Open Thesis Edited.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Open Thesis Edited.Pdf The Pennsylvania State University Schreyer Honors College Department of Mathematics An Optimal Control Problem Arising from an Evolutionary Game Wente Brian Cai Spring 2014 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Mathematics with honors in Mathematics To be reviewed and approved* by the following: Christopher Griffin Research Associate & Asst. Professor Thesis Supervisor Nate Brown Professor of Mathematics Honors Adviser *Signatures will be on file if this thesis is approved. Abstract This paper is an integrative study of evolutionary game theory and optimal control. We first study the basics of evolutionary game the- ory and introduce the model that we would like to study based on the game of Rock-Paper-Scissors. We then move on to an introduction of optimal control and identify the requirements that need to be fulfilled in order for a solution to become optimal. Finally, we explore differ- ent methods of modeling the Rock-Paper-Scissors game as an optimal control problem and try to find an optimal control that minimizes the cost of the game. Various linearization schemes are attempted and the results are discussed. i Contents List of Figures iii 1 Introduction 1 2 Preliminaries and Literature Review 2 2.1 Evolutionary Game Theory . .2 2.2 Optimal Control Theory . .4 2.3 Linear Quadratic Control Example . .7 2.4 Sufficienct Conditions for Optimal Control . .9 2.5 Problem Statement: Relating Optimal Control to Game Theory 10 3 Optimal Control of Generalized Rock-Paper-Scissors 11 3.1 Constructing a General Form of the Problem . 12 3.2 Linearizing the Problem . 15 3.3 A Linear Problem . 16 4 Future Work and Conclusions 20 4.1 Future Work . 20 4.2 Conclusion . 20 Bibliography 22 ii List of Figures 1 (a) An illustration of an unstable Nash Equilibrium fixed point when a = −5; (b) An illustration of a non-linear center Nash equilibrium fixed point when a = 0; (c) An illustration of a state Nash Equilibrium fixed point when a = 1. .4 2 Computed optimal control of rock-paper-scissors evolutionary game: x(0) = 0:5, y(0) = 0:2, z(0) = 0:3, T = 40, σ = 1=100 . 12 3 Computed optimal control of rock-paper-scissors evolutionary game varitation: x(0) = 0:5, y(0) = 0:2, z(0) = 0:3, T = 40, σ = 1=100............................. 13 4 Computed optimal control of partially linearized dynamics 1 1 1 x(0) = :3 − 3 ; y(0) = :3 − 3 ; z(0) = :4 − 3 ........... 16 5 Optimal control of fully linearized dynamics: x(0) = :3 − 1 1 1 3 ; y(0) = :3 − 3 ; z(0) = :4 − 3 ; σ =1 ............. 18 iii 1 Introduction Evolutionary game theory studies the decision making of games over time, such that dominant strategies survive and get passed on to the next genera- tion while failing strategies are phased out. We start with a large population of players playing a two player game. Each player is assigned a strategy (by genetics), and the resulting payoff from play will determine which strategy was more successful and thus which strategy reproduces. We can then track the growth or decline of strategies in our population and predict the trajec- tory of each strategy. Our goal is to study the dynamics of the game while we dynamically alter the payoffs of the game. In the case of Rock-Paper- Scissors, it is understood that the optimal strategy is to pick rock, paper, or 1 1 1 scissor in equal amounts ( 3 ; 3 ; 3 ). Consequently, this forms a fixed point of the evolutionary game resulting from rock-paper-scissor play. Under certain payoff assumptions in a population with many scissors and many rocks and only some paper, it is clear that the population of scissors will decrease (from lack of reproduction) while the number of paper players increases. For certain classes of payoff, this process will lead to the 1 1 1 fixed point ( 3 ; 3 ; 3 ), while in other cases we may observe cyclic behavior. In the case of convergent behavior, how quickly that fixed point is reached is dependent on the game. The larger the difference between the winning and losing payoff (i.e. the bigger the gap between winning and losing), the quicker the population approach the fixed point strategy. In this thesis, we consider the rock-paper-scissors payoff matrix: 2 0 1 + a −1 3 A = 4 −1 0 1 + a5 a 2 R 1 + a −1 0 Our objective is to dynamically alter the value of a (rather than leaving a static value) in order to