ABSTRACT the Importance of Cathepsin B Research and Clinical
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cathepsin B-Independent Abrogation of Cell Death by CA-074-Ome Upstream of Lysosomal Breakdown
Cell Death and Differentiation (2004) 11, 1357–1360 & 2004 Nature Publishing Group All rights reserved 1350-9047/04 $30.00 www.nature.com/cdd Letter to the Editor Cathepsin B-independent abrogation of cell death by CA-074-OMe upstream of lysosomal breakdown Cell Death and Differentiation (2004) 11, 1357–1360. doi:10.1038/sj.cdd.4401493 Published online 6 August 2004 Dear Editor, Recent progress provided compelling evidence for the major cence microscope observation (not shown). Overall cell death role of lysosomal cathepsin proteases in cell death pathways (apoptosis þ necrosis) was also significantly diminished by especially when caspase activity is suppressed.1,2 Cathepsin the caspase inhibitor (Po0,05), but without major effect B, a ubiquitous endopeptidase and ectodipeptidase, was (mean percentage of cell death for staurosporine: 92.1; for shown to be a component of TNF-a cell death signaling,3 as staurosporine þ Z-VAD(OMe)-FMK: 62.3; n ¼ 7) (Figure 1f). well as an executor protease in caspase-compromised cells To explore if various cellular compartments are involved in induced to undergo apoptosis4 or necrosis.5 DEVD-ase-independent cell death, acidity of endolysosomes L-trans-epoxysuccinyl-Ile-Pro-OH propylamide (CA-074) is and the inner membrane potential of mitochondria were a highly specific inhibitor of cathepsin B.6 The methylated measured by appropriate fluorescent dyes and flow cytometry variant, CA-074-OMe, was shown to penetrate into cells more (Figure 1b–e). A remarkable decline of acidic compartments easily than the parental molecule,7 whereas it loosened its was detected by acridine orange in the major population of cathepsin B specificity reacting with other, unidentified staurosporine þ Z-VAD(OMe)-FMK-treated cells (Figure 1b). -
P53 and the Cathepsin Proteases As Co-Regulators of Cancer and Apoptosis
cancers Review Making Connections: p53 and the Cathepsin Proteases as Co-Regulators of Cancer and Apoptosis Surinder M. Soond 1,*, Lyudmila V. Savvateeva 1, Vladimir A. Makarov 1, Neonila V. Gorokhovets 1, Paul A. Townsend 2 and Andrey A. Zamyatnin, Jr. 1,3,4,* 1 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; [email protected] (L.V.S.); [email protected] (V.A.M.); gorokhovets_n_v@staff.sechenov.ru (N.V.G.) 2 Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, and the NIHR Manchester Biomedical Research Centre, Manchester M13 9PL, UK; [email protected] 3 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia 4 Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia * Correspondence: [email protected] (S.M.S.); [email protected] (A.A.Z.J.) Received: 6 October 2020; Accepted: 19 November 2020; Published: 22 November 2020 Simple Summary: This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the p53 and cathepsin proteins. While it has been demonstrated that the p53 protein can directly induce the leakage of cathepsin proteases from the lysosome, directly triggering cell death, little is known about what factors set the threshold at which the lysosome can become permeabilized. It appears that the expression levels of cathepsin proteases may be central to this process, with some of them being transcriptionally regulated by p53. -
Cathepsins and Their Involvement in Immune Responses
Review article: Medical intelligence | Published 20 July 2010, doi:10.4414/smw.2010.13042 Cite this as: Swiss Med Wkly. 2010;140:w13042 Cathepsins and their involvement in immune responses Sébastien Conus, Hans-Uwe Simon Institute of Pharmacology, University of Bern, Bern, Switzerland Correspondence to: cleaving proteases (= caspases) which cleave a wide range Sébastien Conus Ph.D. of cellular substrates [5]. Institute of Pharmacology Besides caspases, cathepsins have recently been shown University of Bern to be associated with cell death regulation [6–12] and vari- Friedbühlstrasse 49 3010 Bern ous other physiological and pathological processes, such as Switzerland maturation of the MHC class II complex, bone remodel- [email protected] ling, keratinocyte differentiation, tumour progression and metastasis, rheumatoid arthritis and osteoarthritis, as well Summary as atherosclerosis [13, 14] (table 1). Thus, cathepsins ap- pear to play a significant role in immune responses. In this The immune system is composed of an enormous variety of review we discuss recent advances addressing the role of cells and molecules that generate a collective and coordin- lysosomal proteases in the diverse aspects of the immune ated response on exposure to foreign antigens, called the response, and also the involvement of cathepsins in the immune response. Within the immune response, endo-lyso- pathogenesis of diseases in which these proteases seem not somal proteases play a key role. In this review we cover to be properly under control. specific roles of cathepsins in innate and adaptive immu- nity, as well as their implication in the pathogenesis of sev- The cathepsin family eral diseases. Lysosomes are membrane-bound organelles which repres- Key words: adaptive and innate immunity; apoptosis; ent the main degradative compartment in eukaryotic cells. -
