Study of Photo-Induced Dichroism in Sudan III Doped in Poly(Methyl Methacrylate) Thin Films B

Total Page:16

File Type:pdf, Size:1020Kb

Study of Photo-Induced Dichroism in Sudan III Doped in Poly(Methyl Methacrylate) Thin Films B Vol. 127 (2015) ACTA PHYSICA POLONICA A No. 3 Study of Photo-Induced Dichroism in Sudan III Doped in Poly(Methyl Methacrylate) Thin Films B. Abbasa;* and Y.T. Salmanb aAtomic Energy Commission, P.O. Box 6091, Damascus, Syria bPhysics Department, Faculty of Science, Damascus University, Damascus, Syria (Received December 4, 2013; in nal form December 10, 2014) Linear dichroism, dichroic ratio, contrast ratio and order parameters of Sudan III/PMMA guesthost thin lms have been investigated with visible polarized laser light. Dichroism increased in an exponential fashion with increase of the pump intensity. Light-induced dichroism and polar order of the dye molecules within the polymer network were reversible. These parameters showed fast increase in their values in an exponential fashion as the pumping process takes place. Also, they decay rapidly in an exponential fashion when the pump light is cut o. Photoisomerisation and polar orientation are dependent on both the molecular structure of the dye and polymer. Two forms of Sudan III molecules (trans and cis) are responsible for the interaction with laser light and forming an anisotropic structure inside the PMMA/Sudan III lms. However, there is another set of forms of the dye (keto and enol) has to be considered, which may contribute to dichroism. DOI: 10.12693/APhysPolA.127.780 PACS: 78.20.Ek, 33.55.+b, 78.66.Qn 1. Introduction Sudan III in solvents and doped in polymeric lms using the Z-scan technique. Multiple diraction rings were ob- Photoinduced optical anisotropy in polymer/organic served when the dye doped in both the liquid and solid dyes systems is the subject of intensive care and inves- media was exposed to a diode-pumped Nd:YAG laser tigations [1]. The importance of these nonlinear opti- at 532 nm. On the other hand, De Boni and his col- cal (NLO) materials for applications are quite obvious leagues [7] studied two-photon absorption (2PA) spec- in many elds of modern optics [2], among which, op- tra of Sudan III, Sudan IV and Sudan Red diazoaro- toelectronics, photonics, and optical signal processing. matic dyes dissolved in dimethyl sulfoxide (DMSO) us- Such materials have been used for polarization hologra- ing Z-scan technique with fs pulses. They showed that phy, optical data storage, integrated optics, all-optical the absence of 2PA to the ππ∗ band is related to the modulation, second-order nonlinear optical (NLO) ef- weaker donor/acceptor groups, and lower symmetry of fects [3], optical recording, optically-controlled optical diazoaromatic compounds. Also, the decrease of 2PA elements, optical switches [2] and are promising can- cross-section with temperature is attributed to thermally didates in optical shielding. Azobenzene-based dye induced torsions, which decreases the eective conjuga- molecules form an important set of molecules which tion of diazoaromatic molecules. This kind of optical have vast interest in research and applications alike. investigations indicated the crucial role of the photoin- For example, Schab-Balcerzak et al. [4] described the duced anisotropy in the dye doped systems. formation of supramolecular azopolymers based on hy- drogen bonds as perspective materials for laser in- Anisotropy may be induced either by photoinduced duced surface relief gratings (SRGs) and for polar- isomerization and ordering of the absorbing molecules' ization gratings. They realized supramolecular lms dipoles in directions in which light aects them less [2], on the basis of hydrogen bonds between the func- or by tautomerization where a compound can be rep- tional groups of 4-[4-(3-hydroxypropyloxy)phenylazo]- resented by two structures that are related by an in- pyridine polymer and azobenzene derivative 4-[4-(6- tramolecular movement of hydrogen from one atom to hydroxyhexyloxy)phenylazo]pyridine. Zidan et al. [5] in- another [8]. The induced anisotropy manifests itself in vestigated the optical limiting performance of Sudan III dichroism of long-term stability but can be eliminated dye doped into ethylene propylene dienepolymethylene by either optical or thermal means [9]. Dichroism is a polymer (EPDM) using 532 nm pulses from a frequency- measure of the orientation of the nonlinear optical dye doubled Nd:YAG laser. They found that this dye man- molecules in the host polymer [2]. Dye molecules are well ifests optical limiting eects, with a concentration de- known for their properties of photochromism [10], which pendent eciency. Gayathri and Ramalingam [6] also is a reversible change between two species having dier- investigated the third order nonlinear optical property of ent absorption spectra, which can be induced by photoir- radiation. Because photochromism of organic molecules is sensitive to the micro-environment factors such as po- larity and free volume, the perturbation of reaction me- *corresponding author; e-mail: [email protected] dia on photochromic behaviors oers novel information concerning the microstructures of matrices around the (780) Study of Photo-Induced Dichroism in Sudan III Doped. 