drive the population toward the fixed point. However, we assume that altering the value of a may be hard and therefore we attempt to minimize the total cost associated with driving the population to the prescribed fixed point. We study this problem theoretically and numerically showing two solu- tions for the resulting non-linear optimal control problem with interesting properties. We then attempt to linearize the control problem to obtain a closed form solution. Unfortunately, in so doing we lose some of the charac- teristics of the control problem and obtain an entirely new control problem with new solution structure. We then discuss in future work how to recover the original problem while maintaining a linear dynamical system, but intro- ducing non-linearity and non-convexity into the objective function. 1 2 Preliminaries and Literature Review 2.1 Evolutionary Game Theory Game theory is the study of decision making when an agent's payoff is af- fected by the decisions of (many) other agents and is based on the payoff one gets for using certain strategies [2, 3, 5, 9, 12, 13]. For us a game consists of two players using a set, K of n pure strategies denoted by i = 1; 2; : : : ; n. When Player I uses strategy m 2 K and Player II uses strategy n 2 K, there is a payoff amn. With values aij, i; j = 1; 2; :::; n, we can create a n × n payoff matrix A for player I (when we assume the game is symmetric, Player II's payoff matrix is AT ) [12]. Game theory is an extensive subject; the inter- ested reader should consult [2, 3, 5, 9, 12, 13] for details. All standard game theoretic definitions given in this thesis can be found in these references. T A player's mixed strategy is a column vector x = (x1; x2; :::; xn) where each xi is the probability of using strategy i 2 K. Let Sn be the set of all mixed strategies in the game. So if Player I and II uses mixed strategies T x; y 2 Sn, the expected payoff for Player I is x Ay and the expected payoff for Player II is xT AT y. The strategy x is said to be the best response to y if T T x Ay ≥ z Ay 8 z 2 Sn (1) Definition 2.1. A strategy x∗ is a (Nash) equilibrium for the symmetric two player game with payoff matrix A if: ∗ T ∗ T ∗ (x ) Ax ≥ y Ax 8 y 2 Sn (2) In evolutionary game theory, we observe how a population of players changes their strategies over time. Let's consider a large population playing the same symmetric game we defined earlier. Let pi(t) ≥ 0 be the number of P individuals at time t using strategy i and let p(t) = i2K pi(t) > 0 be the to- T tal population. The population state is the vector x(t) = (x1(t); x2(t); :::xn(t)) such that each xi(t) is the proportion of the population using strategy i at T time t. The expected payoff for strategy i 2 K would then be ei Ax and the T th population average payoff would be x Ax. Here ei is the i standard basis vector in Rn, when we have n strategies. Our goal is to derive a differential equation that determines the growth or decline of strategy proportions in the population. In our scenario, the growth and decline of strategies depends on the fitness of the strategy. In other words, the more successful a strategy is, the quicker the population will adopt that strategy over time while poorer strategies die off. The following derivation is due to [15]. We can define the change in the number of individuals using strategy i as T p_i = [β + ei Ax − δ]pi (3) 2 where β ≥ 0 is the initial fitness of individuals in the population and δ ≥ 0 is the death rate for all individuals. By definition, p(t)xi(t) = pi(t). Differ- entiating Equation 3 by t, we get: T T px_ i =p _i − px_ i = [β + ei Ax − δ]pi − [β + x Ax − δ]pxi (4) If we divide both sides by p, we obtain the replicator dynamics: T T x_ i = [ei Ax − x Ax]xi i = 1; :::; n (5) The replicator dynamics tell us that strategies that give a greater than av- erage payoff grow in the population and strategies that give less than the average payoff decline in the population. The rest points of the replicator dynamic are the zeros of the right hand T side of the replicator equation; (i.e., all points x 2 Sn such that ei Ax = xT Ax). A rest point, x, is stable if every neighborhood B of x contains a ◦ neighborhood B such that if we start at x0, then the solution flow '(t; x0) 2 B for all t ≥ 0. In other words, x is stable if whenever a point starts in a neighborhood of x, it will stay contained in that neighborhood over time.