A Cysteine Protease Inhibitor Blocks SARS-Cov-2 Infection of Human and Monkey Cells
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.347534; this version posted October 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A cysteine protease inhibitor blocks SARS-CoV-2 infection of human and monkey cells Drake M. Mellott,1 Chien-Te Tseng,3 Aleksandra Drelich,3 Pavla Fajtová,4,5 Bala C. Chenna,1 Demetrios H. Kostomiris1, Jason Hsu,3 Jiyun Zhu,1 Zane W. Taylor,2,9 Vivian Tat,3 Ardala Katzfuss,1 Linfeng Li,1 Miriam A. Giardini,4 Danielle Skinner,4 Ken Hirata,4 Sungjun Beck4, Aaron F. Carlin,8 Alex E. Clark4, Laura Beretta4, Daniel Maneval6, Felix Frueh,6 Brett L. Hurst,7 Hong Wang,7 Klaudia I. Kocurek,2 Frank M. Raushel,2 Anthony J. O’Donoghue,4 Jair Lage de Siqueira-Neto,4 Thomas D. Meek1.*, and James H. McKerrow#4,* Departments of Biochemistry and Biophysics1 and Chemistry,2 Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, 3Department of Microbiology and Immunology, University of Texas, Medical Branch, 3000 University Boulevard, Galveston, Texas, 77755-1001, 4Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 5Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic, 6Selva Therapeutics, and 7Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, Utah, 84322, 8Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA.9Current address: Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99353. -
Cysteine Cathepsin Proteases: Regulators of Cancer Progression and Therapeutic Response
REVIEWS Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response Oakley C. Olson1,2 and Johanna A. Joyce1,3,4 Abstract | Cysteine cathepsin protease activity is frequently dysregulated in the context of neoplastic transformation. Increased activity and aberrant localization of proteases within the tumour microenvironment have a potent role in driving cancer progression, proliferation, invasion and metastasis. Recent studies have also uncovered functions for cathepsins in the suppression of the response to therapeutic intervention in various malignancies. However, cathepsins can be either tumour promoting or tumour suppressive depending on the context, which emphasizes the importance of rigorous in vivo analyses to ascertain function. Here, we review the basic research and clinical findings that underlie the roles of cathepsins in cancer, and provide a roadmap for the rational integration of cathepsin-targeting agents into clinical treatment. Extracellular matrix Our contemporary understanding of cysteine cathepsin tissue homeostasis. In fact, aberrant cathepsin activity (ECM). The ECM represents the proteases originates with their canonical role as degrada- is not unique to cancer and contributes to many disease multitude of proteins and tive enzymes of the lysosome. This view has expanded states — for example, osteoporosis and arthritis4, neuro macromolecules secreted by considerably over decades of research, both through an degenerative diseases5, cardiovascular disease6, obe- cells into the extracellular -
Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................ -
The P53-Cathepsin Axis Cooperates with ROS to Activate Programmed Necrotic Death Upon DNA Damage
The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage Ho-Chou Tua,1, Decheng Rena,1, Gary X. Wanga, David Y. Chena, Todd D. Westergarda, Hyungjin Kima, Satoru Sasagawaa, James J.-D. Hsieha,b, and Emily H.-Y. Chenga,b,c,2 aDepartment of Medicine, Molecular Oncology, bSiteman Cancer Center, and cDepartment of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 Edited by Stuart A. Kornfeld, Washington University School of Medicine, St. Louis, MO, and approved November 25, 2008 (received for review August 19, 2008) Three forms of cell death have been described: apoptosis, autophagic cells that are deprived of the apoptotic gateway to mediate cyto- cell death, and necrosis. Although genetic and biochemical studies chrome c release for caspase activation (Fig. S1) (9–11, 19, 20). have formulated a detailed blueprint concerning the apoptotic net- Despite the lack of caspase activation (20), DKO cells eventually work, necrosis is generally perceived as a passive cellular demise succumb to various death signals manifesting a much slower death resulted from unmanageable physical damages. Here, we conclude an kinetics compared with wild-type cells (Fig. 1A, Fig. S2, and data active de novo genetic program underlying DNA damage-induced not shown). To investigate the mechanism(s) underlying BAX/ necrosis, thus assigning necrotic cell death as a form of ‘‘programmed BAK-independent cell death, we first examined the morphological cell death.’’ Cells deficient of the essential mitochondrial apoptotic features of the dying DKO cells. Electron microscopy uncovered effectors, BAX and BAK, ultimately succumbed to DNA damage, signature characteristics of necrosis in DKO cells after DNA exhibiting signature necrotic characteristics. -