781 photoactive molecules [11]. One of the most powerful methods for studying the structure and physical behavior of nonlinear optical guesthost polymeric systems is the measurement of the absorption of linearly polarized light by an ensemble of oriented molecules [12]. To the best of our knowledge, linear dichroism of PMMA/Sudan III thin lms has never been studied before. In this work we report results of photoinduced linear dichroism proper- ties of Sudan III molecules that have been incorporated (dissolved) in PMMA polymeric network. 2. Experimental 2.1. Sample preparation The starting materials for preparing the guest host polymeric samples were poly(methymethacrylate) (PMMA, MW: 36000) from Acros Organics, and Su- dan III (95% dye content), from Aldrich. 2 g of PMMA was dissolved in 20 ml of dichloromethane (C2H2Cl2). Sudan III was added to the clear dissolved solution of PMMA (equivalent to 5% of PMMA by weight). Fig. 1. The experimental setup: P polarizer, ND The mixture was stirred for 3 h until the clear solution neutral density lter, B/S beam splitter, λ/2 half- was obtained with dye molecules fully dissolved. Thin wave plate, and PD photodiode. lms were dip-coated on transparent glass substrates (lm thicknesses of the order 1 µm were measured by to the electric vector of the pump beam become dierent. prism coupling technique and the absorption maximum The absorbances were then calculated from [13]: was at 508.4 nm). Samples were baked in an oven and Ik ◦ held at 70 C for 1 h in order to eliminate the residual sol- Ak = − log (1) vent. Finally, samples were kept in a desiccator at 22 ◦C I0 and in dark environment. The samples' best absorption wavelength was found I? A? = − log ; (2) using UVvisible spectrophotometer (Photodiode Ar- I0 ray Photospectrometer (PDA) Specord S100, from An- where I0 is the intensity of the probe beam when there alytik Jena) to record the absorption spectrum of is no sample, and Ik and I? are the intensities of the PMMA/Sudan III samples. probe beam transmitted through the sample when it is polarized parallel and perpendicular to the pump beam 2.2. Experimental setup polarization, respectively. The linear dichroism is com- puted from [2]: Guesthost polymeric thin lms become dichroic when pumped with linearly polarized beams from an Ar+ laser Ak − A? D = : (3) at λ = 514 nm. The probe signal of the beam falling on Ak + 2A? the sample and subsequently on a photosensor is fed to a personal computer through a low noise current pream- 3. Results and discussion plier (SR570, from Stanford Research Systems), and a Figure 2 shows the chemical structure of PMMA poly- DSP lock-in amplier (SR850, from Stanford Research mer (a), and the chemical structure of Sudan III molecule Systems). An IEEE 488.2 GPIB (from National Instru- and its tautomeric forms (b). Figure 3 shows that the ments) card was used to control and record the experi- maximum absorption wavelength for PMMA/Sudan III mental data along with a special program written in Bor- prepared samples is at λ = 508:4 nm. Since it is most land C++. Figure 1 shows the experimental arrangement suitable for linear dichroism investigations to pump and of the setup. probe the samples with laser wavelengths identical or Dichroism is measured by a probe beam linearly po- close to the maximum absorption of the samples, a wave- larized passing through the sample while it is being sub- length of λ = 514 nm from a multi-line Ar-ion laser ject to the pump beam. The probe beam intensity was (543-MAP-A02, from MellesGriot) was used. A series kept about 0.03% of the pump beam intensity. This is of experiments was carried out in order to elucidate an important procedure to use a very weak probe beam the inuence of linearly polarized light. Samples were with a wavelength identical or very close to the absorp- pumped (one sample at a time) with several intensity tion maximum of the dye molecules where any changes in levels, at which the transmitted probe beam intensities the absorption will be greatest, without inuencing the were recorded simultaneously. Photoinduced changes pumping eect of the sample. In this manner, the probe in the transmitted probe beam intensities are plotted beam absorbance parallel (Ajj) and perpendicular (A?) in Fig. 4. This gure shows the transmission spectra of 782 B. Abbas, Y.T. Salman PMMA/Sudan III thin lms at dierent parallel polar- ized laser intensities of the probe, and depicts the increase in transmitted light intensities with respect to increase in the laser pump intensities. Fig. 4. Transmitted spectra of PMMA/Sudan III at dierent parallel polarized laser intensities. Fig. 2. The chemical structure of PMMA polymer (a), Sudan III molecule and its tautomeric forms (b). Fig. 5. Transmitted spectra of PMMA/Sudan III at dierent perpendicular polarized laser intensities.