Recommended publications
  • Interim Report IR-03-078 Evolutionary Game Dynamics
    International Institute for Tel: 43 2236 807 342 Applied Systems Analysis Fax: 43 2236 71313 Schlossplatz 1 E-mail: [email protected] A-2361 Laxenburg, Austria Web: www.iiasa.ac.at Interim Report IR-03-078 Evolutionary Game Dynamics Josef Hofbauer ([email protected]) Karl Sigmund ([email protected]) Approved by Ulf Dieckmann ([email protected]) Project Leader, Adaptive Dynamics Network December 2003 Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 76 The Adaptive Dynamics Network at IIASA fosters the develop- ment of new mathematical and conceptual techniques for under- standing the evolution of complex adaptive systems. Focusing on these long-term implications of adaptive processes in systems of limited growth, the Adaptive Dynamics Network brings together scientists and institutions from around the world with IIASA acting as the central node. Scientific progress within the network is collected in the IIASA ADN Studies in Adaptive Dynamics series. No. 1 Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, van No. 11 Geritz SAH, Metz JAJ, Kisdi É, Meszéna G: The Dy- Heerwaarden JS: Adaptive Dynamics: A Geometrical Study namics of Adaptation and Evolutionary Branching. IIASA of the Consequences of Nearly Faithful Reproduction. IIASA Working Paper WP-96-077 (1996). Physical Review Letters Working Paper WP-95-099 (1995). van Strien SJ, Verduyn 78:2024-2027 (1997). Lunel SM (eds): Stochastic and Spatial Structures of Dynami- cal Systems, Proceedings of the Royal Dutch Academy of Sci- No.
    [Show full text]
  • 2.4 Mixed-Strategy Nash Equilibrium
    Game Theoretic Analysis and Agent-Based Simulation of Electricity Markets by Teruo Ono Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2005 ( Massachusetts Institute of Technology 2005. All rights reserved. Author............................. ......--.. ., ............... Department of Electrical Engineering and Computer Science May 6, 2005 Certifiedby.................... ......... T...... ... .·..·.........· George C. Verghese Professor Thesis Supervisor ... / ., I·; Accepted by ( .............. ........1.-..... Q .--. .. ....-.. .......... .. Arthur C. Smith Chairman, Department Committee on Graduate Students MASSACHUSETTS INSTilRE OF TECHNOLOGY . I ARCHIVES I OCT 21 2005 1 LIBRARIES Game Theoretic Analysis and Agent-Based Simulation of Electricity Markets by Teruo Ono Submitted to the Department of Electrical Engineering and Computer Science on May 6, 2005, in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science Abstract In power system analysis, uncertainties in the supplier side are often difficult to esti- mate and have a substantial impact on the result of the analysis. This thesis includes preliminary work to approach the difficulties. In the first part, a specific electricity auction mechanism based on a Japanese power market is investigated analytically from several game theoretic viewpoints. In the second part, electricity auctions are simulated using agent-based modeling. Thesis Supervisor: George C. Verghese Title: Professor 3 Acknowledgments First of all, I would like to thank to my research advisor Prof. George C. Verghese. This thesis cannot be done without his suggestion, guidance and encouragement. I really appreciate his dedicating time for me while dealing with important works as a professor and an educational officer.
    [Show full text]
  • The Replicator Dynamics with Players and Population Structure Matthijs Van Veelen
    The replicator dynamics with players and population structure Matthijs van Veelen To cite this version: Matthijs van Veelen. The replicator dynamics with players and population structure. Journal of Theoretical Biology, Elsevier, 2011, 276 (1), pp.78. 10.1016/j.jtbi.2011.01.044. hal-00682408 HAL Id: hal-00682408 https://hal.archives-ouvertes.fr/hal-00682408 Submitted on 26 Mar 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author’s Accepted Manuscript The replicator dynamics with n players and population structure Matthijs van Veelen PII: S0022-5193(11)00070-1 DOI: doi:10.1016/j.jtbi.2011.01.044 Reference: YJTBI6356 To appear in: Journal of Theoretical Biology www.elsevier.com/locate/yjtbi Received date: 30 August 2010 Revised date: 27 January 2011 Accepted date: 27 January 2011 Cite this article as: Matthijs van Veelen, The replicator dynamics with n players and population structure, Journal of Theoretical Biology, doi:10.1016/j.jtbi.2011.01.044 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript.