Kinetic Properties and Characterization of Purified Proteases from Pacific Whiting
AN ABSTRACT OF THE THESIS OF JuWen Wu for the degree of Master of Science in Food Science and Technology presented on March 10. 1994 . Title: Kinetic Properties and Characterization of Purified Proteases from Pacific Whiting (Merluccius productus) . Abstract approved: ._ ■^^HaejWg An Kinetic properties of the two proteases, causing textural degradation of Pacific whiting (Merluccius productus) during heating, were compared and characterized with the synthetic substrate, Z-Phe-Arg-NMec. Pacific whiting P-I and P-II showed the highest specificity on Z-Phe-Arg-NMec, specific substrate for cathepsin L. The Km of 1 preactivated P-I and P-II were 62.98 and 76.02 (^M), and kcat, 2.38 and 1.34 (s" ) against Z-Phe-Arg-NMec at pH 7.0 and 30°C, respectively. Optimum pH stability for preactivated P-I and P-II is between 4.5 and 5.5. Both enzymes showed similar pH- induced preactivation profiles at 30oC. The maximal activity for both enzymes was obtained by preactivating the enzyme at a range of pH 5.5 to 7.5. The highest activation rate for both enzymes was determined at pH 7.5. At pH 5.5, the rate to reach the maximal activity was the slowest, but the activity was stable up to 1 hr. P-I and P-II shared similar temperature profiles at pH 5.5 and pH 7.0 studied. Optimum temperatures at pH 5.5 and 7.0 for both proteases on the same substrate were 550C. Significant thermal inactivation for both enzymes was shown at 750C. -
A Rationale for Targeting Sentinel Innate Immune Signaling of Group 1 House Dust Mite Allergens Th
Molecular Pharmacology Fast Forward. Published on July 5, 2018 as DOI: 10.1124/mol.118.112730 This article has not been copyedited and formatted. The final version may differ from this version. MOL #112730 1 Title Page MiniReview for Molecular Pharmacology Allergen Delivery Inhibitors: A Rationale for Targeting Sentinel Innate Immune Signaling of Group 1 House Dust Mite Allergens Through Structure-Based Protease Inhibitor Design Downloaded from molpharm.aspetjournals.org Jihui Zhang, Jie Chen, Gary K Newton, Trevor R Perrior, Clive Robinson at ASPET Journals on September 26, 2021 Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom (JZ, JC, CR) State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China (JZ) Domainex Ltd, Chesterford Research Park, Little Chesterford, Saffron Walden, CB10 1XL, United Kingdom (GKN, TRP) Molecular Pharmacology Fast Forward. Published on July 5, 2018 as DOI: 10.1124/mol.118.112730 This article has not been copyedited and formatted. The final version may differ from this version. MOL #112730 2 Running Title Page Running Title: Allergen Delivery Inhibitors Correspondence: Professor Clive Robinson, Institute for Infection and Immunity, St George’s, University of London, SW17 0RE, UK [email protected] Downloaded from Number of pages: 68 (including references, tables and figures)(word count = 19,752) 26 (main text)(word count = 10,945) Number of Tables: 3 molpharm.aspetjournals.org -
VEGF-A Induces Angiogenesis by Perturbing the Cathepsin-Cysteine
Published OnlineFirst May 12, 2009; DOI: 10.1158/0008-5472.CAN-08-4539 Published Online First on May 12, 2009 as 10.1158/0008-5472.CAN-08-4539 Research Article VEGF-A Induces Angiogenesis by Perturbing the Cathepsin-Cysteine Protease Inhibitor Balance in Venules, Causing Basement Membrane Degradation and Mother Vessel Formation Sung-Hee Chang,1 Keizo Kanasaki,2 Vasilena Gocheva,4 Galia Blum,5 Jay Harper,3 Marsha A. Moses,3 Shou-Ching Shih,1 Janice A. Nagy,1 Johanna Joyce,4 Matthew Bogyo,5 Raghu Kalluri,2 and Harold F. Dvorak1 Departments of 1Pathology and 2Medicine, and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, and 3Departments of Surgery, Children’s Hospital and Harvard Medical School, Boston, Massachusetts; 4Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York; and 5Department of Pathology, Stanford University, Stanford, California Abstract to form in many transplantable mouse tumor models are mother Tumors initiate angiogenesis primarily by secreting vascular vessels (MV), a blood vessel type that is also common in many endothelial growth factor (VEGF-A164). The first new vessels autochthonous human tumors (2, 3, 6–8). MV are greatly enlarged, to form are greatly enlarged, pericyte-poor sinusoids, called thin-walled, hyperpermeable, pericyte-depleted sinusoids that form mother vessels (MV), that originate from preexisting venules. from preexisting venules. The dramatic enlargement of venules We postulated that the venular enlargement necessary to form leading to MV formation would seem to require proteolytic MV would require a selective degradation of their basement degradation of their basement membranes. -
Does the Use of Protease Inhibitors Further Improve in Vivo Distribution?