Recommended publications
  • Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes
    Materials 2014, 7, 1201-1220; doi:10.3390/ma7021201 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Review Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes Yuya Egawa *, Ryotaro Miki and Toshinobu Seki Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan; E-Mails: [email protected] (R.M.); [email protected] (T.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-49-271-7686; Fax: +81-49-271-7714. Received: 30 November 2013; in revised form: 13 January 2014 / Accepted: 28 January 2014 / Published: 14 February 2014 Abstract: In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conjugated azobenzenes have been synthesized. There are several types of boronic acid azobenzenes, and their characteristics tend to rely on the substitute position of the boronic acid moiety. For example, o-substitution of boronic acid to the azo group gives the advantage of a significant color change upon sugar addition. Nitrogen-15 Nuclear Magnetic Resonance (NMR) studies clearly show a signaling mechanism based on the formation and cleavage of the B–N dative bond between boronic acid and azo moieties in the dye.
    [Show full text]
  • Studying Azobenzene-Modified DNA for Programmable Nanoparticle Assembly and Nucleic Acid Detection
    Studying Azobenzene-Modified DNA for Programmable Nanoparticle Assembly and Nucleic Acid Detection Yunqi Yan A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee David Ginger, Chair Daniel Chiu Lutz Maibaum Program Authorized to Offer Degree: Chemistry 1 ©Copyright 2015 Yunqi Yan 2 University of Washington Abstract Studying Azobenzene-Modified DNA for Programmable Nanoparticle Assembly and Nucleic Acid Detection Yunqi Yan Chair of the Supervisory Committee: Professor David Ginger Department of Chemistry The azobenzene-modified DNA is an oligonucleotide molecule with azobenzene moieties covalently linked to the DNA backbone via the d-threoninol bond. The reversible photoswitching capability of azobenzene allows optical irradiation (light) to control the hybridization of azobenzene-modified DNA. Meanwhile, gold nanoparticles functionalized with natural oligonucleotides show increased sensitivity in nucleic acid detection due to the DNA-directed biorecognition and nanoparticles’ plasmonic effects. In the dissertation, I present my studies of surface functionalization of gold nanoparticles with azobenzene-modified oligonucleotides and the relevant photochemical characterization of the new system. In chapter 2, I synthesize the photoswichable gold nanoparticle assemblies cross-linked with azobenzene-modified DNA. Beyond the classic DNA-directed assembly and sensing behaviors associated with DNA-modified nanoparticles, these particles exhibit reversible photoswitching of their assembly behavior. Exposure to UV light induces the dissociation of nanoparticle aggregates due to trans-to-cis isomerization of the azobenzene which destabilizes the DNA duplex. The assembly of nanoparticles is reversible upon exposure to blue light due to the reverse cis-to-trans isomerization of azobenzene-modified DNA.
