experimentally achieved by exploiting the contribution of macromolecule (MM) resonances to the several fold difference in T . To minimize effects of hetero- 1 the spectrum, overlapping with the metabolite’s resonan- geneities in metabolites T1, the aim of the study was to assess MM signal contributions by combining inversion re- ces. Therefore, an accurate assessment of the MM contri- covery (IR) and diffusion-weighted proton spectroscopy at bution is important since a biased estimation of the MM high-magnetic field (14.1 T) and short echo time (58 msec) in can lead to errors in the obtained metabolite concentra- the rat brain. IR combined with diffusion weighting experi- tions (1,2). Since the MM resonances linewidth, in con- ments (with d/D51.5/200 msec and b-value 5 11.8 msec/ trast to that of metabolites, does not increase substan- 2 mm ) showed that the metabolite nulled spectrum (inversion tially with B , it renders the distinction of MM signals 5 0 time 740 msec) was affected by residuals attributed to cre- from those of coupled spin systems more difficult.
    [Show full text]