    [Show full text]
  • The Replicator Equation on Graphs
    The Replicator Equation on Graphs The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Ohtsuki Hisashi, Martin A. Nowak. 2006. The replicator equation on graphs. Journal of Theoretical Biology 243(1): 86-97. Published Version doi:10.1016/j.jtbi.2006.06.004 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4063696 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Replicator Equation on Graphs Hisashi Ohtsuki1;2;¤ & Martin A. Nowak2;3 1Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan 2Program for Evolutionary Dynamics, Harvard University, Cambridge MA 02138, USA 3Department of Organismic and Evolutionary Biology, Department of Mathematics, Harvard University, Cambridge MA 02138, USA ¤The author to whom correspondence should be addressed. ([email protected]) tel: +81-92-642-2638 fax: +81-92-642-2645 Abstract : We study evolutionary games on graphs. Each player is represented by a vertex of the graph. The edges denote who meets whom. A player can use any one of n strategies. Players obtain a payo® from interaction with all their immediate neighbors. We consider three di®erent update rules, called `birth-death', `death-birth' and `imitation'. A fourth update rule, `pairwise comparison', is shown to be equivalent to birth-death updating in our model.
    [Show full text]
  • Thesis This Thesis Must Be Used in Accordance with the Provisions of the Copyright Act 1968
    COPYRIGHT AND USE OF THIS THESIS This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author - subject this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Director of Copyright Services sydney.edu.au/copyright The influence of topology and information diffusion on networked game dynamics Dharshana Kasthurirathna A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Complex Systems Research Group Faculty of Engineering and IT The University of Sydney March 2016 Declaration I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma of the University or other institute of higher learning, except where due acknowledgement has been made in the text.
    [Show full text]
  • Arxiv:2006.00397V3 [Q-Bio.PE] 4 Mar 2021
    A Finite Population Destroys a Traveling Wave in Spatial Replicator Dynamics Christopher Griffin ∗‡ Riley Mummah† Russ deForest ‡ Abstract We derive both the finite and infinite population spatial replicator dynamics as the fluid limit of a stochastic cellular automaton. The infinite population spatial replicator is identical to the model used by Vickers and our derivation justifies the addition of a diffusion to the replicator. The finite population form generalizes the results by Durett and Levin on finite spatial replicator games. We study the differences in the two equations as they pertain to a one-dimensional rock-paper-scissors game. 1 Introduction Evolutionary games using the replicator dynamic have been studied extensively and are now well documented [1{6]. Variations on the classical replicator dynamic include discrete time dynamics [7] and mutations [8,9]. Additional evolutionary dynamics, such as imitation [1,4,10,11] and exchange models [12] have been studied. Alternatively evolutionary games have been extended to include spatial models by a number of authors [13{20]. Most of these papers append a spatial component to the classical replicator dynamics (see e.g., [18]) or discuss finite population replicator dynamics in which total population counts are used (see e.g., [13]). In the latter case, a spatial term is again appended to the classical replicator structure. In [21], Durrett and Levin study discrete and spatial evolutionary game models and compare them to their continuous, aspatial analogs. For their study the authors focus on a specific class of two-player two-strategy games using a hawk-dove payoff matrix. Because their payoff matrix is 2 × 2, a single (spatial) variable p(x; t) can be used to denote the proportion of the population playing hawk (Strategy 1) while a second variable s(x; t) denotes the total population.
    [Show full text]
  • Replicator Dynamics
    Replicator Dynamics 1 Nash makes sense (arguably) if… -Uber-rational -Calculating 2 Such as Auctions… 3 Or Oligopolies… Image courtesy of longislandwins on Flickr. CC-BY Image courtesy of afagen on Flickr. CC BY NC-SA 4 But why would game theory matter for our puzzles? 5 Norms/rights/morality are not chosen; rather… We believe we have rights! We feel angry when uses service but doesn’t pay 6 But… From where do these feelings/beliefs come? 7 In this lecture, we will introduce replicator dynamics The replicator dynamic is a simple model of evolution and prestige-biased learning in games Today, we will show that replicator leads to Nash 8 We consider a large population, N, of players Each period, a player is randomly matched with another player and they play a two-player game 9 Each player is assigned a strategy. Players cannot choose their strategies 10 We can think of this in a few ways, e.g.: • Players are “born with” their mother’s strategy (ignore sexual reproduction) • Players “imitate” others’ strategies 11 Note: Rationality and consciousness don’t enter the picture. 12 Suppose there are two strategies, A and B. We start with: Some number, NA, of players assigned strategy A And some number, NB, of players assigned strategy B 13 We denote the proportion of the population playing strategy A as XA, so: xA = NA/N xB = NB/N 14 The state of the population is given by (xA, xB) where xA ≥ 0, xB ≥ 0, and xA + xB = 1. 15 Since players interacts with another randomly chosen player in the population, a player’s EXPECTED payoff is determined by the payoff matrix and the proportion of each strategy in the population.