    [Show full text]
  • One-Pot Preparation of Azobenzenes from Nitrobenzenes by the Combination of an Indium-Catalyzed Reductive Coupling and a Subsequent Oxidation
    Tetrahedron 70 (2014) 2027e2033 Contents lists available at ScienceDirect Tetrahedron journal homepage: www.elsevier.com/locate/tet One-pot preparation of azobenzenes from nitrobenzenes by the combination of an indium-catalyzed reductive coupling and a subsequent oxidation Norio Sakai *, Shun Asama, Satsuki Anai, Takeo Konakahara Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan article info abstract Article history: We demonstrated how a reduction step with a reducing system comprised of In(OTf)3 and Et3SiH and Received 10 January 2014 a subsequent oxidation that occurred under an ambient (oxygen) atmosphere allowed the highly se- Received in revised form 18 January 2014 lective and catalytic conversion of aromatic nitro compounds into symmetrical or unsymmetrical azo- Accepted 21 January 2014 benzene derivatives. This catalytic system displayed a tolerance for the functional groups on a benzene Available online 25 January 2014 ring: an alkyl group, a halogen, an acetyl group, an ester, a nitrile group, an acetyl group, an ester moiety, and a sulfonamide group. Keywords: Ó 2014 Elsevier Ltd. All rights reserved. Azobenzene Nitrobenzene Reductive coupling Indium Hydrosilane 1. Introduction Azobenzene derivatives constitute important and central building blocks in functional materials, as well as in biologically active substances. For example, aryl azobenzene derivatives, which emit a variety of colors, have been widely utilized as the coloring matters, such as azo dyes or pigments, or as the photoresponsive functional materials, such as liquid crystals.1 Also, because en- zymes, such as azoreductase are known to selectively metabolize an azo moiety on azobenzenes for the release of a selected drug, which may show efficacy as a medicine, an azo moiety is often embedded in the drug structures.2 Based on this biological action, sulfasalazine,3 which treats rheumatoid arthritis, and olsalazine,4 which is effective against inflammatory bowel disease, were de- Scheme 1.
    [Show full text]
  • Design and Implementation of Multi-Responsive Azobenzene Triggers in Self-Immolative and Degradable Polymers
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 3-22-2016 12:00 AM Design and Implementation of Multi-Responsive Azobenzene Triggers in Self-Immolative and Degradable Polymers Andrew D. Wong The University of Western Ontario Supervisor Elizabeth R. Gillies The University of Western Ontario Graduate Program in Chemical and Biochemical Engineering A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Andrew D. Wong 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Polymer Science Commons Recommended Citation Wong, Andrew D., "Design and Implementation of Multi-Responsive Azobenzene Triggers in Self- Immolative and Degradable Polymers" (2016). Electronic Thesis and Dissertation Repository. 3629. https://ir.lib.uwo.ca/etd/3629 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Self-immolative polymers are a recently developed class of degradable polymers capable of undergoing end-to-end depolymerization following the reaction of their endcaps with appropriate stimuli. Self-immolative materials originated in the field of prodrug chemistry, and evolved into self-immolative oligomers, dendrimers, and most recently, linear polymers. Many stimuli-responsive endcaps have been developed, but typically can only respond to one stimulus. Azobenzenes are a well-known class of stimuli-responsive molecules most commonly used as photoswitches, due to their facile trans-cis isomerization. In addition to their photochemistry, azobenzenes have recently been found to be selectively reduction- sensitive, and are therefore of interest as endcaps in self-immolative polymers.
    [Show full text]
  • The Oxidation of Azo Compounds to Azoxy Compounds by Means of Acyl Hydroperoxides