Targeting of the Cholecystokinin-2 Receptor with the Minigastrin Analog 177Lu-DOTA-PP-F11N: Does the Use of Protease Inhibitors Further Improve In Vivo Distribution? Alexander W. Sauter*1,2, Rosalba Mansi*3, Ulrich Hassiepen4, Lionel Muller4, Tania Panigada4, Stefan Wiehr2, Anna-Maria Wild2, Susanne Geistlich5, Martin B´eh´e5, Christof Rottenburger1, Damian Wild1, and Melpomeni Fani3 1Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland; 2Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany; 3Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland; 4Novartis Pharma AG, Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland; and 5Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland performance of 177Lu-DOTA-MG11 in the presence of inhibitors. The Patients with metastatic medullary thyroid cancer (MTC) have limited human application of single compounds without unessential additives systemic treatment options. The use of radiolabeled gastrin analogs is preferable. Preliminary clinical data spotlight the stomach as a po- targeting the cholecystokinin-2 receptor (CCK2R) is an attractive tential dose-limiting organ besides the kidneys. approach. However, their therapeutic efficacy is presumably decreased Key Words: medullary thyroid cancer; cholecystokinin-2 receptor; by their enzymatic degradation in vivo. We aimed to investigate whether gastrin; peptide receptor radionuclide therapy; 177Lu-DOTA-PP-F11N 177 177 the chemically stabilized analog Lu-DOTA-PP-F11N ( Lu-DOTA- J Nucl Med 2019; 60:393–399 (DGlu)6-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2) performs better than refer- DOI: 10.2967/jnumed.118.207845 ence analogs with varying in vivo stability, namely 177Lu-DOTA-MG11 177 177 ( Lu-DOTA-DGlu-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2)and Lu-DOTA- 177 PP-F11 ( Lu-DOTA-(DGlu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2), and whether the use of protease inhibitors further improves CCKR2 targeting. -
Chapter 11 Cysteine Proteases
CHAPTER 11 CYSTEINE PROTEASES ZBIGNIEW GRZONKA, FRANCISZEK KASPRZYKOWSKI AND WIESŁAW WICZK∗ Faculty of Chemistry, University of Gdansk,´ Poland ∗[email protected] 1. INTRODUCTION Cysteine proteases (CPs) are present in all living organisms. More than twenty families of cysteine proteases have been described (Barrett, 1994) many of which (e.g. papain, bromelain, ficain , animal cathepsins) are of industrial impor- tance. Recently, cysteine proteases, in particular lysosomal cathepsins, have attracted the interest of the pharmaceutical industry (Leung-Toung et al., 2002). Cathepsins are promising drug targets for many diseases such as osteoporosis, rheumatoid arthritis, arteriosclerosis, cancer, and inflammatory and autoimmune diseases. Caspases, another group of CPs, are important elements of the apoptotic machinery that regulates programmed cell death (Denault and Salvesen, 2002). Comprehensive information on CPs can be found in many excellent books and reviews (Barrett et al., 1998; Bordusa, 2002; Drauz and Waldmann, 2002; Lecaille et al., 2002; McGrath, 1999; Otto and Schirmeister, 1997). 2. STRUCTURE AND FUNCTION 2.1. Classification and Evolution Cysteine proteases (EC.3.4.22) are proteins of molecular mass about 21-30 kDa. They catalyse the hydrolysis of peptide, amide, ester, thiol ester and thiono ester bonds. The CP family can be subdivided into exopeptidases (e.g. cathepsin X, carboxypeptidase B) and endopeptidases (papain, bromelain, ficain, cathepsins). Exopeptidases cleave the peptide bond proximal to the amino or carboxy termini of the substrate, whereas endopeptidases cleave peptide bonds distant from the N- or C-termini. Cysteine proteases are divided into five clans: CA (papain-like enzymes), 181 J. Polaina and A.P. MacCabe (eds.), Industrial Enzymes, 181–195.