    [Show full text]
  • Replicator Equation on Networks with Degree Regular Communities Arxiv
    Replicator equation on networks with degree regular communities Daniele Cassese∗ Emmanuel College, University of Cambridge, CB2 3AP Cambridge, UK ∗Corresponding author: [email protected] Abstract The replicator equation is one of the fundamental tools to study evolutionary dynamics in well-mixed populations. This paper contributes to the literature on evolutionary graph theory, providing a version of the replicator equation for a family of connected networks with communities, where nodes in the same community have the same degree. This replicator equation is applied to the study of different classes of games, exploring the impact of the graph structure on the equilibria of the evolutionary dynamics. Keywords: Replicator equation, evolutionary graph theory, prisoner's dilemma, hawk-dove, coordination 1 Introduction Evolutionary game theory stems from the field of evolutionary biology, as an application of game theory to biological contests, and successively finds applications in many other fields, such as sociology, economics and anthropology. The range of phenomena studied using evolutionary games is quite broad: cultural evolution [11], the change of behaviours and institutions over time [8], the evolution of preferences [6] or language [16], the persistence of inferior cultural conventions [7]. A particularly vaste literature investigates the evolutionary foundations of arXiv:1803.09146v2 [q-bio.PE] 8 Jan 2019 cooperation [4,9, 12] just to name a few. For an inspiring exposition of evolutionary game theory applications to economics and social sciences see [5]. One of the building blocks of evolutionary game theory is that fitness (a measure of re- productive success relative to some baseline level) of a phenotype does not just depend on the quality of the phenotype itself, but on the interactions with other phenotypes in the population: ∗The author thanks Hisashi Ohtsuki for useful comments and acknowledges support from FNRS (Belgium).
    [Show full text]
  • The Replicator Dynamic (Draft)
    The Replicator Dynamic (Draft) June 10, 2021 We now turn to the main object of our study, the learning dynamics themselves. We begin with the replicator dynamic, which is a foundational concept in evolutionary game theory (EGT) and population dynamics [7]. In the following we look at the case where only a single matrix A defines the game. This corresponds to a symmetric game in which the agent is, in essence, playing against themselves. One could equivalently think of this as a two player game in which B = AT , so we only need A to define the game. In this context an NE x¯ is a strategy for which x · x¯ ≤ x¯ · x¯ (1) The equivalent statement to Lemma 1.1 in this context is that x¯ is an NE if and only if (Ax)i = x · Ax for all i such that xi > 0. 1 Introducing the Replicator Dynamic Consider a large population, in which individuals are identified according to some pheno- type1. As an example, let us say that a population is divided into individuals with white fur, brown fur and black fur. In game theoretic terms, we can consider these as belonging to a set of pure strategies fW; Br; Blg. Let xi denote the proportion of the population who play with a given strategy i. In our example, x1 denotes the proportion who have white fur. T Then x = (x1; : : : xn) is a probability vector which takes values on the unit-simplex. The question of evolutionary game theory is to ask, which of these phenotypes will thrive, and which have the potential to become extinct? EGT takes the established principle of evolution that of `survival of the fittest’, and places it into a game theoretic framework, which we can analyse mathematically.