    A. O. Matth eu 9 The Oxidation of Azo Compounds fo A zLoxg Compounds 8 THE OXIDATION OF AZO COMPOUNDS TO AZOXY COMPOUNDS BY MEANS OF ACYL HYDROPEROXIDES BY ALBERT OTTO MATTHEUS B. S. University of Illinois, 191 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN ORGANIC CHEMISTRY IN THE GRADUATE SCHOOL OF THE UNIVERSITY OF ILLINOIS 1920 UNIVERSITY OF ILLINOIS THE GRADUATE SCHOOL 19£0 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY ALBERT OTTO MATTHEUS ENTITLED THE XIDATI0U OF AZQ COMPO UNDS TO AZQXY COMPOUNDS BY MEANS Off ACYL HYDROPEROXIDES BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE In Charge of Thesis Head of Department Recommendation concurred in* Committee on Final Examination* *Required for doctor's degree but not for master's 4T V ACKNOWLEDGMENT The author wishes to express his thanks to Professer Rodger Adams who suggested this problem and under whose super- vision the work was conducted. Digitized by the Internet Archive in 2013 http://archive.org/details/oxidationofazocoOOmatt TABLE OF CONTENTS. Page Part I Introduction 3 Part II Historical 4 Part III Theoretical 7 Part IV Experimental 10 Preparation of p-ethoxy "benzene 10 preparation of unsymraet rical azobenzenes 10 Preparation of B-phenyl hydroxylamine 11 Oxidation of B-phenyl hydroxylamine 11 Condensation of nitroso benzene 12 Preparation of p-ethoxy azobenzene 12 Preparation of p-brora azobenzene 13 Preparation of p-nitro azobenzene 13 Preparation of hydrogen
    [Show full text]
  • Herman Skolnik Award Symposium 2016
    Herman Skolnik Award Symposium 2016 Honoring Stephen Bryant and Evan Bolton A report by Wendy Warr ([email protected]) for the ACS CINF Chemical Information Bulletin Introduction Stephen Bryant and Evan Bolton were selected to receive the 2016 Herman Skolnik Award for their work on developing, maintaining, and expanding the Web-based National Center for Biotechnology Information (NCBI) PubChem database, and related software capabilities and analytical tools, to enhance the scientific discovery process. NCBI is part of the United States National Library of Medicine (NLM), a branch of the National Institutes of Health (NIH). A summary of Steve and Evan’s achievements has been published in the Chemical Information Bulletin. They were invited to present an award symposium at the Fall 2016 ACS National Meeting in Philadelphia, PA. They invited twelve speakers: L to R: Valery Tkachenko, Roger Sayle, Leah McEwen, Steve Heller, Wolf-Dietrich Ihlenfeldt (partially obscured), Yulia Borodina, Peter Linstrom, Steve Bryant, Marc Nicklaus (at front), Evan Bolton (at back), Steve Boyer, Daniel Zaharevitz, Christoph Steinbeck. Not pictured: Michel Dumontier (inset) Developing databases and standards in chemistry Steve Heller was the first speaker, with an amusing scene-setting talk. He admitted that his secret in getting to where he is now was “luck, luck, luck”. He disliked chemistry lab work; he was at the right place at the right time with the right people; he worked with supportive people; and he planned for who would take over the work next. If the problem were just technology, someone would have solved it already. The real problem is always cultural and political, not technical.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,917,023 Hagemeyer Et Al
    USOO5917023A United States Patent (19) 11 Patent Number: 5,917,023 Hagemeyer et al. (45) Date of Patent: Jun. 29, 1999 54 REDUCTIVE COUPLING OF 3,041,377 6/1962 Harast ................................. 534/585 X NITROBENZENE OR NITROBENZENES 3,578,720 5/1971 Dodman et al. ........................ 534/572 SUBSTITUTED ON THE NUCLEUS TO GIVE 3,700,605 10/1972 Dodman et al. ........................ 502/324 3,989,764 11/1976 Wooley ................................... 568/949 ESSESSENGE 4,265,834 5/1981 Birkenstock et al. .................. 564/421 REDOX CATALYSTS 5,689,005 11/1997 Hagemeyer et al. ................... 564/420 OTHER PUBLICATIONS 75 Inventors: Alfred Hagemeyer, Rheine; Daniel Heineke, Ludwigshafen; Guido Voit, Finholt et al., J. Am. Chem. Soc., vol. 77, p. 4163, 1955. Schriesheim; Tom Witzel, Meier et al., Chem. Ber, vol. 89, pp. 2301-2305, 1965. Ludwigshafen, all of Germany Ohe et al., J. Org. Chem., vol. 54, No. 17, pp. 41.69–4174, 1989. 73 Assignee: BASF Aktiengesellshcaft, Gellner et al., J. Chem. Soc., pp. 1145-1148, 1949. Ludwigshafen, Germany Kmiewcik, J. Org. Chem, vol. 30, pp. 2014-2020, 1965. Lin et al., J. of Xiamen University, vol. 25, No. 4, Jul. 1986, pp. 449–455. 21 Appl. No.: 08/869,760 Konishi et al., Chem. Lett., vol. 11, pp. 1351-1354, 1980. 22 Filed: Jun. 5, 1997 Primary Examiner Fiona T. Powers 30 Foreign Application Priority Data Attorney, Agent, or Firm-Keil & Weinkauf Jun. 5, 1996 DEI Germany ........................... 196 22 644 57 ABSTRACT Aug. 20, 1996 DEI Germany ........................... 19633 552 Nitrobenzene or a nitrobenzene Substituted on the nucleus is 51) Int. Cl.
    [Show full text]
  • Characterizing Azobenzene Disperse Dyes in Commercial Mixtures and ☆ Children’S Polyester Clothing
    Environmental Pollution 287 (2021) 117299 Contents lists available at ScienceDirect Environmental Pollution journal homepage: www.elsevier.com/locate/envpol Characterizing azobenzene disperse dyes in commercial mixtures and ☆ children’s polyester clothing Kirsten E. Overdahl a, David Gooden b, Benjamin Bobay b, Gordon J. Getzinger c, Heather M. Stapleton a, P. Lee Ferguson a,c,* a Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, United States b Department of Chemistry, Box 90354, Duke University, Durham, NC, 27708, United States c Department of Civil and Environmental Engineering, Box 90287, 121 Hudson Hall, Duke University, Durham, NC, 27708, United States ARTICLE INFO ABSTRACT Keywords: Azobenzene disperse dyes are the fastest-growing class of dyestuffs, yet little is known about dye occurrences, Azobenzene disperse dyes sources, and transformations; azo dyes are also underrepresented in chemical standard catalogs, molecular da­ Non-targeted analysis tabases, and mass spectral libraries. Many azo dyes are known to have sensitization, mutagenic, and carcinogenic Human exposure properties. To fill these knowledge gaps, azo dyes were purified from dyestuffs by Soxhlet extraction and flash chromatography and characterized using ultra-high-performance liquid chromatography (UHPLC) coupled to a high resolution Orbitrap Fusion Lumos mass spectrometer operated in positive electrospray ionization mode, as well as by 1H and 13C NMR. Data were analyzed to identify likely chemical formulas and structures using a weight-of-evidence approach with multiple open-source, in silico computational mass spectrometry tools. Nine­ teen total azobenzene dyes were detected in dyestuffs via a non-targeted analysis approach; the azobenzene dyes Disperse Blue 79:1, Disperse Blue 183:1, Disperse Orange 44, Disperse Orange 73, Disperse Red 50, Disperse Red 73, and Disperse Red 354 were purified from raw dyestuffs.
    [Show full text]
  • Supporting Information © Wiley-VCH 2007 69451 Weinheim, Germany the Different Reaction Pathway for the Reduction of Aromatic
    Supporting Information © Wiley-VCH 2007 69451 Weinheim, Germany The different reaction pathway for the reduction of aromatic nitrocompounds on gold catalysts A. Corma*, P. Concepción, P. Serna Experimental Section Catalytic experiments were done in 2 mL home-made glass reactors, following the next procedure. Firstly, 5 mgr of the 1.5 wt% Au/TiO2 catalyst are placed into the reactor, together with the reaction mixture, i.e. 0.405 mol substrate, 9.15 mol toluene, 0.096 mol o-xylene. The system is then purged with H2 before heating up the solution, in order to completely remove the oxygen from the system. Under atmospheric pressure of H2, the reactor is heat at 110 ºC and the pressure is finally fixed at 9 bar of H2 (starting point of the reaction). Aliquots at different reaction times were taken and analyzed by both GC and MS-GC measurements. The gold catalyst used in the present work consists on 1.5 wt% gold on TiO2, which can be supplied by the World Gold Council (reference catalysts, Type A) or, otherwise, could be prepared by depositing the gold from an aqueous solution of HAuCl4 on a sample of TiO2 (P25 Degussa). The deposition-precipitation procedure is done at 343 K and pH of 7, using NaOH to maintain this pH during 2 h. Under these conditions, a 80 % in the efficiency of gold deposition is expected. The catalyst is then recovered, filtered, washed with deionized water, and dried at 373 K overnight. Finally, the powder is calcined at 673 K in air flow for 4 h.