    [Show full text]
  • The Effect of Central Bank Credibility on Forward Guidance in an Estimated New Keynesian Model
    Department of Economics Working Paper The Effect of Central Bank Credibility on Forward Guidance in an Estimated New Keynesian Model By Stephen J. Cole and Enrique Martínez-García Working Paper 2020-03 College of Business Administration The Effect of Central Bank Credibility on Forward Guidance in an Estimated New Keynesian Model Stephen J. Coley Enrique Martínez-Garcíaz Marquette University Federal Reserve Bank of Dallas Current Draft: May 15, 2020 Abstract This paper examines the effectiveness of forward guidance in an estimated New Keynesian model with imperfect central bank credibility. We estimate credibility for the U.S. Federal Reserve with Bayesian methods exploiting survey data on interest rate expectations from the Survey of Professional Forecasters (SPF). The results provide important takeaways: (1) The estimate of Federal Reserve credibility in terms of for- ward guidance announcements is relatively high, which indicates a degree of forward guidance effectiveness, but still one that is below the fully credible case. Hence, antic- ipation effects are attenuated and, accordingly, output and inflation do not respond as favorably to forward guidance announcements. (2) Imperfect central bank credibility is an important feature to resolve the so-called “forward guidance puzzle,” which the literature shows arises from the unrealistically large responses of macroeconomic vari- ables to forward guidance statements in structural models with perfect credibility. (3) Imperfect monetary authority credibility can also explain the evidence of forecasting error predictability based on forecasting disagreement found in the SPF data. Thus, accounting for imperfect credibility is important to model the formation of expectations in the economy and to understand the transmission mechanism of forward guidance announcements.
    [Show full text]
  • Cycles and Instability in a Rock–Paper–Scissors Population Game: a Continuous Time Experiment Downloaded From
    Review of Economic Studies (2014) 81, 112–136 doi: 10.1093/restud/rdt023 © The Author 2013. Published by Oxford University Press on behalf of The Review of Economic Studies Limited. Advance access publication 23 July 2013 Cycles and Instability in a Rock–Paper–Scissors Population Game: A Continuous Time Experiment Downloaded from TIMOTHY N. CASON Purdue University http://restud.oxfordjournals.org/ DANIEL FRIEDMAN UC Santa Cruz and ED HOPKINS University of Edinburgh First version received August 2012; final version accepted May 2013 (Eds.) at University of Edinburgh on January 30, 2014 We report laboratory experiments that use new, visually oriented software to explore the dynamics of 3×3 games with intransitive best responses. Each moment, each player is matched against the entire population, here 8 human subjects. A “heat map” offers instantaneous feedback on current profit opportunities. In the continuous slow adjustment treatment, we see distinct cycles in the population mix. The cycle amplitude, frequency and direction are consistent with the standard learning models. Cycles are more erratic and higher frequency in the instantaneous adjustment treatment. Control treatments (using simultaneous matching in discrete time) replicate previous results that exhibit weak or no cycles. Average play is approximated fairly well by Nash equilibrium, and an alternative point prediction, “TASP” (Time Average of the Shapley Polygon), captures some regularities that Nash equilibrium misses. Key words: Experiments, Learning, Cycles, Mixed equilibrium, Continuous time JEL Codes: C72, C73, C92, D83 1. INTRODUCTION Rock–Paper–Scissors, also known as RoShamBo, ShouShiLing (China), or JanKenPon (Japan) is one of the world’s best known games. It may date back to the Han Dynasty 2000 years ago, and in recent years has been featured in international tournaments for computerized agents and humans (Fisher, 2008).
    [Show full text]
  • Infodynamics: a Naturalistic Psychosemantics
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 9-2018 Infodynamics: A Naturalistic Psychosemantics Daniel E. Weissglass The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/2920 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] INFODYNAMICS: A NATURALISTIC PSYCHOSEMANTICS by D.E.WEISSGLASS A dissertation submitted to the Graduate Faculty in Philosophy in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2018 © 2018 D.E.WEISSGLASS All Rights Reserved ii Infodynamics: A naturalistic psychosemantics by D.E. Weissglass This manuscript has been read and accepted for the Graduate Faculty in Philosophy in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Barbara Montero Date Chair of Examining Committee Nickolas Pappas Date Executive Officer Supervisory Committee: Jesse Prinz Barbara Montero David Papineau THE CITY UNIVERSITY OF NEW YORK iii ABSTRACT Infodynamics: A naturalistic psychosemantics by D.E. Weissglass Advisor: Jesse Prinz When we think, we typically think ‘about’ something, a peculiar property of mental states often called ‘intentionality’. My dissertation is a collection of papers addressing key questions about the nature of intentionality. These questions demand answers because intentionality is poorly understood, yet fundamental to the way we talk and think about the mind in both folk and scientific contexts.
    [Show full text]