    [Show full text]
  • Synthesis and Photocontrolled Supramolecular Self- Assembly of Azobenzene-Functionalized Perylene Bisimide Derivatives
    Article Synthesis and Photocontrolled Supramolecular Self- Assembly of Azobenzene-Functionalized Perylene Bisimide Derivatives Weikang Ling 1, Xiaoxiao Cheng 1, Tengfei Miao 1, Shuangshuang Zhang 1, Wei Zhang 1,* and Xiulin Zhu 2 1 Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China 2 Global Institute of Software Technology, No 5. Qingshan Road, Suzhou National Hi-Tech District, Suzhou 215163, China * Correspondence: [email protected]; Tel.: +86-512-65884243; Fax: +86-512-65882787 Received: 6 May 2019; Accepted: 2 July 2019; Published: 3 July 2019 Abstract: Azobenzene (Azo) units were successfully introduced into perylene bisimide (PBI) structures in order to realize the photocontrolling of the morphology of the supramolecular assembly of PBI by a photoisomerization process. A total of three Azo-functionalized perylene bisimide derivatives (PBI1, PBI2, and PBI3) with different alkyl chain lengths were designed and synthesized by imidization of 3,4,9,10-perylene tetracarboxylic dianhydride with the corresponding amines. The structures of these compounds were characterized by proton nuclear magnetic resonance (1H NMR) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The photoisomerization behaviors of Azo units in PBIs were investigated using ultraviolet-visible (UV-VIS) absorption spectroscopy, which were obviously effected by solvents and the alkyl chain length. Furthermore, the photoisomerization of Azo units has the obviously regulatory effect on the morphology of supramolecular assembly of PBIs, especially for the medium-length alkyl chain-linked Azo-functionalized PBI derivative (PBI2).
    [Show full text]
  • THE INFLUENCE of SUBSTITUENTS on the Cis-Trans ISOMERIZATION of AZOBENZENE
    THE INFLUENCE OF SUBSTITUENTS ON THE cis-trans ISOMERIZATION OF AZOBENZENE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By ERACH RUSTOMJI TALATY, B. Sc. (Hons.), M. So. ****** The Ohio State University 1957 Approved by: Adviser Department of Chemistrj ACKNOWLEDGMENTS The author wishes to express his deep sense of grati­ tude to Dr. Earl W. Malmberg for invaluable help and guid­ ance throughout this investigation. It was mainly through his kind efforts that it was possible for the author to come to the United States of America and study at this univer­ sity, and for his kindness in this and in many other ways, the author is permanently indebted to him. The author also wishes to thank the Research Corpora­ tion very much for a Research Fellowship that was awarded to him for two years, namely, from October, 1954, through September, 1956. Without this timely help, it would have been well-nigh impossible for the author to maintain himself in this country. Sincere thanks of the author are due to E. I. du Pont de Nemours and Company, too, for the grant of a Research Fellowship during the Summer Quarter of 1957* Finally, the author would like to express his indebted­ ness to Mr. S. Ramachandran and to Mr. Paul Anthony for the spontaneous assistance that they gave so generously in cal­ culations and proof-reading, respectively; to Mrs. Rosalie Kishler, Mrs. Diane Uhler, Mrs. Jane Scott, Mrs. Esther Salisbury and Miss Mary Morley, without whose voluntary and ii Ill valuable help, this dissertation would not have been typed in the required time; and to his fellow graduate students and other friends for help at various times in manifold ways.
    [Show full text]
  • Comparative Analysis of Azo Dye Restriction in the International Textile Industry
    University of Arkansas, Fayetteville ScholarWorks@UARK Apparel Merchandising and Product Apparel Merchandising and Product Development Undergraduate Honors Theses Development 5-2021 Comparative Analysis of Azo Dye Restriction in the International Textile Industry Kayla DeMark Follow this and additional works at: https://scholarworks.uark.edu/ampduht Part of the Business Law, Public Responsibility, and Ethics Commons, Environmental Health Commons, Fashion Business Commons, Materials Chemistry Commons, Sustainability Commons, and the Toxicology Commons Citation DeMark, K. (2021). Comparative Analysis of Azo Dye Restriction in the International Textile Industry. Apparel Merchandising and Product Development Undergraduate Honors Theses Retrieved from https://scholarworks.uark.edu/ampduht/17 This Thesis is brought to you for free and open access by the Apparel Merchandising and Product Development at ScholarWorks@UARK. It has been accepted for inclusion in Apparel Merchandising and Product Development Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. Comparative Analysis of Azo Dye Restriction in the International Textile Industry Kayla DeMark University of Arkansas Table of Contents Abstract ............................................................................................................................................ i Acknowledgements ........................................................................................................................
    [Show full text]